

Previous editions of the manual cease to be valid on publication of this edition of Böhler's manual "Information for Welders".

Particulars regarding the appearance and use of our products serve as information for the user. Details of the mechanical properties always refer to the pure weld metal in accordance with the applicable standards. The parent metal, the welding position and the welding parameters amongst other things affect the weld metal properties in the welded joint.

Express written agreement is required in each individual case as a guarantee of suitability for a specific purpose.

 Böhler Schweißtechnik Austria GmbH

 Böhler-Welding-St. 1

 8605 Kapfenberg / AUSTRIA

 ① +43 (0) 3862-301-0

 二 +43 (0) 3862-301-95193

 ☑ postmaster.bsga@bsga.at

 www.boehler-welding.com

 Member of the BÖHLER-UDDEHOLM Group

WELDING GUIDE

Preface

BÖHLER WELDING - Your Partner for Welding

"Our customers' problems are our problems too" is the basic principle at BÖHLEB WELDING.

is the basic principle at BOHLER WELDING.

More than 80 years of experience gathered by the company in over 70 different countries has proved beyond doubt that, in practice, the quality of the welding is decisive. When extreme temperatures, maximum strength requirements, exceptional resistance to corrosion or the highest possible working speed become the critical factors, adaptable know-how is essential.

We pay close attention to all the issues relevant for successful welding - materials, application, welding additives - and cooperate with customers in developing the solution most favourable for them.

Nothing is too much trouble for us in our pursuit of optimal welding results for our customers. Even in the Antarctic or the deserts of Africa, we provide our customers with product information, training courses and welding demonstrations.

When it comes to welding, only the best can satisfy us. That is why we collaborate in product development with universities and research institutes which have the necessary equipment and personnel for performing the simulations and measurements we require (for example with scanning electron microscopes or high-speed cameras).

At BÖHLER WELDING it's results than count.

Contents

ALPHABETICAL PRODUCT LIST				
COMPARISON TABLE EN/AWS-CLASSIFICATION AND BÖHLER PRODUCTS XIV				
GENERAL INFORMATION				
PRODUCT INFORMATION				
FILLER METALS				
FOR MILD STEELS				
FILLER METALS				
FOR PIPELINE WELDING				
FILLER METALS FOR WEATHER-RESISTANT,				
HIGH-STRENGTH AND CRYOGENIC STEELS				
FILLER METALS FOR HIGH TEMPERATURE				
AND CREEP RESISTANT STEELS				
FILLER METALS FOR STAINLESS				
AND CORROSION RESISTANT STEELS				
FILLER METALS FOR DISSIMILAR JOINTS				
AND SPECIAL APPLICATIONS				
FILLER METALS				
FOR HEAT RESISTANT STEELS				
NICKEL-BASE ALLOYS				
NON FERROUS ALLOYS				
SUB-ARC				
WELDING FLUXES				

SELECTION GUIDES FOR FILLER METALS AND WELDING PROCESSES	3-1
SELECTION GUIDE FOR THE OFFSHORE INDUSTRY	3-2
SELECTION GUIDE FOR THE CHEMICAL AND PETROCHEMICAL INDUSTRY	3-4
SELECTION GUIDE FOR THERMAL POWER PLANTS	3-8
SELECTION GUIDE FOR HYDRO POWER	-10
SELECTION TABLES BASE MATERIAL ORIENTED SELECTION	-13
PROCESS BASED SELECTION OF CONSUMABLES	-33
MATERIAL BASED SELECTION OF CONSUMABLES	-45
WELDING TECHNOLOGY DETAILS	-87
EFFICIENCY AND CALCULATION GUIDE	4-1
COMPARISON CHARTS AND OTHER TOOLS	5-1

Alphabetical Product List

BÖF	ILER	type of filler metal	page
FOX	2.5 Ni	SMAW stick electrode, low-alloved, cryogenic application	2-83
	2.5 Ni-IG	GTAW rod, low-alloyed, cryogenic application	2-87
	2.5 Ni-IG	GMAW solid wire, low-alloved, cryogenic application	
FOX	20 MVW	SMAW stick electrode, high-alloyed, creep resistant	2-120
	20 MVW-IG	GTAW rod, high-alloyed, creep resistant	2-136
	20 MVW-UP/BB 24	SAW wire/flux-combination	
		high-alloyed, creep resistant	2-160
	3 NiCrMo 2.5-UP/BB 24	SAW wire/flux-combination, low-alloyed, high strength	2-97
	3 NiMo 1-UP/BB 24	SAW wire/flux-combination, low-alloyed, high strength	2-96
FOX	A 7	SMAW stick electrode,	
		high-alloyed, special applications	2-266
FOX	A 7-A	SMAW stick electrode, high-alloyed, special applications	2-267
	A 7CN-IG	GTAW rod, high-alloyed, special applications	2-276
	A 7-IG	GMAW solid wire	2-279
	A 7-MC	Metal cored wire, high-alloyed, special application	2-282
	A 7-FD	GMAW flux cored wire, high-alloyed, Special applications	2-284
	A 7 PW-FD	GMAW flux cored wire, high-alloyed, Special applications	2-285
	A 7CN-UP/BB 203	SAW wire/flux-combination	
		high-alloyed, special applications	2-290
FOX	AM 400	SMAW stick electrode, high-alloyed, highly corrosion resistant	2-196
	AM 400-IG	GTAW rod, high-alloyed, highly corrosion resistant	2-212
	AM 400-IG	GMAW solid wire, high-alloyed, highly corrosion resistant	2-230
FOX	ASN 5	SMAW stick electrode, high-alloyed, highly corrosion resistant	2-194
FOX	ASN 5-A	SMAW stick electrode, high-alloyed, highly corrosion resistant	2-195
	ASN 5-IG	GTAW rod, high-alloyed, highly corrosion resistant	2-211
	ASN 5-IG (Si)	GMAW solid wire, high-alloyed,	
		highly corrosion resistant	2-229
	ASN 5-UP/BB 203	SAW wire/flux-combination	
		high-alloyed, highly corrosion resistant	2-257
	ASN 5 SY-UP/BB 202	SAW wire/flux-combination	
		high-alloyed, highly corrosion resistant	2-256
	BB 24	SAW flux, fluoride-basic type	2-357
	BB 25	SAW flux, fluoride-basic type	2-358
	BB 33 M	SAW flux, aluminate-rutile-type	2-359
	BB 202	SAW flux, fluoride-basic type	2-361
	BB 203	SAW flux, fluoride-basic type	2-362
	BB 430	SAW flux, fluoride-basic type	2-363
	BB 444	SAW flux, fluoride-basic type	2-364
	BB 910	SAW flux, fluoride-basic type	2-365
	BF 16	SAW flux, manganese-silicate-type	2-360
FOX	BVD 85	SMAW stick electrode for vertical-down welding,	
		basic coating, pipe welding	2-59

FOX BVD 90 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-60 FOX BVD 100 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-61 FOX BVD 110 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-62 FOX BVD 120 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-63 FOX BVD 120 SMAW stick electrode for vertical-down welding 2-58 BW VII rod for gas welding, mild steel 2-44 FOX BVD RP SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV Ir od for gas welding, mild steel 2-44 FOX C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-117 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-145 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-145 FOX S MVW SMAW stick electrode, high-alloyed, creep resistant 2-145 FOX C 9 MV-WG GMAW metal cored wire, high-alloyed, creep resistant 2-145 FOX C 9 MV-WG GMAW solid wire, chemical resistant 2-218
basic coating, pipe welding 2-60 FOX BVD 100 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-61 FOX BVD 110 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-62 FOX BVD 120 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-63 FOX BVD RP SMAW stick electrode for vertical-down welding basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-44 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-113 C 9 MV-IG GMAW stick electrode, high-alloyed, creep resistant 2-145 FOX C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-145 FOX C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 FOX C 9 MVW SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX C 9 MVW GMAW solid wire, chemical resistant 2-219 FOX C CEL
FOX BVD 100 SMAW stick electrode for vertical-down welding, basic coating, pipe welding, 2-61 FOX BVD 110 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-62 FOX BVD 120 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-63 FOX BVD RP SMAW stick electrode for vertical-down welding basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-147 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 SAW wireflux-combination, high-alloyed, creep resistant 2-118 FOX C 9 MVW GTAW rod, high-alloyed, creep resistant 2-118 C AT 430 L Cb-IG GMAW solid wire, chemical resistant 2-218 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding<
basic coating, pipe welding, 2-61 FOX BVD 110 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-62 FOX BVD 120 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-63 FOX BVD RP SMAW stick electrode for vertical-down welding basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-113 C 9 MV-IG GMAW stick electrode, high-alloyed, creep resistant 2-147 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 C 9 MVWIG GTAW rod, high-alloyed, creep resistant 2-118 C 9 MVWUG GTAW solid wire, chemical resistant 2-219 FOX C 9 MVW SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL SMAW stick electrode for vertical-down welding, cellu
FOX BVD 110 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-62 FOX BVD 120 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-63 FOX BVD RP SMAW stick electrode for vertical-down welding basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-45 BW XII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-145 FOX C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-145 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 C 9 MV-UG GTAW rod, high-alloyed, creep resistant 2-118 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated,
basic coating, pipe welding 2-62 FOX BVD 120 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-63 FOX BVD RP SMAW stick electrode for vertical-down welding basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-45 BW XII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-113 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-145 C 9 MV-IG GMAW stick electrode, high-alloyed, creep resistant 2-145 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 FOX C 9 MVW SMAW stick electrode, high-alloyed, creep resistant 2-118 C AT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrod
FOX BVD 120 SMAW stick electrode for vertical-down welding, basic coating, pipe welding 2-63 FOX BVD RP SMAW stick electrode for vertical-down welding basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-45 BW XII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-133 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-145 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-145 FOX C 9 MV-UG GMAW metal cored wire, high-alloyed, creep resistant 2-158 FOX C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 C AT 430 L Cb-IG GMAW solid wire, chemical resistant 2-218 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-
basic coating, pipe welding 2-63 FOX BVD RP SMAW stick electrode for vertical-down welding basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-45 BW XII rod for gas welding, mild steel 2-45 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-147 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 FOX C 9 MVW GTAW rod, high-alloyed, creep resistant 2-118 C A MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 FOX C 9 MVW GTAW rod, high-alloyed, creep resistant 2-118 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-218 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL 75 SMAW sti
FOX BVD RP SMAW stick electrode for vertical-down welding basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-45 BW XII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-1133 C 9 MV-IG GMAW stick electrode, high-alloyed, creep resistant 2-145 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-145 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 FOX C 9 MVW SMAW stick electrode, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-118 C 9 MVWIG GTAW rod, high-alloyed, creep resistant 2-134 C AT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding
basic coating, pipe welding 2-58 BW VII rod for gas welding, mild steel 2-45 BW XII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-145 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-145 FOX C 9 MVW SMAW stick electrode, high-alloyed, creep resistant 2-118 C AT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW slick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
BW VII rod for gas welding, mild steel 2-45 BW XII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-145 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-147 FOX C 9 MVW SMAW stick electrode, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 GTAW rod, high-alloyed, creep resistant 2-114 C 9 MVW GTAW rod, high-alloyed, creep resistant 2-114 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-218 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe weldi
BW XII rod for gas welding, mild steel 2-46 FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-147 C 9 MV-UC GMAW metal cored wire, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-158 FOX C 9 MVW SMAW stick electrode, high-alloyed, creep resistant 2-118 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-218 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-2219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
FOX C 9 MV SMAW stick electrode, high-alloyed, creep resistant 2-117 C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-145 C 9 MV-IG GMAW metal cored wire, high-alloyed, creep resistant 2-145 C 9 MV-UC GMAW metal cored wire, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wireflux-combination, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wireflux-combination, high-alloyed, creep resistant 2-118 C 9 MVW GTAW rod, high-alloyed, creep resistant 2-118 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
C 9 MV-IG GTAW rod, high-alloyed, creep resistant 2-133 C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-145 C 9 MV-MC GMAW metal cored wire, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-145 FOX C 9 MV-W SMAW stick electrode, high-alloyed, creep resistant 2-118 C 9 MV-UP/BB 910 GTAW rod, high-alloyed, creep resistant 2-118 C 9 MV-UG GTAW rod, high-alloyed, creep resistant 2-118 C AT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
C 9 MV-IG GMAW solid wire, high-alloyed, creep resistant 2-145 C 9 MV-MC GMAW metal cored wire, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-158 FOX C 9 MVW SAW wire/flux-combination, high-alloyed, creep resistant 2-118 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-1134 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-1134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-2119 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
C 9 MV-MC GMAW metal cored wire, high-alloyed, creep resistant 2-147 C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-158 FOX C 9 MVW SMAW stick electrode, high-alloyed, creep resistant 2-118 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
C 9 MV-UP/BB 910 SAW wire/flux-combination, high-alloyed, creep resistant 2-158 FOX C 9 MVW SMAW stick electrode, high-alloyed, creep resistant 2-118 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
FOX C 9 MVW SMAW stick electrode, high-alloyed, creep resistant 2-118 C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-218 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
C 9 MVW-IG GTAW rod, high-alloyed, creep resistant 2-134 CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-218 CAT 430 L Ti-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
CAT 430 L Cb-IG GMAW solid wire, chemical resistant 2-218 CAT 430 L Ti-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
CAT 439 L Ti-IG GMAW solid wire, chemical resistant 2-219 FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
FOX CEL SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
cellulosic coated, pipe welding 2-52 FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
FOX CEL+ SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54
cellulosic coated, pipe welding 2-53 FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-56
FOX CEL 75 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-54 FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-56
FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-56
FOX CEL 85 SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding 2-56
cellulosic coated, pipe welding 2-56
FOX CEL 90 SMAW stick electrode for vertical-down welding,
cellulosic coated, pipe welding 2-57
FOX CEL MO SMAW stick electrode for vertical-down welding,
Cellulosic coated, pipe weiding 2-55
FUX CM 2 Kb SMAW stick electrode, low-alloyed, nigh temperature 2-112
CM 2-IG GTAW rod, low-alloyed, nigh temperature 2-128
CM 2-IG GMAW solid wire, Iow-alloyed, high temperature 2-143
EOX CM 5 Kb SMW wire/nux-combination, low-alloyed, high temperature 2-154
FOX CM 5 KD SMAW slick electrode, low-alloyed, high temperature 2-115
CM 5-IG GTAW rod, high-alloyed, high temperature 2-131
CM 5-IG GMAW solid wire, high-alloyed, high temperature 2-144
EOX CM 9 Kb SMAW wite/nux-combination, mgn-anoyeu, mgn temperature 2-157
CM 9-IG CTAW rod high-alloyed high temperature 2-110
EOV CN 12/4 SMAW tick electrode high-alloyed steiplese 2172
FOX CN 13/4 SLIPBA SMAW stick electrode, high-alloyed, stailless 2-174
CN 13/4-IG GTAW rod high-alloved stainless 2-205

BÖH	ILER	type of filler metal	Page
	CN 13/4-IG	GMAW solid wire, high-alloyed, stainless	2-220
	CN 13/4-MC	Metal cored wire, high-alloyed, stainless	2-234
	CN 13/4-MC (F)	Metal cored wire, high-alloyed, stainless	2-235
	CN 13/4-UP/BB 203	SAW wire/flux-combination, high-alloyed, stainless	2-250
FOX	CN 16/13	SMAW stick electrode, high-alloyed, creep resistant	2-121
	CN 16/13-IG	GTAW rod, high-alloyed, creep resistant	2-137
FOX	CN 16/6 M-HD	SMAW stick electrode, high-alloyed, stainless	2-179
FOX	CN 17/4 PH	SMAW stick electrode, high-alloyed, stainless	2-180
FOX	CN 18/11	SMAW stick electrode, high-alloyed, creep resistant	2-122
	CN 18/11-IG	GTAW rod, high-alloyed, creep resistant	2-138
	CN 18/11-IG	GMAW solid wire, high-alloyed, creep resistant	2-146
	CN 18/11-UP/BB 202	SAW wire/flux-combination,	
		high-alloyed, creep resistant	2-161
	CN 19/9 M-IG	GTAW rod, high-alloyed, special applications	2-277
	CN 19/9 M-IG	GMAW solid wire, high-alloyed,	
		special applications	2-280
FOX	CN 19/9 M	SMAW stick electrode, high-alloyed, special applications	2-268
FOX	CN 20/25 M	SMAW stick electrode, high-alloyed, highly corrosion resistant	2-198
FOX	CN 20/25 M-A	SMAW stick electrode, high-alloyed, highly corrosion resistant	2-199
	CN 20/25 M-IG	GIAW rod, high-alloyed, highly corrosion resistant	2-214
	CN 20/25 M-IG (SI)	GMAW solid wire, nign-alloyed,	0.001
FOV	CN 01/00 Mm	nighty corrosion resistant	2-231
FUX	CN 21/33 Min	SWAW slick electrode, high-alloyed, heat resistant	2-302
EOV	CN 22/33 MIT-IG	SMAW stick electrode high elleved highly correction resistant	2-300
FOX	CN 22/9 N	SMAW stick electrode, high-alloyed, highly corrosion resistant	2-201
107	CN 22/9 N-ED	GMAW slick electrode, high-alloyed, high-slloyed	2-200
	ON ZE/S N-I D	highly corrosion resistant	2-248
	CN 22/9 N-IG	GTAW rod high-alloved highly corrosion resistant	2-215
	CN 22/9 N-IG	GMAW solid wire high-alloved	2 210
		highly corrosion resistant	2-232
	CN 22/9 N-UP/BB 202	SAW wire/flux-combination.	2 202
		high-alloved, highly corrosion resistant	2-258
-	CN 22/9 PW-FD	GMAW flux cored wire, high-alloved.	
		highly corrosion resistant	2-249
FOX	CN 23/12-A	SMAW stick electrode, high-alloyed, special applications	2-269
	CN 23/12-MC	Metal cored wire, high-alloyed, special application	2-283
	CN 23/12-FD	GMAW flux cored wire, high-alloyed,	
		special applications	2-286
	CN 23/12 PW-FD	GMAW flux cored wire, high-alloyed,	
		special applications	2-287
	CN 23/12-IG	GTAW rod, high-alloyed, special applications	2-278
	CN 23/12-IG	GMAW solid wire, high-alloyed,	
		special applications	2-281
	CN 23/12-UP/BB 202	SAW wire/flux-combination	
		high-alloyed, special applications	2-291

BÖł	ILER	type of filler metal	Page
FOX	CN 23/12 Mo-A	SMAW stick electrode, high-alloyed, special applications	2-270
	CN 23/12 Mo-FD	GMAW flux cored wire, high-alloyed,	-
		special applications	2-288
	CN 23/12 Mo PW-FD	GMAW flux cored wire, high-alloyed,	
		special applications	2-289
FOX	CN 24/13	SMAW stick electrode, high-alloyed, special applications	2-271
FOX	CN 24/13 Nb	SMAW stick electrode, high-alloyed, special applications	2-272
FOX	CN 25/9 Cu T	SMAW stick electrode, highly corrosion resistant	2-202
	CN 25/9 Cu T-IG	GTAW rod, highly corrosion resistant	2-216
	CN 25/9 Cu T-IG	GMAW solid wire, highly corrosion resistant	2-232
FOX	CN 25/35 Nb	SMAW stick electrode, high-alloyed, heat resistant	2-303
	CN 25/35 Nb-IG	GTAW rod, high-alloyed, heat resistant	2-309
FOX	CN 29/9	SMAW stick electrode, high-alloyed, special applications	2-278
FOX	CN 29/9-A	SMAW stick electrode, high-alloyed, special applications	2-274
FOX	CN 35/45 Nb	SMAW stick electrode, high-alloyed, heat resistant	2-304
	CN 35/45 Nb-IG	GTAW rod, high-alloyed, heat resistant	2-310
FOX	CuNi 30 Fe	SMAW stick electrode, high-alloyed, copper-nickel	2-352
	CuNi 30 Fe-IG	GTAW rod, high-alloyed, copper-nickel	2-353
	DCMS	Gas welding rod, low-alloyed, high temperature	2-163
FOX	DCMS Kb	SMAW stick electrode, low-alloyed, high temperature	2-109
FOX	DCMS Ti	SMAW stick electrode, low-alloyed, high temperature	2-108
	DCMS-IG	GTAW rod, low-alloyed, high temperature	2-126
	DCMS-IG	GMAW solid wire, low-alloyed, high temperature	2-141
FOX	DCMV	SMAW stick electrode, low-alloyed, high temperature	2-110
	DMO	Gas welding rod, low-alloyed, high temperature	2-162
FOX	DMO Kb	SMAW stick electrode, low-alloyed, high temperature	2-107
FOX	DMO Ti	SMAW stick electrode, low-alloyed, high temperature	2-106
	DMO-IG	GTAW rod, low-alloyed, high strength	2-85
	DMO-IG	GTAW rod, low-alloyed, high temperature	2-125
	DMO-IG	GMAW solid wire, low-alloyed, high temperature	2-140
FOX	DMV 83 Kb	SMAW stick electrode, low-alloyed, high temperature	2-111
	DMV 83-IG	GTAW rod, low-alloyed, high temperature	2-127
	DMV 83-IG	GMAW solid wire, low-alloyed, high temperature	2-142
FOX	E 308 H	SMAW stick electrode, high-alloyed, creep resistant	2-123
	E 308 H-FD	GMAW flux cored wire, high-alloyed, creep resistant	2-148
	E 308 H PW-FD	GMAW flux cored wire, high-alloyed, creep resistant	2-149
FOX	E 317 L	SMAW stick electrode, high-alloyed, highly corrosion resistant	2-193
	E 317 L-FD	GMAW flux cored wire, high-alloyed, highly corrosion resistant	2-246
	E 317 L PW-FD	GMAW flux cored wire, high-alloyed, highly corrosion resistant	2-247
FOX	E 347 H	SMAW stick electrode, high-alloyed, creep resistant	2-124
FOX	EAS 2	SMAW stick electrode, high-alloyed, chemical resistant	2-181
FOX	EAS 2-A	SMAW stick electrode, high-alloyed, chemical resistant	2-182
	EAS 2-MC	Metal cored wire, high-alloyed, chemical resistant	2-236
	EAS 2-FD	GMAW flux cored wire, high-alloyed, chemical resistant	2-238
	EAS 2 PW-FD	GMAW flux cored wire, high-alloyed, chemical resistant	2-239

BÖF	ILER	type of filler metal	Page
	EAS 2-IG	GTAW rod, high-alloyed, chemical resistant	2-206
	EAS 2-IG (Si)	GMAW solid wire, high-alloyed, chemical resistant	
	EAS 2-UP/BB 202	SAW wire/flux-combination	
		high-alloyed, chemical resistant	2-252
FOX	EAS 2-VD	SMAW stick electrode, high-alloyed, chemical resistant	2-183
	FOX EAS 2 Si	SMAW stick electrode, high-alloyed, highly corrosion resistant	2-192
FOX	EAS 4 M	SMAW stick electrode, high-alloyed, chemical resistant	2-186
FOX	EAS 4 M-A	SMAW stick electrode, high-alloyed, chemical resistant	2-187
	EAS 4 M-MC	Metal cored wire, high-alloyed, chemical resistant	2-237
	EAS 4 M-FD	GMAW flux cored wire, high-alloyed, chemical resistant	2-242
	EAS 4 PW-FD	GMAW flux cored wire, high-alloyed, chemical resistant	2-243
	EAS 4 M-IG	GTAW rod, high-alloyed, chemical resistant	2-208
	EAS 4 M-IG (Si)	GMAW solid wire, high-alloyed, chemical resistant	2-227
FOX	EAS 4 M-TS	SMAW stick electrode, high-alloyed, chemical resistant	2-189
	EAS 4 M-UP/BB 202	SAW wire/flux-combination	
		high-alloyed, chemical resistant	2-254
FOX	EAS 4 M-VD	SMAW stick electrode, high-alloyed, chemical resistant	2-188
	EASN 2 Si-IG	GTAW rod, high-alloyed, highly corrosion resistant	2-210
FOX	EASN 25M	SMAW stick electrode, highly corrosion resistant	2-197
	EASN 25M-IG	GTAW rod, highly corrosion resistant	2-213
	EMK 6	GTAW rod, unlegiert	2-27
	EMK 6	GMAW solid wire, mild steel	2-30
	EMK 7	GMAW solid wire, mild steel	2-31
	EMK 8	GMAW solid wire, mild steel	2-32
	EML 5	GTAW rod, mild steel	2-28
	EMS 2 CrMo/BB 24	SAW wire/flux-combination, low-alloyed, high temperature	2-152
	EMS 2 CrMo/BB 25	SAW wire/flux-combination, low-alloyed, high temperature	2-153
	EMS 2 Mo/BB 24	SAW wire/flux-combination, low-alloyed, high temperature	2-150
	EMS 2 Mo/BB 25	SAW wire/flux-combination, low-alloyed, high temperature	2-151
	EMS 2/BB 24	SAW wire/flux-combination, mild steel	2-37
	EMS 2/BB 25	SAW wire/flux-combination, mild steel	2-38
	EMS 2/BB 33 M	SAW wire/flux-combination, mild steel	2-39
	EMS 2/BF 16	SAW wire/flux-combination, mild steel	2-40
	EMS 3/BB 24	SAW wire/flux-combination, mild steel	2-41
	EMS 3/BB 25	SAW wire/flux-combination, mild steel	2-42
	EMS 3/BB 33 M	SAW wire/flux-combination, mild steel	2-43
	EMS 3/BF 16	SAW wire/flux-combination, mild steel	2-44
	ER 308 H-IG	GTAW rod, high-alloyed, creep resistant	2-139
	ER 70 S-2	GTAW rod, mild steel	2-29
	ER Ti 2-IG	GTAW rod, Titanium	2-354

BÖHLER	type of filler metal	Page
FOX ETI	SMAW stick electrode, mild steel, rutile-coated	2-15
FOX EV 47	SMAW stick electrode, mild steel, basic-coated	2-20
FOX EV 50	SMAW stick electrode, mild steel, basic-coated	2-21
FOX EV 50-A	SMAW stick electrode, mild steel, basic-coated	2-22
FOX EV 50-AK	SMAW stick electrode, mild steel, basic-coated	2-23
FOX EV 50-W	SMAW stick electrode, mild steel, basic-coated	2-24
FOX EV 55	SMAW stick electrode, mild steel, basic-coated	2-25
FOX EV 60	SMAW stick electrode, low-alloyed, high strength	2-75
FOX EV 60 PIPE	SMAW stick electrode for vertical-up welding,	
	basic coating, pipe welding	2-65
FOX EV 70 PIPE	SMAW stick electrode for vertical-up welding,	
	basic coating, pipe welding	2-66
FOX EV 63	SMAW stick electrode, low-alloyed, high strength	2-76
FOX EV 65	SMAW stick electrode, low-alloyed, high strength	2-77
FOX EV 70	SMAW stick electrode, low-alloyed, high strength	2-78
FOX EV 70 Mo	SMAW stick electrode, low-alloyed, high strength	2-79
FOX EV 75	SMAW stick electrode, low-alloyed, high strength	2-81
FOX EV 85	SMAW stick electrode, low-alloyed, high strength	2-82
FOX EV 85-M	SMAW stick electrode, high strength	2-84
FOX EV 100	SMAW stick electrode, high strength	2-84
FOX EV PIPE	SMAW stick electrode for vertical-up welding,	
	basic coating, pipe welding	2-64
FOX FA	SMAW stick electrode, high-alloyed, heat resistant	2-297
FA-IG	GTAW rod, high-alloyed, heat resistant	2-305
FA-IG	GMAW solid wire, high-alloyed, heat resistant	2-311
FOX FF	SMAW stick electrode, high-alloyed, heat resistant	2-298
FOX FF-A	SMAW stick electrode, high-alloyed, heat resistant	2-299
FOX FFB	SMAW stick electrode, high-alloyed, heat resistant	2-300
FOX FFB-A	SMAW stick electrode, high-alloyed, heat resistant	2-301
FFB-IG	GTAW rod, high-alloyed, heat resistant	2-307
FFB-IG	GMAW solid wire, high-alloyed, heat resistant	2-313
FF-IG	GTAW rod, high-alloyed, heat resistant	2-306
FF-IG	GMAW solid wire, high-alloyed, heat resistant	2-312
FOX HL 160 Ti	SMAW stick electrode, mild steel, rutile coated, high efficiency	2-18
FOX HL 180 Ti	SMAW stick electrode, mild steel, rutile coated, high efficiency	2-19
HL 51-FD	GMAW flux cored wire, mild steel, metal-cored	2-35
HL 53-FD	GMAW flux cored wire, mild steel, metal-cored	2-36
I 52 Ni	GTAW rod, pipe welding	2-86
FOX KE	SMAW stick electrode, mild steel, rutile cellulose coated	2-12
K Nova Ni	GMAW solid wire, pipe welding	2-68
K Nova Ni	GMAW solid wire, pipe welding	2-89

BÖF	ILER	type of filler metal	Page
KW	5 Nb-IG	GMAW solid wire, high-alloyed,	2-217
FOX	KW 10	SMAW stick electrode, high-alloyed, stainless	2-176
	KW 10-IG	GMAW solid wire, high-alloyed, stainless	2-221
	KWA-IG	GMAW solid wire, high-alloyed, stainless	2-222
FOX	MSU	SMAW stick electrode, mild steel, rutile-cellulosic-coated	2-10
	Ni 2-UP/BB 24	SAW wire/flux-combination, low-alloyed, cryogenic application	2-98
FOX	NIBAS 400	SMAW stick electrode, nickel base	2-329
	NIBAS 400-IG	GTAW rod, nickel base	2-335
	NIBAS 400-IG	GMAW solid wire, nickel base	2-341
FOX	NIBAS 617	SMAW stick electrode, nickel base	2-327
	NIBAS 617-IG	GTAW rod, nickel base	2-333
	NIBAS 617-IG	GMAW solid wire, nickel base	2-339
	NIBAS 617-UP/BB 444	SAW wire/flux-combination, nickel base	2-347
FOX	NIBAS 625	SMAW stick electrode, nickel base	2-323
	NIBAS 625-IG	GTAW rod, nickel base	2-330
	NIBAS 625-IG	GMAW solid wire, nickel base	2-336
	NIBAS 625-FD	GMAW flux cored wire, nickel base	2-343
	NIBAS 625-UP/BB 444	SAW wire/flux-combination, nickel base	2-345
FOX	NIBAS 60/15	SMAW stick electrode, nickel base	2-322
FOX	NIBAS 70/15	SMAW stick electrode, nickel base	2-324
FOX	NIBAS 70/20	SMAW stick electrode, nickel base	2-325
	NIBAS 70/20-IG	GTAW rod, nickel base	2-331
	NIBAS 70/20-IG	GMAW solid wire, nickel base	2-337
	NIBAS 70/20-FD	GMAW flux cored wire, nickel base	2-342
	NIBAS 70/20-UP/BB 444	SAW wire/flux-combination, nickel base	2-344
FOX	NIBAS C 24	SMAW stick electrode, nickel base	2-326
	NIBAS C 24-IG	GTAW rod, nickel base	2-332
	NIBAS C 24-IG	GMAW solid wire, nickel base	2-338
	NIBAS C 24-UP/BB 444	SAW wire/flux-combination, nickel base	2-346
FOX	NIBAS C 276	SMAW stick electrode, nickel base	2-328
	NIBAS C 276-IG	GTAW rod, nickel base	2-334
	NIBAS C 276-IG	GMAW solid wire, nickel base	2-340
	NIBAS C 276-UP/BB 444	SAW wire/flux-combination, nickel base	2-348
FOX	NiCr 625	SMAW stick electrode, nickel base	2-323
	NiCr 625-IG	GTAW rod, nickel base	2-330
	NiCr 625-IG	GMAW solid wire, nickel base	2-336
FOX	NiCr 70/15	SMAW stick electrode, nickel base	2-324
FOX	NiCr 70 Nb	SMAW stick electrode, nickel base	2-325
	NiCr 70 Nb-IG	GTAW rod, nickel base	2-331
	NiCr 70 Nb-IG	GMAW solid wire, nickel base	2-337
	NiCrMo 2.5-IG	GMAW solid wire, low-alloyed, high strength	2-91
	NiCu 1-IG	GMAW solid wire, low-alloyed, weather resistant	2-88
FOX	NiCuCr	SMAW stick electrode, low-alloyed, weather resistant	2-74
FOX	NiMo 100	SMAW stick electrode, low alloyed, high strenght	2-80
	NiMo 1-IG	GMAW solid wire for automatic welding, pipe welding	2-69
	NiMo 1-IG	GMAW solid wire, low-alloyed, high strength	2-90

BÖHLER	type of filler metal	Page
FOX NUT	SMAW stick electrode, gouging electrode	2-26
FOX OHV	SMAW stick electrode, unlegiert, rutil cellulose umhüllt	
FOX P 23	SMAW stick electrode, low-alloyed, high temperature	2-113
P 23-IG	GTAW rod, low-alloyed, high temperature	
P 23-UP/BB 430	SAW wire/flux-combination, low-alloyed, high temperature	2-155
FOX P 24	SMAW stick electrode, low-alloyed, high temperature	2-114
P 24-IG	GTAW rod, low-alloyed, high temperature	2-130
P 24-UP/BB 430	SAW wire/flux-combination, low-alloyed, high temperature	2-156
FOX P92	SMAW stick electrode, high-alloyed, creep resistant	2-119
P92-IG	GTAW rod, high-alloyed, creep resistant	2-135
P92-UP/BB 910	SAW wire/flux-combination,	
	high-alloyed, creep resistant	2-159
FOX RDA	SMAW stick electrode, high-alloyed, special applications	2-275
FOX SAS 2	SMAW stick electrode, high-alloyed, chemical resistant	2-184
FOX SAS 2-A	SMAW stick electrode, high-alloyed, chemical resistant	2-185
SAS 2-IG	GTAW rod, high-alloyed, chemical resistant	2-207
SAS 2-IG (Si)	GMAW solid wire, high-alloyed,	
	chemical resistant	2-226
SAS 2-FD	GMAW flux cored wire, high-alloyed, chemical resistant	2-240
SAS 2 PW-FD	GMAW flux cored wire, high-alloyed, chemical resistant	2-241
SAS 2-UP/BB 202	SAW wire/flux-combination	
	high-alloyed, chemical resistant	2-253
FOX SAS 4	SMAW stick electrode, high-alloyed, chemical resistant	2-190
FOX SAS 4-A	SMAW stick electrode, high-alloyed, chemical resistant	2-191
SAS 4-IG	GTAW rod, high-alloyed, chemical resistant	2-209
SAS 4-IG (Si)	GMAW solid wire, high-alloyed, chemical resistant	2-228
SAS 4-FD	GMAW flux cored wire, high-alloyed, chemical resistant	2-244
SAS 4 PW-FD	GMAW flux cored wire, high-alloyed, chemical resistant	2-245
SAS 4-UP/BB 202	SAW wire/flux-combination,	
	high-alloyed, chemical resistant	2-255
SG3-P	GMAW solid wire for automatic welding, pipe welding	2-67
FOX SKWA	SMAW stick electrode, high-alloyed, stainless	2-177
SKWA-IG	GMAW solid wire, high-alloyed, stainless	2-223
FOX SKWAM	SMAW stick electrode, high-alloyed, stainless	2-178
SKWAM-IG	GMAW solid wire, high-alloyed, stainless	2-224
SKWAM-UP/BB 203	SAW wire/flux-combination, high-alloyed, stainless	2-151
FOX SPE	SMAW stick electrode, mild steel, rutile-basic-coated	2-16
FOX SPEM	SMAW stick electrode, mild steel, rutile-basic-coated	2-17
FOX SUM	SMAW stick electrode, mild steel, rutile-basic-coated	2-13
FOX SUS	SMAW stick electrode, mild steel, rutile-basic-coated	2-14
Ti 52-FD	GMAW flux cored wire, mild steel, rutile typ	2-33
Ti 52 W-FD	GMAW flux cored wire, mild steel, rutile typ	2-34
Ti 60-FD	GMAW flux cored wire, low-alloyed, rutile typ	2-95
X 70-IG	GMAW solid wire, low-alloyed, high strength	2-92
X 90-IG	GMAW solid wire, low-alloyed, high strength	2-93

Comparison Table EN-Classification and BÖHLER products

EN-Classification	Böhler	EN-Classification	Böhler
E 13 / B / 2	FOX ON 13/4 SUPPA	E 423 C 25	FOX CEL 75
E 13 / B 6 2	FOX CN 13/4 001 TIA	E 42 3 Mo C 2 5	FOX CEL Mo
E 12 B 2 2	EOX KW 10	E 42 2 DR 2 2 U10	FOX EV 50 AK
E 17 B 2 2			FOX EV 50-AR
E 10 10 E NU B 0 0	FOX ASN 5		
E 10 10 5 N L D 2 2			
E 10 0 Mp D 2 2	FOX ASIN 5-A		
E 7 18 0 MpMo P 2 2			
E 10 10 2 D 1 2			
E 10 12 2 D 1 5			
E 10 12 2 L D 2 2			FOX EV 60
E 10 12 3 B 2 2	FOX EAS 4 M	E 46 8 2Ni B 4 2 H5	FOX 2.5 Ni
E 10 12 3 Nb B 2 2	FOX SAS 4	E 50 3 1Ni C 2 5	
E 10 12 3 Nb B 3 2	FOX SAS 4-A	E 50 4 B 4 2 H5	FOX EV 63
E 10 0 B / 2 H5	FOX CN 18/11	E 50 4 1Ni B12 H5	FOX EV 60 PIPE
E 10 0 H B / 2 H5	FOX E 308 H	E 55 3 MpMo B T 4 2 H10	FOX EV 70 Mo
E 10 0 B 2 2	FOX EAS 2	E 55 / 7(Mp2NiMo) B12 H5	FOX EV 70 PIPE
E 19 9 L B 1 5	FOX EAS 2-VD	E 55 5 72Ni B 4 5 H5	FOX BVD 90
E 19 9 B 3 2	FOX EAS 2-A	E 55 6 1NiMo B 4 2 H5	FOX EV 65
E 19 9 Nh B 2 2	FOX SAS 2		FOX EV 70
	FOX E 347 H	E 62.4 Mn1NiMo B42 H5	FOX NiMo 100
E 19 9 Nh B 3 2	FOX SAS 2-A	E 62 5 72Ni B 4 5 H5	FOX BVD 100
E 20 10 3 B 3 2	FOX CN 19/9 M	E 62.6 Mn2NiCrMo B42 H5	FOX EV 75
E 20 25 5 Cu N L B 2 2	FOX CN 20/25 M	E 69 3 Mn2NiMo B 4 5 H5	FOX BVD 110
E 20 25 5 Cu N L B 3 2	FOX CN 20/25 M-A	E 69 6 Mn2NiCrMo B42 H5	FOX EV 85
F 22 12 B 2 2	FOX FF	E CrMo1 B 4 2 H5	FOX DCMS Kb
F 22 12 B 3 2	FOX FF-A	E CrMo1 B 1 2	FOX DCMS Ti
E 22 9 3 L B 2 2	FOX CN 22/9 N-B	E CrMo2 B 4 2 H5	FOX CM 2 Kb
E 22 9 3 L B 3 2	FOX CN 22/9 N	E CrMo5 B 4 2 H5	FOX CM 5 Kb
E 24 12 B 2 2	FOX CN 24/13	E CrMo9 B 4 2 H5	FOX CM 9 Kb
E 23 12 Nb B 2 2	FOX CN 24/13 Nb	E CrMo91 B 4 2 H5	FOX C 9 MV
E 23 12 2 L B 3 2	FOX CN 23/12 Mo-A	E CrMoWV12 B 4 2 H5	FOX 20 MVW
E 23 12 L R 3 2	FOX CN 23/12-A	E Mo B 4 2 H5	FOX DMO Kb
E 25 94 N L B 2 2	FOX CN 25/9 CuT	E Mo B 1 2	FOX DMO Ti
E 25 20 B 2 2	FOX FFB	E MoV B 4 2 H5	FOX DMV 83 Kb
E 25 20 R 3 2	FOX FFB-A	E Ni 66 20	FOX NIBAS 60/15
E 25 4 B 2 2	FOX FA	E Ni 40 60	FOX NIBAS 400
E 29 9 R 1 2	FOX CN 29/9	E Ni 66 17	FOX NIBAS 617
E 29 9 R 3 2	FOX CN 29/9-A	E Ni 60 59	FOX NIBAS C 24
E 38 0 RC 1 1	FOX MSU, FOX OHV	E Ni 62 76	FOX NIBAS C 276
	FOX KE	E Z 16 13 Nb B 4 2 H5	FOX CN 16/13
E 38 0 R 1 2	FOX SUM	E Z 16 6 Mo B 6 2 H5	FOX CN 16/6 M-HD
E 38 0 RR 5 4	FOX HL 160 Ti	E Z 17 4 Cu B 4 3 H5	FOX CN 17/4 PH
E 38 0 RR 7 4	FOX HL 180 Ti	E Z 17 Mo B 2 2	FOX SKWAM
E 38 2 RB 1 2	FOX SPE	E Z 19 14 Si B 2 2	FOX EAS 2 Si
	FOX SPEM	E Z 21 33 B 4 2	FOX CN 21/33 Mn
E 38 3 C 2 1	FOX CEL	E Z 22 18 4 L B 2 2	FOX AM 400
E 38 2 C 2 1	FOX CEL+	E Z 25 22 2 NL B 2 2	FOX EASN 25 M
E 38 4 B 4 2 H5	FOX EV 47	E Z 25 35 Nb B 6 2	FOX CN 25/35 Nb
E 42 0 RR 1 2	FOX SUS, FOX ETI	E Z 35 45 Nb 6 2	FOX CN 35/45 Nb
E 42 3 B 1 2 H10	FOX EV 50-A	E Z CrMoV1 B 4 2 H5	FOX DCMV

Selection Guide

EN-Classification	Böhler	EN-Classification	Böhler
E Z CrMoW//911 B 4 2 H5	FOX C 9 MVW	G Z 21 33 Nb	CN 21/33 Mn-IGG 7
E Z CrMoWVNb 9 0 5 2 B42H5	FOX P 92	22 17 8 4 NI	AM 400-IG
E Z CrMoVNb B 21 B42 H5	FOX P 24	G Z 25 35 Nb	CN 25/35 Nb-IG
E Z CrWV21.5 B42 H5	FOX P 23	G Z 35 45 Nb H	CN 35/45 Nb-IG
E Ni 61 82	FOX NIBAS 70/15	01	BW VII
	FOX NiCr 70/15	0 III	BW XII
E Ni 60 82	FOX NIBAS 70/20	0 IV	DMO
	NIBAS 70/20-FD	ŌV	DCMS
	FOX NiCr 70 Nb	S 13 4 / SA FB 2	CN 13/4-UP/BB 203
E Ni 66 25	FOX NIBAS 625	S 17 / SA FB 2	SKWA-UP/BB 202
	NIBAS 625-FD	S 17 Mo H	SKWAM-UP/BB 203
	FOX NiCr 625	S 18 16 5 NL / SA FB 2	ASN 5-UP/BB 203
G 13 4	CN 13/4-IG	S 18 8 Mn / SA FB 2	A 7CN-UP/BB 203
<u>G 17</u>	KWA-IG	S 19 9 H / SA FB 2	CN 18/11-UP/BB 202
G 18 8 Mn	A 7-IG	S 19 9 L / SA FB 2	EAS 2-UP/BB 202
<u>G 19 12 3 L Si</u>	EAS 4 M-IG (Si)	S 19 9 Nb / SA FB 2	SAS 2-UP/BB 202
G 19 12 3 NbSi	SAS 4-IG (Si)	S 22 9 3NL/SA FB 2	CN 22/9 N-UP/BB 202
<u>G 19 9 H</u>	CN 18/11-IG	S 38 0 MS S2	EMS 2/BF 16
<u>G 19 9 L Si</u>	EAS 2-IG (Si)	<u>S 38 0 MS S3</u>	EMS 3/BF 16
G 19 9 NbSi	SAS 2-IG (Si)	<u>S 38 4 FB S2</u>	EMS 2/BB 24
<u>G 20 10 3</u>	CN 19/9 M-IG	S 42 3 FB S3	EMS 3/BB 25
<u>G 22 12 H</u>	FF-IG	<u>S 42 4 FB S2</u>	EMS 2/BB 25
<u>G 22 9 3 NL</u>	CN 22/9 N-IG	<u>S 42 4 FB S3</u>	EMS 3/BB 24
<u>G 23 12 L</u>	CN 23/12-IG	<u>S 46 0 AR S2</u>	EMS 2/BB 33 M
<u>G 25 94 NL</u>	CN 25/9 CuT-IG	<u>S 46 3 FB S2Mo</u>	EMS 2 Mo/BB 25
<u>G 25 20 Mn</u>	FFB-IG	S 46 4 FB S2Mo	EMS 2 Mo/BB 24
<u>G 25 4</u>	FA-IG	S 46 6 FB S2Ni2	NI 2-UP/BB 24
<u>G 3 Ni 1</u>	K Nova Ni	S 50 0 AR S3	EMS 3/BB 33 M
	EMK 6	S 50 4 FB SZ3NI1M0	3 NIMO 1-UP/BB24
<u>G 3 SI 1</u>	EMK 6	S 69 6 FB SZ3NI2CIMO	3 NICrMo 2.5-UP/BB 24
<u>G U</u>	NICU I-IG	S CRIVIOT / SA FB T	EMS 2 Crivio/BB 24
<u>G 49 4 M C0</u>		S CINUT /SA FD 1	EIVIS 2 CTIVIO/BB 25
	EMK 9	S CINOZ / SA FB I	CM 5 UP/PP 24
G 46 6 C G2 Ni2	2.5 Ni-IG	S CrMo91 / SA FB 2	C 0 MV-I IP/BB 010
G 46 8 M G2 Ni2	2.5 Ni-IG	S 7 CrMoW//Nb 0 0 5 2/SA EB 2	P 92-1 IP/BB 910
G 42 4 C G0 G 4 Si 1	SG 3-P	S 7 CrW/V 2	P 23-11P
G 46 5 M G0 G 4 Si 1	SG 3-P	02011112	P 24-UP
G 55 4 C Mn3Ni1Mo	NiMo 1-IG	S19 12 3L / SA FB 2	FAS 4 M-LIP/BB 202
G 55 6 M Mn3Ni1Mo	NiMo 1-IG	S19 12 3Nb/SA FB 2	SAS 4-UP/BB 202
G 69 5 M Mn3CrNi1CrMo	X 70-IG	S 23 12 L / SA FB 2	CN 23/12-UP/BB 202
G 69 4 C Mn3CrNi2 5CrMo	NiCrMo 2 5-IG	SA AB 1 97 AC	BB 33 M
G 69 6 M Mn3CrNi2.5CrMo	NiCrMo 2.5-IG	SA FB 1 55 AC	BB 430
G 89 6 M Mn4Ni2CrMo	X 90-IG	SA FB 1 65 DC H5	BB 24
G CrMo1Si	DCMS-IG	SA FB 1 68 AC H5	BB 25
G CrMo2 Si	CM 2-IG	SA FB 2	BB 444
G CrMo5 Si	CM 5-IG	SA FB 2 55 DC	BB 910
G CrMo91	C 9 MV-IG	SA FB 2 DC	BB 202
G MoSi	DMO-IG	SA FB 2 DC	BB 203
G MoV Si	DMV 83-IG	SCrMoWV12/SA FB 2	20 MVW-UP/BB 24
G Z 13	KW 10-IG	SF MS 1 78 AC	BF 16
G Z 13 Nb L	KW 5 Nb-IG	S Ni 60 82	NIBAS 70/20-IG
G Z 17 Mo H	SKWAM-IG		NiCr 70 Nb-IG
G Z 17 Ti	SKWA-IG	S Ni 40 60	NIBAS 400-IG
G Z 18 Nb L	CAT 430 L Cb-IG	S Ni 66 17	NIBAS 617-IG
G Z 18 Ti L	CAT 439 L Ti-IG		NIBAS 617-UP
G Z 18 16 5 NL	ASN 5-IG (Si)	S Ni 60 59	NIBAS C24-IG
G Z 20 25 5 Cu NL	CN 20/25 M-IG (Si)		NIBAS C24-UP

EN-Classification	Böhler	EN-Classification	Böhler
S Ni 6276	NIBAS C276-IG	T 42 2 P C 1 H5	Ti 52-FD
	NIBAS C276-UP		Ti 52 W-FD
Ni 66 25	NIBAS 625-IG	T 42 5 2 MM 2 H5	HL 53-FD
11 00 20	NiCr 625-IG	T 46 2 P M 1 H10	Ti 52-FD
	NiCr 625-LIP	T 46 4 P M 1 H 10	Ti 52 W-FD
T 13 4 MM 2	CN 13/4 MC	T 50 6 1 Ni P M 1 H5	Ti 60-ED
T 13 4 MM 2	CN 13/4 MC (F)	T 46 4 M M 2 H5	HL 51-ED
T 18.8 Mn MM 1	A 7-MC	T 7 19 9 H P C 1	F 308 H PW-FD
T 18 8 Mn B C 3	A 7-FD	T 7 19 9 H P M 1	E 308 H PW-FD
T 18 8 Mn B M 3	A 7-FD	T Z 19 9 H B C 3	E 308 H-FD
T 18 8 Mn P C 2	A 7 PW-FD	T 7 19 9 H B M 3	E 308 H-FD
T 18 8 Mn P M 2	A 7 PW-FD	W 13.4	CN 13/4-IG
T 19 12 3 L MM 1	FAS 4 M-MC	W 18.8 Mn	A 7CN-IG
T 19 12 3 L P C 1	EAS 4 PW-ED	W 19 12 3 I	FAS 4 M-IG
T 19 12 3 L P M 1	EAS 4 PW-ED	W 19 12 3 Nb	SAS 4-IG
T 19 12 3 L B C 3	FAS 4 M-FD	W 19 9 H	CN 18/11-IG
T 19 12 3 L B M 3	EAS 4 M-ED		EB 308 H-IG
T 19 12 3 Nb P C 1	SAS 4 PW-FD	W 19 9 I	EAS 2-IG
T 19 12 3 Nb P M 1	SAS 4 PW-FD	W 19 9 Nb	SAS 2-IG
T 19 12 3 Nb B C 3	SAS 4-FD	W 20 10 3	CN 19/9 M-IG
T 19 12 3 Nb B M 3	SAS 4-FD	W 22 12 H	FE-IG
TZ 19 13 4 L B M 3	E 317L-ED	W 22 9 3 NI	CN 22/9 N-IG
TZ 19 13 4 L B C 3	E 317L-ED	W 23 12 I	CN 23/12-IG
TZ 19 13 4 L P M 1	E 317L PW-FD	W 25 4	FA-IG
TZ 19 13 4 L P C 1	E 317L PW-FD	W 25 9 4 NL	CN 25/9 CuT-IG
T 19 9 I MM 1	FAS 2 MC	W 25 20 Mn	FFB-IG
T 19 9 L P C 1	EAS 2 PW-ED	W 25 2 2 2 NI	FASN 25 M-IG
T 19 9 L P M 1	EAS 2 PW-FD	W 3 Si 1	EMK 6
T 19 9 L R C 3	EAS 2-FD	W 2 Mo	DMO-IG
T 19 9 L R M 3	EAS 2-FD	W 2 Si	EML 5
T 19 9 Nb P C 1	SAS 2 PW-FD	W 2 Ni 2	2.5 Ni-IG
T 19 9 Nb P M 1	SAS 2 PW-FD	W 3 Ni 3	I 52 Ni
T 19 9 Nb R C 3	SAS 2-FD	W CrMo1 Si	DCMS-IG
T 19 9 Nb R M 3	SAS 2-FD	W CrMo2 Si	CM 2-IG
T 22 9 3 NL P C 1	CN 22/9 PW-FD	W CrMo5 Si	CM 5-IG
T 22 9 3 NL P M 1	CN 22/9 PW-FD	W CrMo9 Si	CM 9-IG
T 22 9 3 NL R C 3	CN 22/9 N-FD	W CrMo91	C 9 MV-IG
T 22 9 3 NL R M 3	CN 22/9 N-FD	W CrMoWV12	20 MVW-IG
T 23 12 L MM 1	CN 23/12 MC	W Mo Si	DMO-IG
T 23 12 2 L P C 1	CN 23/12 Mo PW-FD	W MoV Si	DMV 83-IG
T 23 12 2 L P M 1	CN 23/12 Mo PW-FD	W Z 16 13 Nb	CN 16/13-IG
T 23 12 2 L R C 3	CN 23/12 Mo-FD	W Z 18 16 5 NL	ASN 5-IG
T 23 12 2 L R M 3	CN 23/12 Mo-FD	W Z 19 13 Si NL	EASN 2 Si-IG
T 23 12 L P M 1	CN 23/12 PW-FD	W Z 20 25 5 Cu NL	CN 20/25 M-IG
T 23 12 L P C 1	CN 23/12 PW-FD	W Z 21 33 Nb	CN 21/33 Mn-IG
T 23 12 L R M 3	CN 23/12-FD	W Z 22 17 8 4 NL	AM 400-IG
T 23 12 L R C 3	CN 23/12-FD	W Z 25 35 Nb	CN 25/35 Nb-IG
T CrMo 9 1	C 9 MV-MC	W Z 35 45 Nb H	CN 35/45 Nb-IG
		W Z CrMoVW 911	C 9 MVW-IG
		W Z CrMoWVNb 9 0.5 2	P 92-IG

Comparison Table AWS-Classification and BÖHLER product

AWS-Classification	Böhler	AWS-Classification	Böhler
E10018-G	FOX BVD 100 FOX EV 75		FOX KE FOX SUM
E11018-G	FOX BVD 110 FOX EV 85		FOX SUS FOX ETI
E2209-15	FOX CN 22/9 N-B	E6013(mod.)	FOX SPE
E2209-17	FOX CN 22/9 N		FOX SPEM
E2553-15(mod.)	FOX CN 25/9CuT	E7010-A1	FOX CEL Mo
E307-15(mod.)	FOX A 7	E7010-P1	FOX CEL 75
E307-16(mod.)	FOX A 7-A	E7016	FOX EV 50-A
E307T0-G	A 7-FD	E7016-1H4R	FOX EV 50-W
E307T1-G	A7 PW-FD	E7016-1H4R	FOX EV PIPE
E308L-15	FOX EAS 2		FOX EV 47
E308L-17	FOX EAS 2-A	E7018(mod.)	FOX EV 50-AK
	FOX EAS 2-VD	E7018-1H4R	FOX EV 50
E308-15	FOX CN 18/11		FOX EV 55
E309Cb-15	FOX CN 24/13 Nb	E7018-A1	FOX DMO Kb
E308H-16	FOX E 308 H	E7024	FOX HL 180 Ti
E309L-15	FOX CN 24/13	E7024-1	FOX HL 160 Ti
E309L-17	FOX CN 23/12-A	E8010-P1	FOX CEL 85
E309MoL-17(mod.)	FOX CN 23/12 Mo-A	<u>E8013-G</u>	FOX DCMS Ti
E309-15(mod.)	FOX FF	E8016-GH4R	FOX EV 60 PIPE
E309-17	FOX FF-A	E8018-B2	FOX DCMS Kb
E310-15(mod.)	FOX FFB	E8018-B6H4R	FOX CM 5 Kb
E310-16	FOX FFB-A	E8018-B8	FOX CM 9 Kb
E312-16(mod.)	FOX CN 29/9	E8018-C1H4R	FOX 2.5 Ni
E312-17(mod.)	FOX CN 29/9-A	E8018-C3H4R	FOX EV 60
E316 L-15	FOX EAS 4 M	E8018-D1H4R(mod.)	FOX EV 65
E316 L-16 (mod.)	FOX EAS 4 M-TS	E8018-G	FOX BVD RP
E316 L-17	FOX EAS 4 M-A		FOX BVD 85
	FOX EAS 4 M-VD	E8018-GH4R	FOX EV 63
<u>E317L-17</u>	FOX E 317 L		FOX EV 65
E317LN-15(mod.)	FOX ASN 5	E8018-W2H4R	FOX NiCuCr
E317LN-17(mod.)	FOX ASN 5-A	<u>E9015-B9</u>	FOX C 9 MV
E318-15	FOX SAS 4	E9015-B9(mod.)	FOX C 9 MVW
E318-17	FOX SAS 4-A		FOX P 92
E347-15	FOX SAS 2	E9016-GH4R	FOX EV 70 PIPE
5047.47	FUX E 347 H	E9018-B3	FOX CM 2 Kb
E347-17	FUX SAS 2-A	E9018-D1(mod.)	FOX EV 70
E 385-15 (mod.)	FOX CN 20/25 M		
E 385-17 (mod.)	FOX CN 20/25 M-A	E9018-G	FOX BVD 90
E 410 NIMO-15	FOX CN 13/4 SUPRA		
E 410 NIVIO-25	FOX CN 13/4		
E 410-15 (III00.)			
<u>E 430-13</u>			
		E3010-GH4H	
E 6012		E10010-G	
E 0013		E10010-GH4N	FUX EV /3

AWS-Classification Böhler		AWS-Classification	Böhler	
E10018-MH4B(mod)	FOX EV 75	FG	P 23-LIP	
E11018-GH4B	FOX EV 85	20	P 24-LIP	
EC90S-B9	C 9 MV-MC	E630-15(mod.)	FOX CN 17/4 PH	
EC307(mod.)	A 7-MC	E70CGMH4	HL 53-FD	
EC308L	EAS 2-MC	E70C-6MH4	HL 51-FD	
EC309L	CN 23/12-MC	E71T-1H4	Ti 52-FD	
EC316L	EAS 4 M-MC	E71T-1MH8		
EC410NiMo(mod.)	CN 13/4-MC	ER80S-Ni1	Ti 52 W-FD	
EC410NiMo(mod.)	CN 13/4-MC (F)	E81T1-Ni1MH4	Ti 60-FD	
ECuNi	FOX CuNi 30 Fe	ERCuNi	CuNi 30 Fe-IG	
ENiCrFe-3	FOX NIBAS 70/15	ERNiCr-3	NIBAS 70/20-IG	
	FOX NiCr 70/15		NiCr 70 Nb-IG	
ENiCrFe-3(mod.)	FOX NIBAS 70/20		NIBAS 70/20-UP	
	FOX NiCr 70 Nb	ERNiCrCoMo1	NIBAS 617-IG	
ENiCrCoMo1	FOX NIBAS 617		NIBAS 617-UP	
ENiCrMo-3	FOX NIBAS 625	ERNiCrMo-3	NIBAS 625-IG	
	FOX NiCr 625		NIBAS 625-UP	
ENiCrMo-4	FOX NIBAS C 24	ERNiCrMo-3	NiCr 625-IG	
ENiCrMo-6	FOX NIBAS 60/15	ERNiCrMo4	NIBAS C 276-IG	
ENiCrMo-13	FOX NIBAS C 24		NIBAS C 276-UP	
ENiCr-3T0-4	NIBAS 70/20-FD	ERTi2	ER Ti 2-IG	
ENiCu-7	FOX NIBAS 400	ERNiCrMo13	NIBAS 24-IG	
E16-8-2-25(mod.)	FOX CN 16/6 M-HD		NIBAS 24-UP	
E2209T0-1	CN 22/9 N-FD	ER110S-G	NiCrMo 2.5-IG	
E2209T0-4	CN 22/9 N-FD		X 70-IG	
E2209T1-1	CN 22/9 PW-FD	ERNiCu7	NIBAS 400-IG	
E2209T1-4	CN 22/9 PW-FD	ER120S-G	X 90-IG	
E308HT0-1	E 308 H-FD	ER19-10H	CN 18/11-IG	
E308HT0-4	E 308 H-FD	ER2209	CN 22/9 N-IG	
E308H11-1	E 308 H PW-FD		CN 22/9 N-UP/BB 202	
E308H11-4	E 308 H PW-FD	ER307(mod.)	A 7CN-IG	
E308L10-1	EAS 2-FD		A 7-IG	
E308L10-4	EAS 2-FD	ED000LO:	A /CN-UP/BB 203	
E308L11-1	EAS 2 PW-FD	ER308LSI	EAS 2-IG (SI)	
E308L11-4	EAS 2 PW-FD	ER308H	ER 308 H-IG	
E300IVI0-17(III00.)		ENSUGE		
E309LW0T0-1	CN 23/12 MO-FD	EP209Mo(mod.)	CN 10/0 M IG	
E309LM0T0-4	CN 23/12 Mo PW-ED	EB309(mod.)	EE-IG	
E309LMoT1-4	CN 23/12 Mo PW-FD	ER309(1100.)	CN 23/12-IG	
E309LT0-1	CN 23/12-ED	LIIOOSE	CN 23/12-10 CN 23/12-11P/BB 202	
E309LT0-4	CN 23/12-FD	EB310(mod.)	FFB-IG	
E309LT1-4	CN 23/12 PW-ED	EB316LSi	FAS 4 M-IG (Si)	
E309LT1-1	CN 23/12 PW-FD	FB316	EAS 4 M-IG	
E316LT0-1	EAS 4 M-ED	2.10102	EAS 4 M-UP/BB 202	
E316LT0-4	FAS 4 M-FD	EB317L	ASN 5 S4-UP/BB 202	
E316LT1-1	FAS 4 PW-FD	EB317LN(mod.)	ASN 5-IG (Si)	
E316LT1-4	EAS 4 PW-FD		ASN 5-IG	
E317LT0-4	E 317L-FD		ASN 5-UP/BB 203	
E317LT1-4(1)	E 317L PW-FD	ER318	SAS 4-IG	
E318 T1-4	SAS 4 PW-FD		SAS 4-UP/BB 202	
E318 T1-1	SAS 4 PW-FD	ER318(mod.)	SAS 4-IG (Si)	
E318 T0-1	SAS 4-FD	ER347Si	SAS 2-IG (Si)	
E318 T0-4	SAS 4-FD			
E347LT1-1	SAS 2 PW-FD			
E347LT1-4	SAS 2 PW-FD			
E347LT0-1	SAS 2-FD			
E347LT0-4	SAS 2-FD			
EC410NiMo(mod.)	CN 13/4 MC			

Selection Guide

AWS-Classification	Böhler	AWS-Classification	Böhler
ER385(mod.)	CN 20/25 M-IG	F7AZ-EM12K	EMS 2/BB 33 M
EB409Cb	CN 20/25 M-IG (Si)	F8A4-EA2-A2	EMS 2 Mo/BB 24 EMS 2 Mo/BB 25
EB410NiMo(mod.)	CN 13/4-IG	E8A8-ENi2-Ni2	Ni 2-UP/BB 24
Entriordinio(iniodi)	CN 13/4-UP/BB 203	F8P4-EB2-B2	EMS 2 CrMo/BB 24
ER430(mod.)	KWA-IG		EMS 2 CrMo/BB 25
	SKWA-IG	F9A4-EF3(mod.)-F3	3 NiMo 1-UP/BB24
	CAT 430 L Cb-IG	F9P2-EB3-B3	CM 2-UP/BB 24
	CAT 439 L Ti-IG	F9PZ-EB6-B6	CM 5-UP/BB 24
ER70S-3	EML 5	F9PZ-EB9-B9	C 9 MV-UP/BB 910
ER70S-6	SG 3-P	F10A4-EM4(mod.)-M4	3 NiCrMo 2.5-UP/BB 24
	EMK 6	R45-G	BW VII
	EMK 7	R60-G	DMO
	EMK 8		BW XII
ER70S-A1	DMO-IG	<u>H65-G</u>	DCMS
ER80S-B6	CM 5-IG		
ER805-B8	CM 9-IG		
ER003-G	Nicu 1 IG		
	DCMS-IG		
	DMV 83-IG		
	K Nova Ni		
	1 523 Ni		
EB80S-Ni2	2.5 Ni-IG		
ER90S-B3(mod.)	CM 2-IG		
ER90S-B9	C 9 MV-IG		
ER90S-B9 (mod.)	C 9 MVW-IG		
	P 92-IG		
ER90S-G	NiMo 1-IG		
	CM 2-IG		
	P 23-IG		
EB0550(I)	P 24-IG		
ER2553(mod.)	CN 25/9 Cu1-IG		
F43A3-EHIUK	ENIS 3/BF 16		
	ENG 2/DF 10		
E4840-EM12K	EMS 2/BB 33 M		
F4842-EH10K	EMS 3/BB 25		
F48A4-EH10K	EMS 3/BB 24		
F48A4-EM12K	EMS 2/BB 24		
F55A4-EA2-A2	EMS 2 Mo/BB 24		
	EMS 2 Mo/BB 25		
F55A6-ENi2-Ni2	Ni 2-UP/BB 24		
F55P4-EB2-B2	EMS 2 CrMo/BB 24		
	EMS 2 CrMo/BB 25		
F55P3-EB3-B3	CM 2-UP/BB 24		
F62A4-EF3(mod.)-F3	3 NiMo 1-UP/BB24		
<u>+62PZ-EB6-B6</u>	CM 5-UP/BB 24		
F62PZ-EB9-B9	<u>C 9 MV-UP/BB 910</u>		
F69A4-EM4(mod.)-M4	3 NICTMO 2.5-UP/BB 24		
FOAU-EHIUK	ENG 3/BF 10		
F7A3-EH10K	EMS 3/BB 25		
F744-EH10K	EMS 3/BB 24		
F7AZ-EH10K	EMS 3/BB 33 M		
F7A4-EM12K	EMS 2/BB 24		
	EMS 2/BB 25		

1. General Information

Objectives

Between publication of the last updated version of this manual and the present re-organised and updated version, a whole series of standards, which were previously only applicable nationally, have been replaced by EN standards. This section provides a summary of the new standards now taken into account in the product information and refers to the national standards affected.

This section also contains information regarding the various forms of supply in which you may purchase the different filler metals and notes about storing them properly.

Contents

1.1 STANDARD CLASSIFICATION SYSTEMS	2
1.2 FORMS OF SUPPLY	7
1.3 STORAGE AND RE-DRYING	.11
1.4 CERTIFICATES OF COMPLIANCE AND TEST REPORTS	.13

1.1. Standard Classification Systems

Classification System according European Standard

European Standards for Filler Metals - Overview

EN-Standard	EN-Standard Official Title of Filler Metal Standard	
EN 440		standards
EN 440	Wire electrodes and deposits for gas shielded metal arc welding of non alloy and fine grain steels. Classification.	ÖNORM M 7822 DIN 8559 BS 2901-1
EN 499	Covered electrodes for manual metal arc welding of non alloy and fine grain steels. Classification.	ONORM M 7820 DIN 1913 DIN 8529 BS 639 NF A81-309
EN 756	Wire electrodes and wire flux combinations for submerged arc welding of non alloy and fine grain steels. Classification.	ÖNORM M 7821
EN 757	Welding consumables. Covered electrodes for manual metal arc welding of high strength steels. Classification.	ÖNORM M 7824 DIN 8529 BS 2493 NF A81-340, NF A81-347
EN 758	Tubular cored electrodes for metal arc welding with or without a gas shield of non-alloy and fine grain steels. Classification.	DIN 8559 BS 7084
EN 760	Fluxes for submerged arc welding. Classification.	DIN 32522
EN 1599	Covered electrodes for manual metal arc welding of creep resisting steels. Classification.	ÖNORM M 7832 DIN 8575 BS 2493 NF A81-345
EN 1600	Covered electrodes for manual arc welding of stainless and heat resisting steels. Classification.	ÖNORM M 7831 DIN 8556 BS 2926 NF A81-343
EN 1668	Classification of rods, wires and deposits for tungsten inert gas welding of non alloy and fine grain steels.	DIN 8559 BS 2901-1
EN 12070	Wire electrodes, wires and rods for arc welding of creep-resisting steels. Classification.	ÖNORM M 7832 DIN 8555, 8575 BS 2901-1
EN 12071	Tubular cored electrodes for gas shielded metal arc welding of creep-resisting steels. Classification.	
EN 12072	Wire electrodes, wires and rods for arc welding of stainless and heat resisting steels. Classification.	ÖNORM M 7831 DIN 8556 BS 2901-2
EN 12073	Tubular cored electrodes for metal arc welding with or without a gas shield of stainless and heat resisting steels. Classification.	DIN 8556
EN 12534	Wire electrodes, wires, rods and deposits for gas shielded metal arc welding of high strength steels. Classification.	DIN 8555 BS 2901-1
EN 12535	Tubular cored electrodes for gas shielded metal arc welding of high strength steels. Classification.	
EN 12536	Rods for gas welding of non alloy and creep resisting steels. Classification.	ÖNORM M 7823-1 DIN 8554 BS 1453

The listed European Standards became or will become transformed into national standards. From this the contents of an European Standard are equal to a national standard (e.g. DIN-EN, ONORM-EN, NF-EN, BS-EN etc.).

Note: "tubular cored electrodes" are equal to the generally used term "flux cored wires"

Classification system for EN 499 and EN 757, partially for EN 1599 and EN 1600 for example FOX EV 70 Mo

short key	description	related EN- standards
	welding process, type of product	
E	designator characterising the welding process or the type of product	449, 757, 1599, 1600
	mechanical properties, alloying type	
55	key number indicating the mechanical properties of the all-weld metal	449, 757
3	key number indicating the lowest temperature with an defined average impact work	449, 757
MnMo	designator for the alloying type of the weld deposit	499, 757, 1599, 1600
	coating and heat treatment	
В	descriptor showing the type of coating	499, 757, 1599, 1600
Т	T designator indicating a heat treatment of the weld deposit	
	supplemental designations	
4	designator indicating deposition rate and type of current to be used	449, 757, 1599, 1600
2	key number for the welding positions	449, 757, 1599, 1600
H10	diffusible hydrogen designator indicating the maximum diffusible hydrogen level obtained with the product	449, 757, 1599

	short keys/designators used for classification in EN-standards					
designato	or characterising the weldi	ing proces	s or the type of pr	oduct		
desig-					related	
nator	description		EN-standards			
E	manual metal arc weldir	ng			449, 757, 1599, 1600	
G	gas shielded metal arc v		440, 12070, 12072, 12534			
W	tungsten inert gas weldi	ng			1668, 12070, 12072	
Т	gas shielded metal arc v	velding wi	th flux cored wires	;	758, 12071, 12073, 12535	
S	submerged arc welding				756, 12070, 12072	
0	gas welding				12536	
Р	plasma welding				12072	
key numb	er indicating the mechan	ical prope	rties of the all-weld	d met	al	
short	Ū					
key	ReL [N/mm ²]	Rm [N/m	m²] A5 [%	6]	related EN-standards	
35	355	440-570	22	-		
38	380	470-600	20			
42	420	500-640	20		440, 449, 756, 758, 1668	
46	460	530-680	20			
50	500	560-720	18			
55	550	610-780	18			
62	620	690-890 18				
69	690	760-960	17		757, 12534, 12535	
79	790	880-108	0 16			
89	890	980-118	0 15			
key figure	s for strength properties					
desig-	yield strength of a	ll-weld	tensile strength	of	related	
nator	metal [N/mm ²]		all-weld metal [N	[mm²]	EN-standards	
2T	275		370		756	
3T	355		470			
4T	420		520		756, 758	
5T	500		600			
short key	s for impact work classific	ation of d	eposit			
short	temperature [°C] w	ith average	je impact work >	47 J	related	
key	(one specimen can ha	ave lower v	alues, minimum >3	2 J)	EN-standards	
Z	no requirements				440, 449, 756, 757,	
A	+20				788, 1668,	
0	0				12534, 12535	
2	-20					
3	-30					
4	-40					
5	-50					
0	-60					
/	-70				/56, 757	
8	-80					

Standard Classification Systems

short key indi	short key indicating a heat treatment of the weld deposit					
short key	description		related EN-standards			
Т	mech. properties after	annealing				
	560-600°C / 1h / furna	ce / 300°C / air	757, 12534, 12535			
	mechanical properties	all				
short key for	deposition rate and type	of current	-			
short key	deposition rate [%]	type of current	related EN-standards			
1	≤ 105	alternating current or direct current	449, 757, 1599, 1600			
2	≤ 105	direct current				
3	> 105 ≤ 125	alternating current or direct current				
4	> 105 ≤ 125	direct current				
5	> 125 ≤ 160	alternating current or direct current	449, 757			
6	> 125 ≤ 160	direct current				
7	> 160	alternating current or direct current				
8	> 160	direct current				
keys for desc	ribing possible welding p	positions				
short key	description		related EN-standards			
1	all welding positions	449, 757, 758, 1599,				
2	all welding positions ex	1600, 12071, 12073,				
3	butt weld in flat positio	12535				
	horizontal welding pos					
4	butt weld in flat positio					
5	vertical down position	and positions described				
	under key 3					
keys for hydr	ogen content of the depo	osited weld-metal				
short	maximum hydrogen	content	related			
key	[ml/100 g deposit]*		EN-standards			
H5	5		449, 757, 758, 760,			
H10	10		1599, 12071, 12535			
H15	15		449, 758, 760			
*valid for ø 4	mm, 90% max. amperaç	ge, alternating current for recov	ery-keys 1,3,5,7			
keys for shiel	ding gases					
short key	type of shielding	g gas	related EN-standards			
M	shielding gas EN	439-M2, yet without helium	440, 758, 12071,			
С	shielding gas EN	439-C1, carbondioxide	12073, 12534, 12535			
N	no shielding gas		12534, 12535			

designa	tor for coating types	
designa	tor type of coating	related EN-standards
A	acid coated	449, 757, 1599, 1600
С	cellulosic coated	
R	rutile coated	
RR	thick rutile coated	
RC	rutile-cellulosic- coated	
RA	rutile-acid- coated	
RB	rutile-basic- coated	
В	basic coated	
designa	tors for sub-arc welding flux types	
designa	tor type of sub-arc welding flux	related EN-standards
MS	mangenese-silicate	756, 760
CS	calcium-silicate	
ZS	zirkonium-silicate	
RS	rutile-silicate	
AR	aluminium-rutile	
AB	aluminium-basic	
AS	aluminium-silicate	
AF	aluminium-fluoride-basic	
FB	fluoride-basic	-
Ζ	other types	
	51	-
keys for	types of fillings in flux-cored wires	
short	type and	related
key	properties	EN-standards
R	rutile, slow freezing slag,	758, 12071, 12073,
	shielding gas necessary	12535
Р	rutile, fast freezing slag, shielding gas necessary	758
В	basic, shielding gas necessary	758, 12071, 12073,
		12535
М	metal powder, shielding gas necessary	758
V	rutile or basic/fluoride, shielding gas not necessary	
W	basic/fluoride, slow freezing slag,	
	shielding gas not necessary	
Y	basic/fluoride, fast freezing slag,	
	shielding gas not necessary	
S	other types	-
Z	other types	12071, 12073, 12535
U	without shielding gas	12535
A descri	ption of all keys defining the chemical composition is not	part of this handbook.

Forms of Supply

1.2. Forms of Supply

Forms of Supply for Stick Electrodes

Non-alloy and low-alloy stick electrodes:

4 boxes per master carton

Cellulose and basic-coated vertical-down electrodes:

In hermetically sealed TINS approx. 9.5 kg net weight.2 tins per master carton.

High-alloy stick electrodes:

With the exception of a few products, Böhler high-alloy stick electrodes are supplied in hermetically-sealed TINS with net contents of approx. 3.5 to 5 kg. 3 tins per master carton.

The advantages of this packaging, which is impermeable to water vapour, are:

- The electrode coating remains absolutely dry.
- The electrodes can always be welded with the best possible usability properties without re-drying.
- · There is absolutely no starting porosity.
- The ability to store and transport the electrodes is not dependent on climate.
- The tin itself is made of tinplate and is ecologically disposable.

Vacuum-packed Böhler stick electrodes, which are available at additional cost in all alloy variants on request, offer similar advantages.

Forms of Supply for TIG and Gas Welding Rods

Non-alloy and low-alloy welding rods are supplied in 25 kg packs. High-alloy welding rods in 20 kg packs (4 x 5 kg units per pack)

Forms of Supply for GMAW Wires

wire basket spool

ENISO 544	outside	Inside	external	kg
	diameter d ₁	diameter d ₂	width b	wire
B 300	300	180	103	15/16/18

wire net weight per spool for:

non-alloy/low-alloy solid wires 18 kg high-alloy solid wires and flux-cored wires 15 kg non-alloy/low-alloy flux-cored wires 16 kg

plastic spool

ENISO 544	outside dia- meter	spindle hole	external width	tapped hole dia- meter	e distance from center	kg wire
	d ₁	d₃	b	d ₄	e1	
S 100	100	16,5	45	-	-	1,0
S 200	200	50,5	55	10	44,5	5
S 300	300	51,5	103	10	44,5	15

ECO-DRUM

ideal bulk pack for 250 kg of non-, lowand high-alloy welding wires in robotic quality; outstanding for welding robots and other mechanised stations

ÖKO-MULTI

for 250 kg of non-, low- and high-alloyed welding wires in robotic quality; ECO-MULTI's are reuseable and will reduce waste disposal expense and/or storage space as empty units can be packed

Drum heads in two different design can be ordered seperately

buld spool (steel)

BÖHLER	outside dia-	inside dia-	spindle hole dia-	width		kg wire
	meter d1	meter d2	meter d ₃	outside b1	inside b2	
GS 760 Non returnable	760	430	41	310	270	300

Forms of Supply for Sub-arc Wires

coils

BÖHLER	outside	inside	width	kg
	dia-	dia-	b	wire
	meter d ₁	meter d ₂		
В	390	280	70	26
1	430	310	100	30
S	390	300	70	23
PRG 80*	390	310	80	21
PRG 100*	430	310	100	25
* coiled on a cardboard former				

General Information

* K 435 is the standard spool for stainless steel sub-arc wires

Paper Drum

Ideal bulk pack up to 400 kg for un-, low and high alloyed welding wire in robotic quality. Outstanding for welding robots and other mechanized welding stations.

Forms of Supply for Sub-arc Welding Fluxes

in bags of 25 kg in tins of 30 kg (BF 16, BB 24, BB 25, BB 33 M) (BB 202, BB 203, BB 910)

Individual Forms of Supply

Please enquire if you have specific delivery requests for wire electrodes or other filler metals.

1.3. Storage and Re-drying

Storage of Stick Electrodes

On principle coated stick electrodes should be stored in their original packaging until used. If possible the packs of electrodes should be taken out of storage in the sequence in which they were received in the warehouse.

The stick electrodes must be stored in dry rooms to protect them against damage caused by moisture. As a result the electrode warehouse should be protected against the elements and easily ventilated. Ceiling, floor and walls must be dry and there should be no uncovered water in the room. The room must be fitted out with pallets or shelves since storage directly on the floor or against the walls is not recommended.

Opened packs of electrodes should also be stored in dry and, if necessary, heated rooms so that there is no likelihood of the temperature dropping below the dew point.

Re-drying of Stick electrodes

Where electrodes have become damp it is recommended that re-drying is carried out immediately prior to welding in accordance with the temperature details specified in the following tables. Welding straight from the dryer is recommended in all cases so as to comply with the lowest possible water contents.

stick electrodes for	type of coating	re-drying recommended	re-drying temperature in °C	re-drying time in hours
non and low alloy	A, AR, C, RC,	no		
SIEEIS	B	yes	300 - 350	2 - 10
high strength fine grained steels	В	yes	300 - 350	2 - 10
creep resistant steels	R	no		
	RB, B	yes	300 - 350	2 - 10
corrosion resistant and	R	yes	120 - 200	2 – 10
scaling resistant steels	RB, B	no		
soft-martensitic steels	В	yes	300 - 350	2 – 10
duplex-steels	RB	yes	250 - 300	2 - 10
nickel alloys	all	if necessary	120 - 300	2 – 10

Re-drying temperature and re-drying time can be found at the labels of our products.

The following procedure is worthwhile for re-drying electrodes:

- The electrodes should be placed into a pre-heated oven (approx. 80-100°C) with no more than three layers on top of each other.
- The recommended temperature should be maintained for approx. 2 hours after the electrodes have heated up. In the case of re-drying temperatures above 250°C the therperature should be increased slowly (approx. 150°C/hour) to the recommended temperature.
- A total drying time of 10 four's (= sum total of the times for the individual re-drying processes) should not be exceeded. This maximum time must also be observed if re-drying takes place in several cycles.
- The temperature should be decreased to 70 to 90°C before removing the electrodes from the furnace.

Electrodes that have been in direct contact with water, grease or oil should not be used for welding fabrication. In this case even re-drying does not provide an adequate solution with the result that they should only be used for low-quality work.

Coated stick electrodes that are supplied in tins require no re-drying if they are placed directly into the dryer and are used straight from there.

General Information

It may still be worthwhile to re-dry in individual cases even in the case of stick electrodes for which there is no re-drying recommendation given in the table above. This may be appropriate in the case of incorrect storage or as a result of other conditions leading to high water contents. The high water content can usually be recognised from the welding behaviour which exhibits increased spattering or pore formation. In these cases the stick electrodes may be re-dried for approx. one hour at 100-120°C unless specified otherwise by the manufacturer. This recommendation does not apply to cellulose-coated stick electrodes which may not be re-dried all.

The temperature for temporary storage in an oven following re-drying should be 120-200°C (maximum 30 days total holding time), for storage in dryers 100-200°C (10 days maximum total holding time).

Storage of Flux-cored Wires

The danger of moisture absorption is not the same for flux-cored wires as for stick electrodes. The flux core is largely shielded from the ambient atmosphere by the outer metal. Nevertheless, the "low-hydrogen" character of a flux-cored wire may be impaired by extreme contact with damp air. This may happen for example if they are stored overnight without protection in an atmosphere with high humidity.

Flux-cored wires should be stored in warehouses with controlled temperature and humidity conditions. We recommend dry, if necessary, heated rooms so that there is no likelihood of the temperature dropping below the dew point. The aim is not more than 60 % relative humidity and at least 15°C.

If stored at below 10°C there is a danger that condensation will form on the surface of the wire when the package is opened in a heated room. This can lead to pore and gas impressions on the weld at the beginning of welding.

Welding should only be performed using acclimatised wires.

The coil with the remaining wire should be removed from the unit when welding is finished and replaced in its original packaging taking care to re-seal the compound aluminium foil as effectively as possible. A tin such as those used for the delivery of BOHLER flux powders for high-alloy steels may also be used for temporary storage.

Re-drying of Flux-cored Wires

Re-drying is usually possible in principle and should be carried out over 24 hours at approx. 150°C.

Storage and Re-drying of Sub-arc Welding Fluxes

It is recommended that flux powders are stored under the driest possible conditions and at temperatures which are as even as possible to keep water absorption to a minimum during storage. Powders stored in this manner may generally be kept for up to three years. Powder from containers damaged during transport must be used or re-packed immediately.

Fluoride-basic flux powders should be re-dried prior to use to ensure crack-free welding. It is possible to dispense with re-drying for flux powders that are taken directly from sealed, airtight, undamaged sheet metal containers (BB 202, BB 203, BB 910).

flux production	type of flux	re-drying recommended	re-drying temperature in °C	re-drying time in hours
agglomorated	FB	yes	ca. 350	2 - 10
aggiomerated	AR	yes	ca. 300	2 - 10
fused	MS	yes	ca. 150	2 - 500

The drying temperatures and times given in the previous table should be considered as general reference values. Re-drying may take place several times within the sum total of hours specified. After re-drying, flux powder that is not used immediately must be stored temporarily at increased temperature or in sealed airtight containers. The temporary storage temperature should be around 150°C and storage itself should not exceed 30 days.

The ovens used for re-drying should not permit localised overheating of the powder and must be adequately ventilated. In the case of stationary drying the layer of powder should not exceed 50 mm.

1.4. Cerfificates of Compliance and Test Reports

General Notes

Works certificates or acceptance test certificates to EN 10204 can be issued for every delivery on request. It is also possible to receive test reports in accordance with AWS A5.01. Basically speaking all types of certificates should be requested on placing the order. It is imperative that the scope of testing is specified in the case of acceptance test certificates EN 10204-3.1 und test reports. Subsequent issuing of a 3.1 certificate or a test report with a scope of testing which deviates from schedules F and H always entails increased costs for administration and expenditure. It is no longer possible to issue certificates at a later date if a series has already come out of production and has been processed in its entirety.

Works Certificates acc. EN 10204-2.2

These certificates are product-related, i.e. a separate certificate is issued for each series or batch number. This certificate records all the values arising during the current in-process inspection that are relevant to the certificate. This means that for all low, medium and high-alloy stick electrodes and flux cored wires the respective actual values from the current quality test are inserted for the chemical analysis whilst for non-alloy electrodes and flux cored wires to some extent only statistical values based on non-specific testing are shown.

The heat analyses of the associated batches are specified for all solid wires and rods.

With the exception of the submerged-arc wires and flux powder, mechanical property data are shown on the works certificates for all products. The values specified are guaranteed tolerance limits (minimum and/or maximum depending on the standard requirement) and correspond to the minimum properties guaranteed for the product in this manual.

Acceptance Test Certificates acc. EN 10204-3.1 and 3.2

Acceptance test certificates 3.1 or 3.2 will also be issued on request. In order to do this tests must be performed on the delivery or on the production unit with which the delivery is associated. Since this is a certificate concerning a delivery-related test according to information supplied by the purchaser, it is imperative that the scope of testing should be made clear at the time of ordering or even at the enquiry stage. The costs arising will be charged according to expenditure.

Test Reports acc. AWS A5.01

A test report should be requested if a certificate of the product's conformity with the AWS is required for a customer's project. The test report includes as standard a confirmation of conformity for compliance with the applicable AWS standard or the reference to this AWS standard contained in ASME II, Part C.

The test report will correspond to "Schedule F" of AWS A5.01 if no further elements are specified by the customer. This test report is comparable with a works certificate "2.2" as regards content.

The scope of testing required must be disclosed at the point of ordering for all other schedules. In this case costs will be charged according to expenditure.

General Information

Notes

2. Product Information

Contents

 GENERAL REMARKS	2.1
 FILLER METALS FOR MILD STEELS	2.2
 FILLER METALS FOR PIPELINE WELDING	2.3
FILLER METALS FOR WEATHER-RESISTANT,	2.4
 HIGH-STRENGTH AND CRYOGENIC STEELS	
FILLER METALS FOR HIGH TEMPERATURE AND	2.5
 CREEP RESISTANT STEELS	
FILLER METALS FOR STAINLESS AND	2.6
 CORROSION RESISTANT STEELS	
FILLER METALS FOR DISSIMILAR JOINTS AND	2.7
 SPECIAL APPLICATIONS	
 FILLER METALS FOR HEAT RESISTANT STEELS .	2.8
NICKEL-BASE, COPPER-NICKEL AND	2.9
 TITANIUM FILLER METALS	
0 NON FERROUS ALLOYS350	2.10
 BUB-ARC WELDING FLUXES	2.11 S

2.1. General remarks

The product information on the following pages has been kept standard for all filler metals produced by BÕHLER Welding. Unlike previous versions of this manual, all the data for a product is summarised on one page. The intention is to make it easier for you, the reader, to have a complete overview of a product.

Again, to make it easier to navigate, the header section of each page of data contains a reference to the sub-section, product form and/or a colour coding. Numbering in the footer section refers only to the section itself. Details of the version are intended to facilitate archiving if individual pages of the manual are to be used as reference in other documents.

Each of the following eight sections is sub-divided in the following order according to product forms where available: stick electrodes, TIG rods, solid wires, flux cored wires, sub-arc wire/flux combinations and gas welding rods.

Each product is identified by its trade name and a product group.

The product description contains some alterations compared with the most recent editions of the manual. Amongst other things the classification according to standard was consistently switched over to valid editions of the EN or AWS standard. To make the changeover easier, national standards such as DIN, NF and BS are still shown but are provided with a note referring to substitution by the EN.

The changeover was also carried out consistently with regard to the information about parent metals. If you encounter problems with the new material designations, Section 1 provides a brief overview of the systematic way in which materials are classified according to EN 10027 and ECISS IC10.

The section **"Description**" on each page of data briefly characterises the filler metal. It describes the type of coating or alloy, the area of application, the welding behaviour, areas of use and any information about temperature control and/or post-weld heat treatment.

The **"Typical Composition**" specifies the chemical composition of the pure weld metal for stick electrodes, flux-cored electrodes and sub-arc wire/flux combinations, and the chemical composition of the wire, rod or welding flux for the other types of filler metals.

The information provided in "Mechanical Properties" always refers to the pure weld metal and test conditions in accordance EN 1597-1. The information regarding minimum values or ranges for the chemical composition and mechanical property values of the weld metal were primarily specified allowing for the requirements of the standard and may be considerably higher in individual cases. By comparison the guideline values specified are based on evaluations by our permanent statistical quality control department and are of an informative nature. In both cases the data supplied was state of the art at the time of going to press.

The "Operating Data" represent an addition compared with previous editions of the manual. The symbol code used for the welding position and current polarisation is matched to the labels of the product packaging. In addition you will also find information about stamping or embossing of products and notes about re-drying.

Details about same-alloy and similar-alloy products are also an additional feature that is designed to make it easier if you want to change the welding procedure whilst the base metal remains the same.

Symbols and Abbreviations

=+ = direct current (positive polarity)

=- = direct current (negative polarity)

➤ = alternating current

Combinations are possible, e.g.

n alternating current = the structure or negative polarity or alternating current

Mechanical Property Values

yield strength R _e N/mm ²	=	independent from the base material the term yield strength
		covers the upper or lower elastic limit (ReH, ReL) or the proof
		stress in the case of non-proportional elongation (Rp0.2).
impact work ISO-V KV J	=	the test results shown in this handbook are measured using
		test specimen with ISO-V-notch.

Approvals and Certifying Organisations

- ABS = American Bureau of Shipping BN = "Baseler Norm" BV = Bureau Veritas CL = Vereniging voor Controlle op Lasgebied Controlas CRS = Croatian Register of Shipping
- CWB = Canadian Welding Bureau
- DB = German Railways
- DNV = Det Norske Veritas
- FI = Force Technology (Dansk Standard)
- GdF = Gaz de France
- GL = German Lloyd
Product information

Approvals a	and	Certifying Organisations
KTA 1408.1	=	TSA Germany-approval – KTA-Standard 1408.1 (Germany)
LR	=	Lloyd's Register
LTSS	=	Lithuanian Technical Supervision Service
OBB	=	Austrian Railways
PRS	=	Polish Register of Shipping
R.I.NA	=	Registro Italiano Navale
RMR	=	Maritime Register of Shipping, Russia
SEPROZ	=	Approval Society, Ukraine
Statoil	=	Statoil, Norway
TUV-D	=	Technical Supervisory Association, Germany
TUV-A	=	Technical Supervisory Association, Austria
UDT	=	Technical Supervisory Association, Poland
U	=	Certificate of Conformity acc. Bauregelliste A, Part 1, Germany
VNIIGAZ	=	Scientific & Research Institute of Natural Gases & Gas Technologies
VNIIST	=	Engineering Research Company – Russia
VUZ	=	Vyskumny Ustav Zváracsky
WIWEB	=	Federal Office of Defence, Technology and Procurement

Remark:

details for approvals regarding base materials, classifications, welding positions, etc. can be found in the approval certificates – please contact the service departments for detailed information.

Shielding Gases acc. EN 439 and DIN 32526

	con	nponen	its in V	ol%		DIN 32526	EN 439	components in Vol%					
CO ₂	O2	H ₂	N ₂	He	Ar	group	group	CO ₂	O2	H ₂	N2	He	Ar
		100				R1							
		1-5			bal.	R2	R1			0-15			bal.
							R2			15-35			bal.
					100	1	1						100
				100		12	12					100	
				25-75	bal.	13	13					0-95	bal.
							M11	0-5		0-5			bal.
2-5					bal.	M12	M12	0-5					bal.
	1-3				bal.	M11	M13		0-3				bal.
							M14	0-5	0-3				bal.
6-14					bal.	M13	M21	5-25					bal.
15-25					bal.	M21	M21	5-25					bal.
	4-8				bal.	M23	M22		3-10				bal.
							M23	0-5	3-10				bal.
5-15	1-3				bal.	M22	M24	5-25	0-8				bal.
5-20	4-6				bal.	M32	M24	5-25	0-8				bal.
26-40					bal.	M31	M31	25-50					bal.
	9-12				bal.	M33	M32		10-15				bal.
							M22		3-10				bal.
							M33	5-50	8-15				bal.
100						C1	C1	100					
							C2	bal.	0-30				
		1-30			bal.	F1							
							F1				100		
		1-30	bal.			F2	F2			0-50	bal.		

Remark: This handbook references standardised shielding gases just in these cases where best welding result can be expected. If the shielding gas class shows too wide ranges the handbook recommends the optimum gas composition. The standardised shielding gas can be applicable but will produce different welding behaviour and/or other mechanical property values.

2.2. Filler Metals for Mild steels

Objectives

This section provides detailed product information for filler metals that may be used to weld mild steels.

Due to their tensile strength and yield strength mild steels (particularly general-purpose constructional steels) are used primarily in the as-delivered condition (rolled, forged or normalised) for welded, riveted and screwed structures in structural engineering, civil and underground engineering, bridge building, hydro power engineering, tank construction and mechanical engineering.

In each case the choice of filler metal must be appropriate for the material involved and must allow for welding engineering aspects where the rule applicable is that the minimum mechanical and technological values of the parent metal must also be achieved in the weld metal. In addition to choosing according to welding engineering conditions such as the weld position, edge preparation, work in the workshop or on site, it is also necessary to allow for the metallurgical features of the material, material thickness, shrinkage conditions and susceptibility to cracks.

Contents

OVERVIEW	6
SMAW STICK ELECTRODES	10
GTAW RODS	27
GMAW SOLID WIRES	30
GMAW FLUX-CORED WIRES	33
SAW WIRE/FLUX-COMBINATIONS	37
GAS WELDING RODS	45

Overview – Standard Classifications

Böhler	EN		AWS	
SMAW stick elec	ctrodes			
FOX MSU	EN 499:	E 38 0 RC 1 1	AWS A5.1-04:	E6013
FOX OHV	EN 499:	E 38 0 RC 1 1	AWS A5.1-04:	E6013
FOX KE	EN 499:	E 38 0 RC 1 1	AWS A5.1-04:	E6013
FOX SUM	EN 499:	E 38 0 RR 1 2	AWS A5.1-04:	E6013
FOX SUS	EN 499:	E 42 0 RR 1 2	AWS A5.1-04:	E6013
FOX ETI	EN 499:	E 42 0 RR 1 2	AWS A5.1-04:	E6013
FOX SPE	EN 499:	E 38 2 RB 1 2	AWS A5.1-04:	E6013(mod.)
FOX SPEM	EN 499:	E 38 2 RB 1 2	AWS A5.1-04:	E6013(mod.)
FOX HL 160 Ti	EN 499:	E 38 0 RR 5 4	AWS A5.1-04:	E7024-1
FOX HL 180 Ti	EN 499:	E 38 0 RR 7 4	AWS A5.1-04:	E7024
FOX EV 47	EN 499:	E 38 4 B 4 2 H5	AWS A5.1-04:	E7016-1H4R
FOX EV 50	EN 499:	E 42 5 B 4 2 H5	AWS A5.1-04:	E7018-1H4R
FOX EV 50-A	EN 499:	E 42 3 B 1 2 H10	AWS A5.1-04:	E7016
FOX EV 50-AK	EN 499:	E 42 3 RB 3 2 H10	AWS A5.1-04:	E7018(mod.)
FOX EV 50-W	EN 499:	E 42 5 B 1 2 H5	AWS A5.1-04:	E7016-1H4R
FOX EV 55	EN 499:	E 46 5 B 1 2 H5	AWS A5.1-04:	E7018-1H4R
FOX NUT	-		-	
GTAW rods				
EMK 6	EN 1668	: W 42 5 W3Si1	AWS A5.18-01:	ER70S-6
EML 5	EN 1668	: W 46 5 W2Si	AWS A5.18-01:	ER70S-3
ER 70S-2	-		AWS A5.18-01:	ER70S-2
GMAW solid wir	es			
EMK 6	EN 440:	G 42 4 M G3Si1	AWS A5.18-01:	ER70S-6
		G 42 4 C G3Si1		
EMK 7	EN 440:	G 46 4 M G4Si1	AWS A5.18-01:	ER70S-6
		G 46 4 C G4Si1		
EMK 8	EN 440:	G 46 4 M G4Si1	AWS A5.18-01:	ER70S-6
		G 46 4 C G4Si1		
GMAW flux core	d wires			
Ti 52-FD	EN 758:	T 46 2 P M 1 H10	AWS A5.20-95:	E71T-1MH8
		T 42 2 P C 1 H5		E71T-1H4
Ti 52 W-FD	EN 758:	T 46 4 P M 1 H10	AWS A5.20-95:	E71T-1JH8
		T 42 2 P C 1 H5		E71T-1MJH8
HL 51-FD	EN 758:	T 46 4 M M 2 H5	AWS A5.18-01:	E70C-6MH4
HL 53-FD	EN 758:	T 42 5 Z M M 2 H5	AWS A5.18-01:	E70C-GMH4
			AWS A5.18M-01	:E48C-GMH4

Overview – Typical Chemical Composition

Böhler	С	Si	Mn	Ti	
SMAW stick electrod	es				
FOX MSU	0.05	0.3	0.4		
FOX OHV	0.06	0.4	0.6		
FOX KE	0.06	0.3	0.5		
FOX SUM	0.07	0.3	0.5		
FOX SUS	0.07	0.5	0.6		
FOX ETI	0.07	0.4	0.5		
FOX SPE	0.08	0.2	0.5		
FOX SPEM	0.08	0.2	0.6		
FOX HL 160 TI	0.08	0.3	0.6		
FOX HL 180 11	0.07	0.5	0.8		
	0.06	0.5	0.7		
FOX EV 50-A	0.07	0.5	1.1		
FOX EV 50-AK	0.00	0.0	1.0		
FOX EV 50-W	0.07	0.5	1.1		
FOX EV 55	0.08	0.35	1.4		
FOX NUT	_	_	-		
GTAW rods					
EMK 6	0.1	0.9	1.4		
EML 5	0.1	0.6	1.2		
ER 70S-2	0.05	0.5	1.2	+	Al, Zr
GMAW solid wires					
EMK 6	0.1	0.9	1.4		
			. –		
EMK 7	0.08	0.9	1.7		
	0.07	1.0	17		
EWIK 0	0.07	1.0	1.7		
GMAW flux cored with	res				
Ti 52-ED	0.06	0.5	1.2	+	
11 52-1 0	0.00	0.5	1.2	Ŧ	
Ti 52 W-FD	0.05	0.5	1.3	+	
	0.00	0.0			
HL 51-FD	0.07	0.7	1.5		
-					
HL 53-FD	0.06	0.5	1.2		Ni 0.9

Overview – Standard Classifications (continued)

Böhler	EN	AWS	
SAW wire/flux-c	ombinations		
EMS 2	EN 756: S2	AWS A5.17-97:	EM12K
EMS 2/BB 24	EN 756: S 38 6 FB S2	AWS A5.17-97:	F7A8-EM12K
			F48A6-EM12K
EMS 2/BB 25	EN 756: S 42 4 FB S2	AWS A5.17-97:	F7A4-EM12K
			F48A4-EM12K
EMS 2/BB 33 M	EN 756: S 46 0 AR S2	AWS A5.17-97:	F7AZ-EM12K
			F48A0-EM12K
EMS 2/BF 16	EN 756: S 38 0 MS S2	AWS A5.17-97:	F6A0-EM12K
			F43A2-EM12K
EMS 3	EN 756: S3	AWS A5.17-97:	EH10K
EMS 3/BB 24	EN 756: S 42 4 FB S3	AWS A5.17-97:	F7A4-EH10K
			F48A4-EH10K
EMS 3/BB 25	EN 756: S 42 3 FB S3	AWS A5.17-97:	F7A3-EH10K
			F48A2-EH10K
EMS 3/BB 33 M	EN 756: S 50 0 AR S3	AWS A5.17-97:	F7AZ-EH10K
			F48A0-EH10K
EMS 3/BF 16	EN 756: S 38 0 MS S3	AWS A5.17-97:	F6A0-EH10K
			F43A 3-EH10K

Gas welding rods

BW VII	EN 12536: O I	AWS A5.2-92:	R45-G
BW XII	EN 12536: O III	AWS A5.2-92:	R60-G

Overview – Standard Classifications (continued)

Böhler	С	Si	Mn	Ti	Ni
SAW wire/flux-combi	inations				
EMS 2 EMS 2/BB 24	0.12 0.07	0.12 0.25	1.0 1.05		
EMS 2/BB 25	0.07	0.4	1.45		
EMS 2/BB 33 M	0.08	0.7	1.3		
EMS 2/BF 16	0.04	0.5	1.3		
EMS 3 EMS 3/BB 24	0.12 0.08	0.15 0.3	1.5 1.5		
EMS 3/BB 25	0.06	0.4	1.9		
EMS 3/BB 33 M	0.08	0.8	1.7		
EMS 3/BF 16	0.04	0.5	1.7		
Gas welding rods					
BW VII BW XII	0.08 0.08	0.1 0.1	0.5 1.1		0.4

E 38 0 RC 1 1 E6013 E4313

BÖHLER FOX MSU

SMAW stick electrode, mild steel, rutile-cellulosic-coated

Description

Rutile-cellulosic coated electrode with good weldability in all positions including vertical-down. Viscous puddle, good gap bridging ability, easy handling. For industry and trade, assembly and shop welding.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.05	0.3	0.4

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		430	(≥ 380)
Tensile strenght Rm N/mm ² :		490	(470 - 600)
Elongation $A(L_0 = 5d_0)$ %:		26	(≥ 20) ́
Impact work ISO-V KV J	+ 20 °C:	75	(≥ 55)
	± 0 °C:	60	(≥ 47)
	- 10 °C:	58	` '

(*) u untreated, as-welded

Operating Data

*	re-drying if necessary: not necessary	ø mm 2.5	L mm 250	amps A 70 - 100	=-
→ [↓]	Electrode identification: FOX MSU 6013 E 38 0 RC	3.2 4.0	350 350	90 - 130 140 - 180	\sim

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S275JR, S235J0G3 - S355J0G3, P235GH, P265GH, P255NH, P235T1, P355T1, P235T2-P355T2, P235G1TH, P255G1TH, L210 - L360NB, L290MB, S235JRS1 - S235J0S1, S235JRS2 - S235J0S2 - S235J0

ASTM A36 a. A53 Gr. al; A106 Gr. A, B, C A 135 Gr. A, B; A283 Gr. A, B, C, D; A366; A285 Gr. A, B, C; A500 Gr. A, B, C; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A935 Gr.45; A936 Gr. 50; API 5 L Gr. B, X42 - X52

Approvals and Certificates

TÜV-D (1104.), DB (10.014.01), ÜZ (10.014/1), ÖBB, ABS (2,2Y), BV (2Y), CL (0849), DNV (2), GL (2Y), LR (2m, 2Ym), RMR (2Y), SEPROZ

E 38 0 RC 1 1 E6013 E4313

BÖHLER FOX OHV

SMAW stick electrode, mild steel, rutile-cellulosic-coated

Description

Rutile-cellulosic coated electrode with good weldability in all positions including vertical-down. Most popular E6013 type.

For small transformators, very good operating characteristics, flexible coating, good for tack welding. Versatile applications in structural welding, vehicle construction, boiler and tank welding, and in shipbuilding, also suitable for galvanised components.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.06	0.4	0.6

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		460	(≥ 380)
Tensile strenght R _m N/mm ² :		520	(470 - 600)
Elongation $A(L_0 = 5d_0)$ %:		25	(≥ 20)
Impact work ISO-V KV J	+ 20 °C:	75	(≥ 55)
	± 0 °C:	60	(≥ 47)
	- 10 °C:	47	. ,

(*) u untreated, as-welded

Operating Data

re-drying: not necessary	ø mm 2.0	L mm 250	amps A 45 - 80	=-
Electrode identification:	2.5	250/350	60 - 100	\sim
FOX OHV 6013 E 38 0 RC	3.2	350	90 - 130	
	4.0	350/450	110 - 170	
	5.0	450	170 - 240	

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S275JR, S235J0G3 - S355J0G3, P235GH, P265GH, P255NH, P235T1, P355T1, P235T2-P355T2, P235G1TH, P255G1TH, L210 - L360NB, L290MB, S235JRS1 - S235J0S1, S235JRS2 - S235J0S2 ASTM A36 a. A53 Gr. all; A106 Gr. A, B, C A 135 Gr. A, B; A283 Gr. A, B, C, D; A366; A285 Gr. A, B, C; A500 Gr. A, B, C; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 64, 40; A935 Gr.45; A936 Gr. 50; AP1 5 L Gr. B, X42 - X52

Approvals and Certificates

TÜV-D (5687.), DB (10.014.12), ÜZ (10014), ÖBB, TÜV-A (22), ABS (2), DNV (2), FI (E 38 0 RC 11), LR (2), UDT, LTSS, SEPROZ

E 38 0 RC 1 1 E6013 E4313 **BÖHLER FOX KE**

SMAW stick electrode, mild steel, rutile-cellulosic-coated

Description

Rutile-cellulosic coated electrode engineered for easy operating in all positions including vertical-down.

Excellent welding properties an A.C., good striking and restriking characteristics, sound penetration, flat beads; popular for general steel construction.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.06	0.3	0.5

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength Re N/mm ² :		430	(≥ 380)
Tensile strenght Rm N/mm ² :		490	(470 - 600)
Elongation A (Lo = 5do) %:		26	(≥ 20) [′]
Impact work ISO-V KV J	+ 20 °C:	75	(≥ 60)
•	± 0 °C:	65	(≥ 47)
	- 10 °C:	50	. ,

(*) u untreated, as-welded

Operating Data

re-drying: not necessary Electrode identification: FOX KE 6013 E 38 0 RC	ø mm 2.0 2.5 3.2	L mm 250 250/350 350	amps A 45 - 80 60 - 100 90 - 130	=- ~
	4.0	350/450	110 - 170	

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S275JR, S235J0G3 - S355J0G3, P235GH, P265GH, P255NH, P235T1, P355T1, P235T2-P355T2, P235G1TH, P255G1TH, L210 - L360NB, L290MB, S235JRS1 - S235J0S1, S235JRS2 - S235J0S2

ASTM A36 a. A53 Gr. ali, A106 Gr. A, B, C A 135 Gr. A, B; A283 Gr. A, B, C, D; A366; A285 Gr. A, B, C; A500 Gr. A, B, C; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A935 Gr.45; A936 Gr. 50; API 5 L Gr. B, X42 - X52

Approvals and Certificates

UDT, LR (2m), SEPROZ

E 38 0 RR 1 2 E6013 E4313 **BÖHLER FOX SUM**

SMAW stick electrode, mild steel, rutile-coated

Description

Rutile coated electrode with extraordinarily good weldability in all positions except verticaldown. Excellent welding properties on A.C., good striking and restriking characteristics. Soft arc, minimum spattering, very easy slag removal, famous for fine rippled and smooth weld surfaces.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.07	0.3	0.5

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength Re N/mm ² :		430	(≥ 380)
Tensile strenght Rm N/mm ² :		500	(470 - 600)
Elongation A ($L_0 = 5d_0$) %:		26	(≥ 20) [′]
Impact work ISO-V KV J	+ 20 °C:	75	(≥ 60)
•	± 0 °C:	60	(≥ 47)́
	- 10 °C:		(≥ 32)́

(*) u untreated, as-welded

Operating Data

re-drying: not necessary	ø mm 2.5	L mm 350	amps A 60 - 100	=-
Electrode identification:	3.2	350	90 - 130	\sim
FOX SUM 6013 E 38 0 RR	4.0	350	110 - 170	

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S275JR, S235J0G3 - S355J0G3, P235GH, P265GH, P255NH, P235T1, P355T1, P235T2-P355T2, P235G1TH, P255G1TH, L210 - L360NB, L290MB, S235JRS1 - S235J0S1, S235JRS2 - S235J0S2

ASTM A36 a. A53 Gr. al; A106 Gr. A, B, C A 135 Gr. A, B; A283 Gr. A, B, C, D; A366; A285 Gr. A, B, C; A500 Gr. A, B, C; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A335 Gr.45; A936 Gr. 50; API 5 L Gr. B, X42 - X52

Approvals and Certificates

2-13

E 42 0 RR 1 2 E6013 E4313

BÖHLER FOX SUS

SMAW stick electrode, mild steel, rutile-coated

Description

Rutile coated electrode with excellent weldability in all positions except vertical-down, even under the most unfavourable conditions.

Distinguished by excellent restriking characteristics, minimum spattering and excellent welding properties on A.C. The weld seam is characterised by fine rippled and smooth beads, the slag is self-detaching.

Typical Co	omposition of All-weld Me	tal
------------	---------------------------	-----

	С	Si	Mn
wt-%	0.07	0.5	0.6

Mechanical Properties of All-weld Metal

(*) Yield strength Re N/mm ² : Tensile strenght Rm N/mm ² : Elongation A (Lo = 5do) %: Impact work ISO-V KV J	+ 20 °C: ± 0 °C:	u 430 510 27 75 55	(≥ 420) (500 - 640) (≥ 20) (≥ 60) (≥ 47)
	- 10 °C:	45	

(*) u untreated, as-welded

Operating Data

re-drying: not necessary	ø mm 2 0	L mm	amps A	=-
Electrode identification:	2.5	350 350/450	80 - 100 120 - 150	\sim
	4.0	450	160 - 200	

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S275JR, S235J0G3 - S355J0G3, P235GH, P265GH, P255NH, P295GH, P235T1, P355T1, P235T2-P355T2, P235G1TH, P255G1TH, L210 - L360NB, L290MB, S235JRS1 - S235J0S1, S235JRS2 - S235J0S2

ASTM A36 a. A53 Gr. ali, A106 Gr. A, B, C A 135 Gr. A, B; A283 Gr. A, B, C, D; A366; A285 Gr. A, B, C; A500 Gr. A, B, C; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A335 Gr.45; A936 Gr. 50; API 5 L Gr. B, X42 - X56

Approvals and Certificates

TÜV-D (1657.), DB (80.014.01), ÜZ (10.014/1), ÖBB, ABS (2), BV (2Y), CL (1002), DNV (2), GL (2), LR (X), SEPROZ

E 42 0 RR 1 2 E6013 E4313 BÖHLER FOX ETI

SMAW stick electrode, mild steel, rutile-coated

Description

Rutile coated electrode offering top weldability in all positions except vertical-down. Extremely smooth beads, self-detaching slag, minimum spattering and excellent welding properties on A.C. Excellent restriking characteristics and easy handling. Good deposition lengths attainable. Versatile applications in trade and industry.

Typical Composition of All-weld Metals

	С	Si	Mn
wt-%	0.07	0.4	0.5

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength Re N/mm ² :		460	(≥ 420)
Tensile strenght Rm N/mm ² :		520	(500 - 640)
Elongation A (Lo = 5do) %:		26	(≥ 20) ́
Impact work ISO-V KV J	+ 20 °C:	65	(≥ 50)
	± 0 °C:	50	(≥ 47)́

(*) u untreated, as-welded

Operating Data

re-drying: not necessary	ø mm 15	250	amps A	=-
Electrode identification:	2.0	250	45 - 80	\sim
10X E110013 E 42 0 AA	3.2	350/450	90 - 140	
	4.0	450 450	170 - 240	

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S275JR, S235J0G3 - S355J0G3, P235GH, P265GH, P255NH, P295GH, P235T1, P355T1, P235T2-P355T2, P235G1TH, P255G1TH, L210 - L360NB, L290MB, S235JRS1 - S235J0S1, S235JRS2 - S235J0S2

ASTM A36 a. A53 Gr. ali; A106 Gr. A, B, C; A 135 Gr. A, B; A283 Gr. A, B, C, D; A366; A285 Gr. A, B, C; A500 Gr. A, B, C; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A335 Gr. 45; A936 Gr. 50; API 5 L Gr. B, X42 - X56

Approvals and Certificates

TÜV-D (1097.), TÜV-A (450), ABS (2), BV (2), DNV (2), FI (E 42 0 RR 12), GL (2), LR (2m), UDT, LTSS, SEPROZ

E 38 2 RB 1 2 E6013(mod.) E4313(mod.)

BÖHLER FOX SPE

SMAW stick electrode, mild steel, rutile-basic-coated

Description

Rutile-basic coated electrode especially recommended for out-of-position work except vertical-down. Excellently suited for welding root passes. Produces first class X-ray quality welds. Excellent welding properties on A.C.

Preferably used in structural and tank welding as well as in tube&pipe construction. High mechanical properties, thus suitable for many different base metals.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.08	0.2	0.5

Mechanical Properties of All-weld Metal

(*) Yield strength R_{e} N/mm ² : Tensile strength R_{m} N/mm ² : Elongation A ($L_{o} = 5d_{o}$) %: Impact work ISO-V KV J	+ 20 °C:	u 420 500 28 90	(≥ 380) (470 - 600) (≥ 20) (≥ 70)
	+ 20 °C: + 0 °C: - 10 °C: - 20 °C:	75 70 60	$\begin{array}{ccc} (\geq & 70) \\ (\geq & 60) \\ (\geq & 50) \\ (\geq & 47) \end{array}$

(*) u untreated, as-welded

Operating Data

► ►	re-drying: not necessary Electrode identification: FOX SPE E 38 2 RB	ø mm 2.0 2.5 3.2 4.0 5.0	L mm 250 250/350 350 450 450	amps A 45 - 75 60 - 100 90 - 140 110 - 190 170 - 250	=- ∼	
		5.0	450	170 - 250		

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S275JR, S235J2G3 - S355J2G3, P235GH, P265GH, P255NH, P23ST1-P355T1, P235T2-P355T2, P235G1TH, P255G1TH, L210 - L360NB, L290MB - L360MB, S235JRS1 - S235J2S1, S235JRS2 - S235J2S2

ASTM A36 a. A53 Gr. all; A106 Gr. A, B, C; A135 Gr. A, B; A283 Gr. A, B, C, D; A366; A285 Gr. A, B, C; A500 Gr. A, B, C; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A935 Gr. 45; A936 Gr. 50; API 5 L Gr. B, X42 - X52

Approvals and Certificates

TÜV-D (0731.), DB (10.014.03), ÜZ (10.014/1), ÖBB, TÜV-A (74), DNV (2), LR (X), GL (3Y), ABS (2), CL (0727), BV (3Y), UDT, LTSS, SEPROZ

E 38 2 RB 1 2 E6013(mod.) E4313(mod.)

Typical Composition of All wold Motol

BÖHLER FOX SPEM

SMAW stick electrode, mild steel, rutile-basic-coated

Description

Rutile-basic coated electrode especially suited for out-of-position welding except vertical-down. Preferably used for pipeline, boiler and tank welding. Especially suited for X-ray quality root pass and out-of-position welds. Exceeds the FOX SPE electrode in mechanical strength thanks to the elevated Mn-content of the weld deposit.

Typical C	Joinpos	nuon c		a micia	•			
wt-%	C 0.08	Si 0.2	Mn 0.6					
Mechani	cal Prop	perties	of All-we	eld Me	tal			
(*) Yield streng Tensile strer Elongation A Impact work (*) u untrea	th R₀ N/mm nght R _m N/n (L₀ = 5d₀) ISO-V KV <i>ted, as-wel</i>	1²: nm²: %: ' J Ided	+ 20 °C: - 20 °C:	u 450 540 27 70	(≥ 380) (470 - 60 (≥ 20) (≥ 55) (≥ 47)	00)		
Operatin	g Data							
	re-dryin Electroo FOX SF	g: not ne de identif PEM E 3	ecessary fication: 8 2 RB		ø mm 2.5 3.2 4.0 5.0	L mm 250/350 350 350 450	amps A 70 - 90 110 - 140 140 - 190 200 - 250	=- ~

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S275JR, S235J2G3 - S355J2G3, P235GH, P265GH, P255NH, P295GH, P355T1, P235T2-P355T2, P235G1TH, P255G1TH, L210 - L360NB, L210MB - L360MB, L385M, S235JRS1 -S235J2S1, S235JRS2 - S235J2S2, S255N - S355N

ASTM A36 a. A53 Gr. ali, A106 Gr. A, B, C; A135 Gr. A, B; A283 Gr. A, B, C, D; A366; A285 Gr. A, B, C; A500 Gr. A, B, C; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A935 Gr. 45; A936 Gr. 50; API 5 L Gr. B, X42 - X52

Approvals and Certificates

TÜV-D (0732.), DB (10.014.06), ÜZ (10.014/1), ÖBB, TÜV-A (528), ABS (2), CL (0720), DNV (2), GL (2Y), LR (X), BV (3Y), SEPROZ

E 38 0 RR 5 4 E7024-1 E4924-1

BÖHLER FOX HL 160 Ti

SMAW stick electrode, mild steel,

high efficiency

Description

Rutile coated electrode, high efficiency with 160 % metal recovery. Fast flowing puddle. Easy slag removal in fillet welds in acute angles. Useable for rusty and coated steels and plates. Preferred for fillet and butt welds in horizontal position.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.08	0.3	0.6

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		420	(≥ 400)
Tensile strenght R _m N/mm ² :		520	(490 - 600)
Elongation A (L ₀ = 5d ₀) %:		26	(≥ 22) [′]
Impact work ISO-V KV J	+ 20 °C:	100	(≥ 70)́
•	± 0 °C:		(≥ 47)́
	- 20 °C:	30	(≥ 27)
			· · ·

(*) u untreated, as-welded

Operating Data

re-drying: not necessary	ø mm 3.2	L mm 450	amps A 140 - 180	=-
Electrode identification:	4.0	450	190 - 230	\sim
FOX HL 160 Ti 7024-1 E 38 0 RR	5.0	450	240 - 280	

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S235JR, S275JR, S235J0G3, S275J0G3, S355J0G3, P235GH, P265GH, S255N, P295GH, S235JRS1 - S235J0S1, S235JRS2 - S235J0S2

ASTM A36 Gr. all; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A366; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A935 Gr. 45; A936 Gr. 50

Approvals and Certificates

ABS (2,2Y*), GL (2Y), LR (X), UDT, SEPROZ

E 38 0 RR 7 4 E7024 E4924

BÖHLER FOX HL 180 Ti

SMAW stick electrode, mild steel, high efficiency

Description

Rutile coated iron powder electrode yielding approx. 180 % metal recovery. Self-detaching slag, smooth welds free of undercuts.

Excellent striking characteristics. Highly economical for multi-layer welding of heavy cross sections.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.07	0.5	0.8

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R ₀ N/mm ² :		440	(≥ 400)
Tensile strenght R _m N/mm ² :		510	(490 - 600)
Elongation A (L ₀ = 5d ₀) %:		27	(≥ 22) ́
Impact work ISO-V KV J	+ 20 °C:	85	(≥ 60)
•	± 0 °C:	65	(≥ 47)
	- 10 °C:	50	,

(*) u untreated, as-welded

Operating Data

re-drying: not necessary	ø mm 3.2	L mm 450	amps A 120 - 180	=-
Electrode identification:	4.0	450	160 - 230	\sim
FOX HL 180 Ti 7024 E 38 0 RR	5.0	450	200 - 330	

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S235JR, S275JR, S235J0G3, S275J0G3, S355J0G3, P235GH, P265GH, S255N, P295GH, S235JRS1 - S235J0S1, S235JRS2 - S235J0S2

ASTM A36 Gr. all; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A366; A570 Gr. 30, 33, 36, 40, 45; A607 Gr. 45; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A935 Gr. 45; A936 Gr. 50

Approvals and Certificates

TÜV-A (17), ABS (2), DNV (2), FI (E 38 0 RR 74), GL (2), LR (2m), RINA (2), UDT, SEPROZ

E 38 4 B 4 2 H5 E7016-1H4R E4916-1H4R

BÖHLER FOX EV 47

SMAW stick electrode, mild steel, basic-coated

Description

Basic coated electrode for high-quality welds. Good weldability in all positions except verticaldown. Metal recovery about 110 %. Very low hydrogen content (according AWS condition HD < 4 ml/100 g weld metal).

Weld metal extremely ductile, crack resistant and ageing resistant thus especially suited for rigid weldments with heavy seam cross sections.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.06	0.5	0.7

Mechanical Properties of All-weld Metal

+ 20 °C: - 20 °C:	u 460 530 27 190 110	(≥ 400) (490 - 600) (≥ 22) (≥ 110)	s 400 500 29 200 150	(≥ 360) (450 - 580) (≥ 22) (≥ 110)
- 40 °C:	90	(≥ 47)	100	

(*) u untreated, as-welded

s stress relieved 600 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h Electrode identification: FOX EV 47 7016-1 E 38 4 B	ø mm 2.5 3.2 4.0 5.0	L mm 250/350 350/450 450 450	amps A 80 - 110 100 - 140 130 - 180 180 - 230	=+
---	----------------------------------	--	--	----

Base Materials

steels up to a yield strength of 380 N/mm2 (52 ksi)

S235JR-E295, S235J2G3 - S355J2G3, C22, P235T1-P275T1, P235T2, P275T2, L210 -L320, L290MB - L320MB, P235G1TH, P255G1TH, P235GH, P265GH, P295GH, S235JRS1 -S235J4S, S355G1S - S355G3S, S255N - S355N, P255NH-P355NH, S255NL - S355NL, GE200-GE240

ASTM A 27 a. A36 Gr. all; A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A570 Gr. 30, 33 63, 40, 45; A 572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; AP1 5 L Gr. B, X42 - X52

Approvals and Certificates

TŨV-D (1098.), DB (10.014.09), ŨZ (10.014/1), ÔBB, TŨV-A (72), ABS (3H5), BV (3HHH), DNV (3H10), GL (3H5), ISPESL (X), LR (3m H5), RMR (2), RINA (3YH5, 3H5), UDT, LTSS, VUZ, SEPROZ

E 42 5 B 4 2 H5 E7018-1H4R E4918-1H4R **BÖHLER FOX EV 50**

SMAW stick electrode, mild steel, basic-coated

Description

Basic coated electrode engineered for high-quality welds. Excellent strength and toughness properties down to -50 °C. Metal recovery approx. 110 %. Good weldability in all position except for vertical-down. Very low hydrogen content (according AWS condition HD < 4 ml/100 g weld metal). Suitable for welding steels with low purity and high carbon content. Welding in steel construction, boiler and tank manufacture, vehicle construction, shipbuilding, and machine construction as well as for buffer layers on build ups on high carbon steels. Especially suitable for off-shore construction, CDD tested at -10 °C. It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-test are available too.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.07	0.5	1.1

Mechanical Properties of All-weld Metal

+ 20 °C: - 20 °C:	u 490 560 27 190 160	(≥ 420) (500 - 640) (≥ 22) (≥ 120)	s 430 520 29 220 190
- 20 °C: - 50 °C:	160	(≥ 47)	190

(*) u untreated, as-welded s stress relieved 600 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h Electrode identification: FOX EV 50 7018-1 E 42 5 B	ø mm 2.0 2.5 3.2 4.0 5.0 6.0	L mm 250 250/350 350/450 450 450 450	amps A 50 - 70 80 - 110 100 - 140 130 - 180 180 - 230 240 - 290	=+	

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235JR-E335, S235J2G3 - S355J2G3, C22, P235T1-P355T1, P235T2, P355T2, L210 - L360NB L290MB - L320MB, P235G1TH, P255G1TH, P235GH, P265GH, P295GH, S235JRS1 - S235J4S, S355G1S - S355G3S, S255N - S355N, P255NH-P355NH, S255NL - S355NL, GE200-GE260, GE300

ASTM A 27 a. A36 Gr. all; A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A570 Gr. 30, 33, 36, 40; A572 Gr. 42; A50; A606 Gr. all; A607 Gr. 45; A556 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; AP1 5 L Gr. B, X42 - X56

Approvals and Certificates

TÜV-D (0426.), DB (10.014.02), ÜZ (10.014/1), ÖBB, TÜV-A (32), ABS (3H5, 4Y), BV (3YHHH), CL (0210), DNV (3YH10), FI (E 42 5 B 42 H5), GL (4Y40H15), ISPESL (X), LR (3, 3YH5), RMR (3YHH), RINA (4YDH5/4DH5), UDT, LTSS, VUZ, SEPROZ, PDO, CRS (3YH5)

E 42 3 B 1 2 H10 E7016 E4916 **BÖHLER FOX EV 50-A**

SMAW stick electrode, mild steel, basic-coated

Description

Basic double coated electrode with excellent weldability in all positions except vertical-down. Especially suited for out-of-position welding thanks to the well controlled arc. Excellent root penetration. Good suitability for welding on AC Minimum spatter loss. Very easy slag removal with uniform beads. Well suited for small transformers. Low hydrogen content in the weld deposit (HD = 10 ml/100 g deposit).

Ivpical Composition of All-weld Me

	С	Si	Mn
wt-%	0.05	0.6	1.0

Mechanical Properties of All-weld Metal

(*) Yield strength R₀ N/mm²:		u 440	(≥ 420)	s 400
Tensile strengnt Rm N/mm ⁻ :		220	(500 - 640)	520
Elongation A ($L_0 = 5d_0$) %:		28	(≥ 20)	28
Impact work ISO-V KV J	+ 20 °C:	180	(≥ 100)	180
	- 30 °C:		(≥ 47)	

(*) u untreated, as-welded

s stress relieved 580 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h Electrode identification: FOX EV 50-A 7016 E 42 3 B	ø mm 2.5 3.2 4.0 5.0	L mm 350 350/450 450 450	amps A 60 - 90 100 - 150 140 - 190 190 - 250	=±~
---	----------------------------------	--------------------------------------	--	-----

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235J2G3 - S355J2G3, S235JR-E295, C22, P235T1-P355T1, P235T2-P355T2, L210 - L360NB, L290MB - L360MB, P235G1TH, P255G1TH, P235GH, P265GH, S255N, P295GH, S235JRS1 - S235J3S, S355G1S - S355G3S, S255N - S355N, P255NH-P355NH, GE200-GE260

ASTM A27 a. A36 Gr. all; A214; A242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A570 Gr. 30, 33, 36, 40, 45; A 572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A565 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; AP1 5 L Gr. B, X42 - X56

Approvals and Certificates

TÜV-D (7105.), DB (10.014.17), ÖBB

E 42 3 RB 3 2 H10 E7018(mod.) E4918(mod.)

BÖHLER FOX EV 50-AK

SMAW stick electrode, mild steel, rutile-basic-coated

Description

Rutile basic coated electrode for high quality weld joints. Specially suited for welding on ACpolarity. Good weldability in all position except vertical down. Increased weld metal recovery of app. 125 %.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.04	0.6	1.0

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _a N/mm ² :		480	(≥ 420)
Tensile strenght R _m N/mm ² :		560	(500 - 640)
Elongation A ($L_0 = 5d_0$) %:		30	(≥ 22) [′]
Impact work ISO-V KV J	+ 20 °C:	200	(≥ 120)́
	- 20 °C:	140	· · · /
	- 30 °C:		(≥ 47)
			()

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h Electrode identification: FOX EV 50-AK E 42 3 RB	ø mm 2.5 3.2 4.0	L mm 250 350 450	amps A 70 - 90 100 - 140 150 - 210	=+ ~	
--	---------------------------	---------------------------	--	---------	--

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235JR-E335, S235J2G3 - S355J2G3, C22, P235T1-P355T1, P235T2, P355T2, L210 -L360NB, L290MB, P235G1TH, P255G1TH, P235GH, P265GH, P295GH, S235JRS1 -S235J3S, S355G1S - S355G3S, S255N - S355N, P255NH-P355NH, S255NL - S355NL, GE200-GE260, GE300

ASTM A27 a. A36 Gr. all; A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A570 Gr. 30, 33 6, 40, 45; A 572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A566 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5 L Gr. B, X42 - X56

Approvals and Certificates

UDT, LTSS

E 42 5 B 1 2 H5 E7016-1H4R E4916-1H4R **BÖHLER FOX EV 50-W**

SMAW stick electrode, mild steel, basic-coated

Description

Basic coated electrode for high-quality joint welds. Especially suited for root pass welding. Excellent weldability in all positions except vertical-down. Smooth and slag-free welds. Crack resistant deposits of high toughness at ambient and subzero temperatures. Very low hydrogen contents in the weld deposit (according AWS condition HD < 4 ml/100 g weld metal). Especially suited for welding on AC. For root pass welding, DC negative polarity is recommended.

Ivpical Composition of All-weid Meta	[vpical	Composition	of All-weld	Metal
--------------------------------------	---------	-------------	-------------	-------

	С	Si	Mn
wt-%	0.07	0.5	1.1

Mechanical Properties of All-weld Metal

+ 20 °C:	u 460 560 28 200	(≥ 420) (510 - 640) (≥ 25) (≥ 110)	s 400 520 28 200
- 20 °C:	150	(=)	160
- 40 °C:	120		130
- 50 °C:		(≥ 47)	

(*) u untreated, as-welded

s stress relieved 580 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h Electrode identification: FOX EV 50-W 7016-1 E 42 5 B	ø mm 2.0 2.5 3.2 4.0 5.0	L mm 300 350 350 350 450 Polarity ne	amps A 40 - 60 55 - 85 80 - 140 110 - 180 180 - 230 gative for root pass	=+ ~ =-
---	---	--	--	---------------

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235JR-E335, S235J2G3 - S355J2G3, C22, P235T1-P355T1, P235T2, P355T2, L210 - L360NB, L290MB, P235G1TH, P255G1TH, P235GH, P265GH, P295GH, S235JRS1 - S235J4S, S355G1S - S355G3S, S255N - S355N, P255NH-P355NH, S255NL - S355NL, GE200-GE260, GE300

ASTM A27 a. A36 Gr. all; A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A2828; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A570 Gr. 30, 33, 36, 40, A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A556 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; AP1 5 L Gr. B, X42 - X56

Approvals and Certificates

TÜV-D (4180.), CL (0498), FI (E 42 2 B 12 H5), GL (3YH5), UDT, LTSS, PDO, SEPROZ

E 46 5 B 1 2 H5 E7018-1H4R E4918-1H4R **BÖHLER FOX EV 55**

SMAW stick electrode, mild steel, basic-coated

Description

Basic coated electrode for high-quality joint welds with high strength and toughness properties. Low-temperature ductility down to -50 °C. Very low hydrogen content in the weld deposit (according AWS condition HD < 4 ml/100 g weld metal). Excellent weldability in all positions except vertical-down. Suitable for welding in steel construction, boiler, tank, container and vehicle construction, shipbuilding and mechanical engineering. Also suited for buffer layers on build ups on high-carbon steels. It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-test are available too.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.08	0.35	1.4

Mechanical Properties of All-weld Metal

+ 20 °C: - 20 °C:	u 500 550 30 220 170	(≥ 460) (530 - 680) (≥ 22) (≥ 130)	s 470 530 30 200
- 50 °C:	90	(≥ 47)	

(*) u untreated, as-welded

s stress relieved 580 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h Electrode identification: FOX EV 55 7018-1 E 46 5 B	ø mm 2.5 3.2 4.0	L mm 250 350 450	amps A 80 - 110 100 - 140 130 - 180	=+

Base Materials

steels up to a yield strength of 460 N/mm² (78 ksi)

S235J2G3 - S355J2G3, S235JR - S355J0, P235T1-P355T1, P235T2 -P355T2, L210 - L415NB, L290MB, P235G1TH, P255G1TH, P235GH, P265GH, P295GH, S235JRS1 - S235J4S, S355G1S - S355G3S, S255N - S460N, P255NH-P355NH, S255NL - S460NL, S255NL1, GE200-GE300

ASTM A27 a. A36 Gr. all; A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A570 Gr. 30, 33, 36, 40, 45; A 572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A565 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5 L Gr. B, X42 - X60

Approvals and Certificates

TÜV-D (3654.), TÜV-A (232), RMR (3 YHH), UDT, LTSS, SEPROZ

BÖHLER FOX NUT

SMAW stick electrode, mild steel, gouging electrode

Description

Special electrode for gouging of various base Materials without oxygen. High gouging speed in all positions useable.

Suitable for edge bevelling, cutting grooves, removal of unsound material and cracks prior to repair welding.

Operating Data

re-drying: not necessary ømm Electrode identification: 3.2 FOX NUT 4.0

nm	L mm	amps A
2	350	180 - 240
0	350	250 - 320

^
_

Approvals and Certificates

-

EN 1668:1997: AWS A5.18-01: AWS A5.18M-04: W.Nr: W 42 5 W3Si1 ER70S-6 ER48S-6 1.5125

BÖHLER EMK 6

GTAW rod, mild steel

Description

TIG-welding rod with high silicon content. The welding rod is suited for joints in boiler and vessel fabrication as well as in structural steel engineering. It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-test are available too.

Typical	Compo	sition o	of Weldir	ng Rod		
wt-%	С 0.1	Si 0.9	Mn 1.4			
Mechan	ical Pr	operties	of All-w	veld Me	etal	
(*) Yield streng	gth R₀N/n	nm²:		u 430	(≥ 420)	s 400

noid ou ongai na nainin i			(= .= 0)	
Tensile strenght R _m N/mm ² :		540	(500 - 640)	510
Elongation A (Lo = 5do) %:		27	(≥ 20) ́	28
Impact work ISO-V KV J	+ 20 °C:	160	(≥ 100)́	180
•	- 40 °C:	70	· · /	110
	- 50 °C:		(≥ 47)	
			· · · ·	

(*) u untreated, as-welded – shielding gas Argon s stress relieved, 620 °C/2 h – shielding gas 100 % Argon

Operating Data

shielding gases: Argon rod marking: front: + W3Si1 back: ER70S-6	ø mm 1.6 2.0 2.4	=-
---	---------------------------	----

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235.J2G3-S355.J2G3, E360, P235T1-P355T1, P235G1TH, L210, L290MB, P255G1TH, P235GH, P265GH, P295GH, P310GH, P255NH, S235JRS1-S235J4S, S355G1S-S355G3S, S255N-S385N, P255NH-P385NH, GE200-GE260

ASTM A27 a. A36 Gr. all; A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A570 Gr. 30, 33, 36, 40, 45; A 572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5 L Gr. B, X42 - X56

Approvals and Certificates

TÜV-D (09717.), TÜV-A (521), UDT, LTSS, SEPROZ

EN 1668:1997: AWS A5.18-01: AWS A5.18M-04:

W 46 5 W2Si ER70S-3 ER48S-3

BÖHLER EML 5

GTAW rod, mild steel

Description

Very popular TIG rod for high integrity welds. The low Si-content renders this filler metal particularly also for joint welds that are subjected to enamelling or galvanising. Especially suited for root pass welding (approved at \cdot 50 °C)

BÖHLER EML 5 can be used in sour gas applications (HIC-Test acc. NACE TM-02-84) as well.

Typical Composition of Welding Rod

	С	Si	Mn
wt-%	0.1	0.6	1.2

Mechanical Properties of All-weld Metal

+ 20 °C:	u 500 600 26 220 200	(≥ 460) (530 - 680) (≥ 23) (≥ 130)	s 490 570 30 200 210
- 20 °C: - 50 °C:	200	(> 47)	210

(*) u untreated, as-welded – shielding gas 100 % Argon s stress relieved, 620 °C/5 h – shielding gas 100 % Argon

Operating Data

=-

Base Materials

steels up to a yield strength of 460 N/mm² (67 ksi)

S235J2G3 - S355J2G3, E360, P235T1-P355T1, P235G1TH, L210, L290MB, P255G1TH, P235GH, P265GH, P295GH, P310GH, P255NH, S235JRS1 - S235J4S, S355G15 - S355G3S, S255N - S385N, P255NH-P385NH, GE200-GE260

ASTM A27 a. A36 Gr. all; A214; A242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A570 Gr. 30, 33, 36, 40, 45; A 572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A566 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; AP1 5 L Gr. B, X42 - X60

Approvals and Certificates

TÜV-D (1096.), DB (42.014.02), ÜZ (42.014/2), ÖBB, TÜV-A (373), CL (1010), Statoil, UDT

AWS A5.18-01: ER70S-2 AWS A5 18M-04 FB48S-2

BÖHLER ER 70 S-2

GTAW-rod. mild steel

Description

Böhler ER 70S-2 is a copper coated GTAW rod containing AI, Ti and Zr as strong deoxidents in addition to Mn and Si and is often referred to as triple deoxidised.

This has advantages when rimming or semi-killed mild steels are welded or where joint preparations are rusty or contaminated.

Böhler ER 70S-2 is primarily used for single pass welding. For applications involving single and multipass GTAW and/or low temperature toughness requirements down to -50 °C we recommend our GTAW rod Böhler EML 5 (AWS ER 70S-3).

Typical Composition of Welding Rod

	C	C:	Mp	т	7:	A1
		31	IVITI		21	AI
wt-%	0.05	0.5	1.2	+	+	+

Mechanical Properties of All-weld Metal

(*)		u
Yield strength R _e N/mm ² :		≥ 420
Tensile strenght Rm N/mm ² :		≥ 520
Elongation A ($L_0 = 5d_0$) %:		≥ 23
Impact work ISO-V KV J	+ 20 °C:	≥ 80
	- 29 °C:	≥ 27
(*) u untreated as-welded -	- shieldina aas	100 % Ar

untreated, as-weided – shielding gas 100 % Argon

Operating Data

Ì↓	shielding gases: 100 % Argon rod marking: front: back: ┿ ER70S-2	ø mm 1.6 2.0 2.4	=-
		3.0	

Base Materials

especially for rod pass welding of steels up to a yield strength of 420 N/mm² (60 ksi)

S235J2G3, E360, P235T1, P235G1TH, L210, P255G1TH, P235GH, P265GH, P295GH, P310GH, P255NH, S235JRS1 - S235J4S, S255N, P255NH, GE200-GE260

ASTM A27 a. A36 Gr. all: A 210 Gr. 1: A214: A34 Gr.1: A 36. A 113: A 139

Approvals and Certificates

EN 440:1995: EN 440:1995:

AWS A5.18-01: AWS A5.18M-04: W.Nr:

G3Si1 (for wire) G 42 4 M G3Si1 G 42 4 C G3Si1 ER70S-6 ER48S-6 1.5125

BÖHLER EMK 6

GMAW solid wire, mild steel

Description

Copper-coated solid wire suited for universal GMAW application in structural steel engineering, and provides excellent feeding characteristics.

Thanks to the good mechanical properties this filler wire is optimally suited for welding thickwalled components.

The non copper coated version of the solid wire BÖHLER EMK 6 TOP is designed for low spatter formation and excellent feeding properties for extremely high wire feed rates. These types are especially suited for robotic welding.

Typ	bical	Com	position	of	Solid	Wire
-----	-------	-----	----------	----	-------	------

	С	Si	Mn
wt-%	0.1	0.9	1.4

Mechanical Properties of All-weld Metal

(*)		u		u2		s	
Yield strength R _e N/mm ² :		440	(≥ 420)	440	(≥ 420)	380	(≥ 360)
Tensile strenght Rm N/mm ² :		530	(500 - 6	40) 540	(500 - 640) 490	(470 - 590)
Elongation A ($L_0 = 5d_0$) %:		30	(≥ 24)	29	(≥ 22)	30	(≥ 22)
Impact work ISO-V KV J	+ 20 °C:	160	(≥ 90)	120	(≥ 70)	160	(≥ 90)
	- 40 °C:	80	(≥ 47)	50	(≥ 47)		(≥ 47)

(*) u untreated, as-welded – shielding gas Ar + 15 - 25 % CO₂ u2 untreated, as-welded – shielding gas 100 % CO₂

s stress relieved, 620 °C/2 h - shielding gas Ar + 15 - 25 % CO2

Operating Data

shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 0.8 1.0 1.2 1.6	=+
--	---	----

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235J2G3 - S355J2G3, E360, P235T1-P355T1, P235G1TH, L210, L290MB, P255G1TH, P235GH, P265GH, P295GH, P310GH, P255NH, S235JRS1 - S235J4S, S355G1S -S355G3S, S25SN - S385N, P255NH-P385NH, GE200-GE260

ASTM A27 a. A36 Gr. all; A106 Gr. A, B A214; A242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A2328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50

Approvals and Certificates

TÜV-D (3036.), DB (42.014.11), ÜZ (42.014/2), ÖBB, TÜV-A (83), ABS (3SA, 3YSA), CWB (X), DNV (III YMS), FI (G 38 4 C G3Si1), GL (3YS), LR (3S, 3YS H15), UDT, LTSS, SEPROZ EN 440:1995: EN 440:1995:

AWS A5.18-01: AWS A5.18M-04: W.Nr: G4Si1 (for wire) G 46 4 M G4Si1 G 46 4 C G4Si1 ER70S-6 ER48S-6 1.5130

BÖHLER EMK 7

GMAW solid wire, mild steel

Description

Copper-coated solid wire used for GMAW of structural components with increased strength requirements.

 $\ensuremath{\text{BOHLER}}$ EMK 7 is designed for semi-automatic and robotic welding and provides excellent feeding characteristics.

T١	pical/	Com	position	of	Solid	Wire
----	--------	-----	----------	----	-------	------

	С	Si	Mn
wt-%	0.08	0.9	1.7

Mechanical Properties of All-weld Metal

(*)	u		u2	s
Yield strength R _e N/mm ² :	480	(≥ 460)	470 (≥ 460)	420
Tensile strenght Rm N/mm ² :	590	(530 - 680)	580 (530 - 680)	540
Elongation A ($L_0 = 5d_0$) %:	26	(≥ 22) ´	29 (≥ 22)	28
Impact work ISO-V KV J + 20 °C	120	(≥ 80)	110 (≥ 70)	130
- 40 °C		(≥ 47)	· · · ·	65
(*) u untreated as-welded - shieldin	a aas	Àr + 15 - 25 9	% CO2	

*) u untreated, as-welded – shielding gas Ar + 15 - 25 % CO² u2 untreated, as-welded – shielding gas 100 % CO²

s stress relieved, 600 °C/2 h – shielding gas Ar + 15 - 25 % CO2

Operating Data

shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 1.0 1.2	=+
--	--------------------	----

Base Materials

steels up to a yield strength of 460 N/mm² (67 ksi)

S235J2G3 - S355J2G3, E360, P235T1-P355T1, P235G1TH, P255G1TH, P235GH, P265GH, P295GH, P310GH, P255NH, S235JRS1 - S235J4S, S355G1S - S355G3S, S255N - S460N, P255NH-P460NH, GE200-GE260

ASTM A27 a. A36 Gr. all; A106 Gr. A, B A214; A242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A228; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50

Approvals and Certificates

TÜV-D (3037.), DB (42.014.12 - 20.014.13), ÜZ (42.014/2), ÖBB

EN 440:1995: EN 440:1995:

AWS A5.18-01: AWS A5.18M-04: W.Nr: G4Si1 (for wire) G 46 4 M G4Si1 G 46 4 C G4Si1 ER70S-6 ER48S-6 1.5130

BÖHLER EMK 8

GMAW solid wire, mild steel

Description

Copper-coated solid wire used for GMAW of structural components with increased strength requirements and is optimally suited for welding thick-walled components.

BÖHLER EMK 8 is designed for semi-automatic and robotic welding and provides excellent feeding characteristics.

For the T.I.M.E.-process the type BÖHLER EMK 8-T is recommended (ø1.2 mm), and is especially suited for robotic welding.

Typical Composition of Solid Wire

	С	Si	Mn
wt-%	0.07	1.0	1.7

Mechanical Properties of All-weld Metal

(*)	u		u2	S
Yield strength R _e N/mm ² :	470	(≥ 460)	470 (≥ 460)	410
Tensile strenght Rm N/mm ² :	600	(530 - 680)	580 (530 - 680)	540
Elongation A ($L_0 = 5d_0$) %:	26	(≥ 22)	29 (≥ 22)	28
Impact work ISO-V KV J	+ 20 °C: 120	(≥ 80)	110 (≥ 70)	130
	- 40 °C: 50	(≥ 47)	50 (≥ 47)	70
		· · · · · · ·		

(*) u untreated, as-welded – shielding gas Ar + 15 - 25 % CO² u2 untreated, as-welded – shielding gas 100 % CO²

s stress relieved, 600 °C/2 h – shielding gas Ar + 15 - 25 % CO_2

Operating Data

shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 0.8 1.0 1.2	=+
--	----------------------------------	----

Base Materials

steels up to a yield strength of 460 N/mm² (67 ksi)

S235J2G3 - S355J2G3, E360, P235T1-P355T1, P235G1TH, P255G1TH, P235GH, P265GH, P295GH, P310GH, P255NH, S235JRS1 - S235J4S, S355G1S - S355G3S, S255N - S460N, P255NH-P460NH, GE200-GE260

ASTM A27 a. A36 Gr. all; A106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50

Approvals and Certificates

TÜV-D (3038.), DB (42.014.05), ÜZ (42.014/2), ÖBB, ABS (3SA, 3YSA), DNV (III YMS), GL (3YS), LR (3S, 3YS H15), UDT, SEPROZ

EN 758:1997:

AWS A5.20-95:

T 46 2 P M 1 H10 T 42 2 P C 1 H5 E71T-1H4 E71T-1MH8 BÖHLER Ti 52-FD

GMAW flux-cored wire, mild steel, rutile type

Description

All-position rutile flux-cored wire with fast freezing slag system. User friendly welding characteristics in all positions with one wire dia. 1.2 mm and same parameter setting. Excellent mechanical properties, easy slag removal, low spatter loss, smooth, finely rippled bead surface, high X-ray safety.

The product performs to the highest productivity with significant savings in time and economical aspects when used for positional welding.

Typical Composition of All-weld Metal

	С	Si	Mn	Ti
wt-%	0.06	0.5	1.2	+

Mechanical Properties of All-weld Metal

(*)	u		u2	
Yield strength R _e N/mm ² :	490) (≥ 460)	470 ((≥ 420)
Tensile strenght R _m N/mm ² :	580) (550 - 640)	540 (510 - 640)
Elongation A (L ₀ = 5d ₀) %:	26	3 (≥ 22) ́	27 (≥ 22)
Impact work ISO-V KV J	+ 20 °C: 180) (≥ 130)	170	≥ 120)
•	- 20 °C: 130) (≥ 54)	120	≥ 54)
	-40 °C: 90) ` ´	80	· · ·
(*) u untroated as-wolded	chiolding ag	c Ar + 15 - 25	% 00	

(*) u untreated, as-welded – shielding gas Ar + 15 - 25 % CC u2 untreated, as-welded – shielding gas 100 % CO₂

Operating Data

ļ	re-drying: not necessary shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂ Welding with standard GMAW-facilities possible.	ø mm 1.2 1.6	=+
---	---	---------------------------	----

Base Materials

steels up to a yield strength of 460 N/mm² (67 ksi)

S235J2G3 - S355J2G3, GE200, GE240, GE260, S235JRS1 - S235J2S, AH, DH, EH, S255N - S355N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210 - L360NB, P235G1TH, P255G1TH

ASTM A27 a. A36 Gr. all; A106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B, A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 G907 Gr. 30, 33, 36, 40; Gr. all; A607 Gr. 45; A656 Gr. 50, 65; A656 Gr. 50, 60; A668 Gr. A, B; AA841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5L X42 - X56

Approvals and Certificates

TÜV-D (09929.), TÜV-A (709), ABS (3SA, 3YSA (CO₂,M21)), BV (X), DNV (III YMS(H10) [CO₂, M21]), GL (3YHHS (C1, M21)), LR (DXVudO; BF; 3S; 3YS; H15; NA), UDT, CRS (3YH10S) EN 758: T 46 4 P M 1 H10 T 42 2 P C 1 H5 AWS A5.20-95: E71T-1J H8 E71T-1MJ H8 BÖHLER Ti 52 W-FD

flux cored wire, unalloyed, rutile type

Description

Rutile based flux-cored wire with fast freezing slag. Excellent welding characteristics in all positions. Very good mechanical properties, easy slag removability, low spatter level, smooth and well shaped beads with x-ray-quality. Higher welding current (230 A) is applicable in out-of-position welding, which results in cost reduction due to higher productivity and less time for postweld cleaning.

Particularly suited for welding prime coated plates in shipbuilding, steel- and bridge constructions.

Typical Composition of All-weld Metal

	С	Si	Mn	T
Gew-%	0.05	0.5	1.3	+

Mechanical Properties of All-weld Metal

$\binom{*}{}$ yield strength $R_{\rm e}$ N/mm²: tensile strength $R_{\rm m}$ N/mm²: elongation A (Lo=5do) %: impact work ISO-V KV J	+20 °C: -20 °C:	u 520 580 24 140 110	(≥ 460) (550-640) (≥ 22) (≥ 130) (≥ 54)	u2 480 540 25 130 100	(≥ 420) (530-630) (≥ 24) (≥ 100) (≥ 54)
	-20 °C: -40 °C:	95	(≥ 54) (≥ 54)	100	(≥ 54)

(*) u untreated, as-welded – shielding gas Ar + 15-25 % CO₂ u2 untreated, as-welded – shielding gas 100 % CO₂

Operating Data

Base Materials

Steels up to a yield strength of 460 N/mm² (67 ksi)

S235 - S355J4G3, GE200, GE240, GE260, S235JRS1 - S235J4S, AH, DH, EH, S255N -S355N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210 - L360NB, X 42-X 60, P235G1TH, P255G1TH

ASTM A27 u. A36 Gr. all; A106 Gr. A, B A214; A 242 Gr.1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 G907 Gr. 30, 33, 36, 40; Gr. all; A607 Gr. 45; A656 Gr. 50, 65; A668 Gr. A, B; AA841; A851 Gr. 1, 2; A935 Gr.45; A936 Gr. 50; API 5L X42-X60

Approvals and Certificates

TÜV-D (600.001.487), DB (42.014.03), ÜZ (42.014/1), ÖBB, GL (3YH10S)

EN 758:1997: AWS A5.18-01: AWS A5.18M-04: T 46 4 M M 2 H5 E70C-6MH4 E48C-6MH4

BÖHLER HL 51-FD

GMAW flux cored wire, mild steel, metal-cored

Description

Metal-cored high-efficiency wire for semi-automatic and fully automatic joint welding of unalloyed and fine-grained constructional steels and service temperatures from -40 °C to +450 °C. Very high metal recovery between 93 and 97 % and deposition rate up to 9 kg/hr. Steady spray arc-like droplet transfer with minimal spatter formation. Good penetration, high resistance to porosity, good wetting behaviour as well as low hydrogen contents (< 5 ml/100 g deposit) are further quality features of this flux cored wire.

Minimum oxide residues permit the welding of multi passes without the need for inter-run cleaning. Ideal for horizontal and flat fillet welds. Compared to solid wires 20 % higher productivity can be achieved.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.07	0.7	1.5

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		490	(≥ 460)
Tensile strenght R _m N/mm ² :		610	(550 - 650)
Elongation A (Lo = 5do) %:		27	(≥ 24)
Impact work ISO-V KV J	+ 20 °C:	130	(≥ 100)́
	- 40 °C:	90	(≥ 47)́
(*) u untreated, as-welded -	shielding gas Al	+ 15	25`% CÓ₂

Operating Data

	re-drying: not necessary shielding gases: Argon + 15 - 25 % CO ₂ Welding with standard GMAW-f	ømm 1.2 1.6 acilities possible.	=+
--	---	--	----

Base Materials

steels up to a yield strength of 460 N/mm² (67 ksi)

S235J2G3 - S355J2G3, GE200, GE240, GE260, S235JRS1 - S235J4S, AH, DH, EH, S255N - S380N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210 - L360NB, P235G1TH, P255G1TH

ASTM A27 a. A36 Gr. all; A106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A686 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API EL X42 - X60

Approvals and Certificates

TÜV-D (09928.), DB (42.014.29), ÜZ (42.014/1), ÖBB, ABS (4Sa-4YSAH5), DNV (requested), GL (4YH5S), LR (DXVudO; BF, 3S; 4YS; H5)

EN 758: T 42 AWS A5.18-01: E 7 AWS A5.18M-01: E 44

T 42 5 Z M M 2 H5 E 70 C-GM H4 E 48 C-GM H4 **BÖHLER HL 53-FD**

Flux cored wire, unalloyed, high efficiency

Description

Metal-cored high-efficiency wire for fully automatic and semi-automatic joint welding of unalloyed and fine-grained constructional steels. The special filling composition permits very high metal recovery between 93 and 97 % and deposition rates of up to 8 kg/hr. Smooth spray transfer, minimum spattering, a very good bead profile and excellent wetting behaviour are the characteristics of HL 53-FD. Another advantage is minimum oxide formation, which allows multi-pass welding without deslagging. The hydrogen content of the weld deposit is \leq 5 ml/100 g deposit. HL 53-FD is suitable for fillet welds and butt welds of standard constructional steels as well as for fine-grained steels in structural steel engineering. The service temperature range is -50 / +450 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Ni
wt-%	0.06	0.5	1.2	0.9

Mechanical Properties of All-weld Metal

(*)		u	S
vield strength R _e N/mm ² :		≥ 420	470
tensile strength Rm N/mm ² :		520-620	530
elongation A ($L_0 = 5d_0$) %:		≥ 22	27
impact work ISO-V Av J	+20 °C:	≥ 100	190
•	-50 °C:	(≥ 47)	

(*) u untreated, as welded – shielding gas Ar +15-20 % CO2

s stress relieved, 600°C/2 h - shielding gas Ar +15-20 % CO2

Operating Data

	1	-	•	
L	-		-	•

Rebaking: not necessary	ø	mm
shielding gas:		1.2
Argon +15-25 % CO2		1.6
Welding with standard welding	fa	cilities.

Base Materials

Steels with yield strength ≤ 420 N/mm² (60 ksi) S235 - S355J2G3, GE200, GE240, GE260, S235JRS1 - S235J4S, AH, DH, EH, S255N -S380N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210 - L360NB, X 42-X 60, P235G1TH, P255G1TH

ASTM A27 u. A36 Gr. all; A106 Gr. A, B A214; A242 Gr.1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B, Y328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45 572 Gr. 42, 50; A606 Gr. all A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr.45; A936 Gr. 50; API 5L X42-X60

Approvals and Certificates

TÜV-D (09968.)

SAW solid wire: BÖHLER EMS 2 // BB 24 EN 756:2004 S2 FM12K AWS A5 17-97 SAW wire/flux-combination. mild steel sub-arc flux: EN 760:1996: SA FB 1 65 DC H5 wire/flux-combination EN 756:2004: S 38 6 FB S2 F7A8-EM12K (F6P8-EM12K) AWS A5.17-97: AWS A5.17M-97: F48A6-EM12K (F43P6-EM12K)

Description

Universally applicable for constructional steels and fine grained steels, e.g. in shipbuilding, structural steel work, and pressure vessel fabrication. The flux reacts metallurgically Mn-neutral.

The sub-arc wire/flux combination produces very good low temperature impact properties down to - 60 °C. Excellent slag detachability, smooth beads, good wetting and low hydrogen contents (HD \leq 5 ml/100 g) are further important features. The combination is ideally suited for multipass welding of thick plates.

For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn
SAW wire wt-%	0.12	0.12	1.00
all-weld metal %	0.07	0.25	1.05

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _a N/mm ² :		440	(≥ 400)
Tensile strenght Rm N/mm ² :		520	(≥ 500)
Elongation A (Lo = 5do) %:		33	(≥ 26)
Impact work ISO-V KV J	+ 20 °C:	185	(≥ 160)
•	± 0 °C:	180	(≥ 140)
	- 20 °C:	170	(≥ 100)
	- 60 °C:	140	(≥ 47)

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: 300 - 350 °C, 2 h - 10 h max. amperage of sub-arc flux: 800 A	ø mm 2.0 2.5 3.0	3.2 4.0	=±
	3.0		

Base Materials

steels up to a yield strength of 400 N/mm² (56 ksi)

S235JR - S335JR, S235J2G3 - S335J2G3, P235T1 - P335T1, P235T2 - P355T2, P235GH, P265GH, S255N, P295GH, P310GH, S235JRS1 - S235J4S, S255N - S380N

ASTM A36 Gr. all; A 106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5L X42 - X52

Approvals and Certificates

TÜV-D (7808.), UDT. Wire: TÜV-D (02603.), KTA 1408 1 (8058.00), DB (52.014.03), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ

SAW solid wire: EN 756:2004: S2 AWS A5.17-97: EM12K sub-arc flux: EN 760:1996: SA FB 1 68 AC H5 wire/flux-combination: EN 756:2004: S 42 4 FB S2 AWS A5.17-97: F7A4-EM12K AWS A5.17M-97: F4RA4-EM12K

BÖHLER EMS 2 // BB 25

SAW wire/flux-combination, mild steel

Description

Universally applicable for constructional steels and fine grained steels, e.g. in shipbuilding, structural steel work, and pressure vessel fabrication. The flux is active and shows some pickup of silicon and manganese.

The sub-arc wire/flux combination produces higher strength values with very good low temperature impact properties down to -40 °C.

For information regarding the sub-arc welding flux BÖHLER BB 25 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn
SAW wire wt-%	0.12	0.12	1.00
all-weld metal %	0.07	0.40	1.45

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		450	(≥ 420)
Tensile strenght Rm N/mm ² :		530	(≥ 500)
Elongation A (Lo = 5do) %:		28	(≥ 22)
Impact work ISO-V KV J	+ 20 °C:	180	` '
	±0 °C:	130	
	- 20 °C:	100	
	- 40 °C:	90	(> 47)
(*) u untropted on wolded			()

(*) u untreated, as-welded

Operating Data

	_
_	

re-drying of sub-arc flux: 300 - 350 °C, 2 h - 10 h max. amperage of sub-arc flux: 800 A	ø mm 2.0 2.5	3.2 4.0	=±
	30		

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235J2G3-S355J2G3, GE200, GE240, GE260, S235JRS1-S235J4S, AH, DH, EH, S255N-S380N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210-L360NB, P235G1TH, P255G1TH

ASTM A36 Gr. all; A 106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API SL X42 - X56

Approvals and Certificates

TÜV-A (621), UDT. Wire: TÜV-D (02603.), KTA 1408 1 (8058.00), DB (52.014.03), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ

SAW solid wire:	DÓ	
EN 756:2004:	S2 DV	
AWS A5.17-97:	EM12K	SAW wire/flux-combination mild steel
sub-arc flux:		SAW wite/nux-combination, mild steel
EN 760:1996:	SA AR 1 97 AC SK	M
wire/flux-combination:		
EN 756:2004:	S 46 0 AR S2	
AWS A5.17-97:	F7AZ-EM12K	
AWS A5.17M-97:	F48A0-EM12K	

Description

Universally applicable for high-speed welding of constructional steels and fine grained steels, e.g. in shipbuilding, structural steel work, and pressure vessel fabrication.

The sub-arc wire/flux combination produces good impact properties at 0 °C and higher strength properties. Good wetting characteristics with fine rippled bead appearance at high travel speed. For information regarding the sub-arc welding flux BÖHLER BB 33 M see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn
SAW wire wt-%	0.12	0.12	1.0
all-weld metal %	0.08	0.70	1.3

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		540	(≥ 460)
Tensile strenght R _m N/mm ² :		620	(≥ 520)
Elongation A (L ₀ = 5d ₀) %:		29	(≥ 22)
Impact work ISO-V KV J	+ 20 °C:	70	(≥ 60)
•	± 0 °C:	50	(≥ 47)
	- 20 °C:	40	. ,

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: 275 - 325 °C, 2 h - 4 h max. amperage of sub-arc flux: 800 A	ø mm 2.0 2.5 3.0	3.2 4.0	=±
---	---------------------------	------------	----

Base Materials

steels up to a yield strength of 460 N/mm² (67 ksi)

S235J0G3-S355J0G3, GE200, GE240, GE260, S235JRS1-S235J0S, AH, DH, EH, S255N-S380N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210-L360NB, P235G0TH, P255G0TH

ASTM A36 Gr. all; A 106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5L X42-X60

Approvals and Certificates

TÜV-D (5685.), TÜV-A (617), UDT Wire: TUV-D (02603.), KTA 1408 1 (8058.00), DB (52.014.03), UZ (52.014/1), ÖBB. TÜV-A (391), SEPRÓZ
SAW solid wire:	
EN 756:2004:	S2
AWS A5.17-97:	EM12K
sub-arc flux:	
EN 760:1996:	SF MS 1 78 AC M
wire/flux-combination:	
EN 756:2004:	S 38 0 MS S2
AWS A5.17-97:	F6A0-EM12K
AWS A5.17M-97:	F43A2-EM12K

BÖHLER EMS 2 // BF 16

SAW wire/flux-combination, mild steel

Description

BÖHLER BF 16 is a fused acid Si and Mn alloying flux with high current carrying capacity on both AC and DC. In combination with the wire BÖHLER EMS 2 it gives fine performance in universal applications for mild steel constructural work of thinner walled components. For information recarding the sub-arc welding flux BÖHLER BF 16 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn
SAW wire wt-%	0.12	0.12	1.0
all-weld metal %	0.04	0.50	1.3

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		400	(≥ 380)
Tensile strenght R _m N/mm ² :		500	(≥ 470)
Elongation A ($L_0 = 5d_0$) %:		29	(≥ 22)
Impact work ISO-V KV J	+ 20 °C:	90	(≥ 70)
	±0 °C:	60	(≥ 47)
	- 20 °C:	40	(≥ 27)

(*) u untreated, as-welded

Operating Data

-	re-drying of sub-arc flux: 250 - 350 °C, 1 h - 10 h max. amperage: 1300 A	ø mm 2.0 2.5	3.2 4.0	=±
	1 0	3.0		

Base Materials

steels up to a yield strength of 380 N/mm² (50 ksi)

S235JR-S335JR, S235J0G3-S335J0G3, P235T1-P335T1, P235T2- P355T2, P235GH, P265GH, S255N, P295GH, P310GH, S235JRS1-S235J0S, S255N-S380N

ASTM A36 Gr. all; A 106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5L X42 - X52

Approvals and Certificates

TÜV-A (6), UDT

Wire: TÜV-D (02603.), KTA 1408 1 (8058.00), DB (52.014.03), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ

SAW solid wire: BÖHLER EMS 3 // BB 24 EN 756:2004: S3 AWS A5.17-97: EH10K SAW wire/flux-combination. mild steel sub-arc flux: EN 760:1996: SA FB 1 65 DC H5 wire/flux-combination: EN 756:2004: S 42 4 FB S3 AWS A5.17-97: F7A4-EH10K (F7P8-EH10K) AWS A5.17M-97: F48A4-EH10K (F48P6-EH10K)

Description

Universally applicable, e.g. in shipbuilding, structural steel work, and pressure vessel fabrication. The flux reacts metallurgically Mn-neutral.

The sub-arc wire/flux combination produces higher strength values with very good low temperature impact properties. Excellent slag detachability, smooth beads, good wetting and low hydrogen contents ($\leq 5 \text{ m}/100 \text{ g}$) are further important features. The combination is ideally suited for multi-pass welding of thick plates.

The deposit produces very good low temperature impact properties down to -40 °C.

For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn
SAW wire wt-%	0.12	0.15	1.5
all-weld metal %	0.08	0.30	1.5

Mechanical Properties of All-weld Metal

(*)		u
Yield strength R _e N/mm ² :		(≥ 420)
Tensile strenght Rm N/mm ² :		(≥ 480)
Elongation A ($L_0 = 5d_0$) %:		(≥ 24)
Impact work ISO-V KV J	+ 20 °C:	(≥ 130)
•	± 0 °C:	(≥ 100)
	- 20 °C:	(≥ 70)
	- 40 °C:	(≥ 47)

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: 300 - 350 °C, 2 h - 10 h max. amperage: 800 A	ø mm 4.0	=±
--	--------------------	----

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235J2G3 - S355J2G3, GE200, GE240, GE260, S235JRS1 - S235J4S, AH, DH, EH, S255N - S380N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210 - L360NB, P235G1TH, P255G1TH

ASTM A36 Gr. all; A 106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45; A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5L X42 - X56

Approvals and Certificates

TÜV-D (7811.). Wire: TÜV-D (02603.), KTA 1408 1 (8058.00), DB (52.014.04), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ SAW solid wire: EN 756:2004: S3 AWS A5.17-97: EH10K sub-arc flux: EN 760:1996: SA FB 1 68 AC H5 wire/flux-combination: EN 756:2004: S 42 3 FB S 3 AWS A5.174-97: F7A3-EH10K AWS A5.174-97: F48A2-EH10K

BÖHLER EMS 3 // BB 25

SAW wire/flux-combination, mild steel

Description

Universally applicable, e.g. in shipbuilding, structural steel work, and pressure vessel fabrication. The flux reacts metallurgically active and shows some pick-up of silicon and manganese. The sub-arc wire/flux combination produces higher strength values with very good low temperature impact properties down to -30 °C.

For information regarding the sub-arc welding flux BÖHLER BB 25 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn
SAW wire wt-%	0.12	0.15	1.5
all-weld metal %	0.06	0.40	1.9

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R ₆ N/mm ² :		520	(≥ 420)
Tensile strenght R _m N/mm ² :		600	(≥ 530)
Elongation A (L ₀ = 5d ₀) %:		23	(≥ 20)
Impact work ISO-V KV J	+ 20 °C:	140	```
•	- 20 °C:	70	
	- 30 °C:	50	(≥ 47)

(*) u untreated, as-welded

Operating Data

•	re-drying of sub-arc flux: 300 - 350 °C, 2 h - 10 h max. amperage: 800 A	ø mm 4.0	=±
---	--	--------------------	----

Base Materials

steels up to a yield strength of 420 N/mm² (60 ksi)

S235J2G3-S355J2G3, GE200, GE240, GE260, S235JRS1-S235J3S, AH, DH, EH, S255N-S380N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210-L360NB, P235G1TH, P255G1TH

ASTM A36 Gr. all; A 106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45, A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5L X42 - X56

Approvals and Certificates

Wire: TÜV-D (02603.), KTA 1408 1 (8058.00), DB (52.014.04), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ

SAW solid wire: EN 756:2004: S3 AWS A5.17-97: EH10K sub-arc flux: EN 760:1996: SA AR 1 97 AC SKM wire/flux-combination: EN 756:2004: S 50 0 AR S3 AWS A5.17-97: F7AZ-EH10K AWS A5.17M-97: F48A0-EH10K

BÖHLER EMS 3 // BB 33 M

SAW wire/flux-combination, mild steel

Description

Universally applicable for high-speed welding of constructional steels and fine grained steels, e.g. in shipbuilding, structural steel work, and pressure vessel fabrication.

The sub-arc wire/flux combination produces good impact properties at 0 °C and higher strength properties. Good wetting characteristics with fine rippled bead appearance at high travel speed. For information regarding the sub-arc welding flux BOHLER BB 33 M see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn
SAW wire wt-%	0.12	0.15	1.5
all-weld metal %	0.08	0.80	1.7

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		550	(≥ 500)
Tensile strenght R _m N/mm ² :		650	(≥ 560)́
Elongation A (L ₀ = 5d ₀) %:		20	(≥ 18)́
Impact work ISO-V KV J	+ 20 °C:	60	. ,
•	±0 °C:		(≥ 47)

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: 275 - 325 °C, 2 h - 4 h max. amperage: 800 A	ø mm 4.0	=±
---	--------------------	----

Base Materials

steels up to a yield strength of 500 N/mm² (72 ksi)

S235J0G3 - S355J0G3, GE200, GE240, GE260, S235JRS1 - S235J0S, AH, DH, EH, S255N - S380N, P235GH, P265GH, S255N, P295GH, S235G2T, S255GT, S355GT, L210 - L360NB, P235G0TH, P255G0TH

ASTM A36 Gr. all; A 106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A290 Gr. A, B; A328; A366; A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 339, 36, 40, 45, A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5L X42-X60

Approvals

Wire: TÜV-D (02603.), KTA 1408 1 (8058.00), DB (52.014.04), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ

SAW solid wire: EN 756:2004: S3 AWS A5.17-97: EH10K sub-arc flux: EN 760:1996: SF MS 1 78 AC M wire/flux-combination: EN 756:2004: S 38 0 MS S3 AWS A5.1797: F6A0-EH10K AWS A5.17W-97: F43A3-EH10K

BÖHLER EMS 3 // BF 16

SAW wire/flux-combination, mild steel

Description

Universally applicable, e.g. in shipbuilding, structural steel work, and pressure vessel fabrication. The wire/flux combination produces higher strength properties. BOHLER BF 16 is a fused acid Si and Mn alloying flux with high current carrying capacity on both AC and DC. In combination with the wire BOHLER EMS 3 it gives fine performance in universal applications for mild steel constructural work of thinner walled components.

The sub-arc wire/flux combination produces good impact properties at 0 °C.

For information regarding the sub-arc welding flux BÖHLER BF 16 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn
SAW wire wt-%	0.12	0.15	1.5
all-weld metal %	0.04	0.50	1.7

Mechanical Properties of All-weld Metal

(*)		u	
Yield strength R _e N/mm ² :		410	(≥ 380)
Tensile strenght Rm N/mm ² :		520	(≥ 470)
Elongation A ($L_0 = 5d_0$) %:		25	(≥ 22)
Impact work ISO-V KV J	+ 20 °C:	70	` '
	± 0 °C:	55	(> 47)
	- 20 °C	45	(,
	- 30 °C	40	
	00 0.	40	

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: ø mm 250 °C, 1 h - 10 h: 4.0 max. amperade: 1300 A		;
---	--	---

Base Materials

steels up to a yield strength of 380 N/mm² (52 ksi)

S235JR - S355JR, S235J0G3 - S355J0G3, P235T1-P355T1, P235T2- P355T2, P235GH, P265GH, S255N, P295GH, P310GH, S235JRS1 - S235J0S, S355N - S420N

ASTM A36 Gr. all; A 106 Gr. A, B A214; A 242 Gr. 1-5; A266 Gr. 1, 2, 4; A283 Gr. A, B, C, D; A285 Gr. A, B, C; A299 Gr. A, B; A328; A366 A515 Gr. 60, 65, 70; A516 Gr. 55; A556 Gr. B2A; A570 Gr. 30, 33, 36, 40, 45, A572 Gr. 42, 50; A606 Gr. all; A607 Gr. 45; A656 Gr. 50, 60; A668 Gr. A, B; A907 Gr. 30, 33, 36, 40; A841; A851 Gr. 1, 2; A935 Gr. 45; A936 Gr. 50; API 5L X42 - X52

Approvals and Certificates

Wire: TÜV-D (02603.), KTA 1408 1 (8058.00), DB (52.014.04), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ

EN 12536:2000: AWS A5.2-92: W.Nr.: O I R 45-G 1 0324

BÖHLER BW VII

rod for gas welding, mild steel

Description

Copper coated, unalloyed rod for gas welding for joints subject to normal stresses, up to base metal grade S275JR. Fluid weld puddle.

Typical Composition of Welding Rod

	С	Si	Mn
wt-%	0.08	0.1	0.5

Mechanical Properties of All-weld Metal

(*)		u
Yield strength R ₆ N/mm ² :		≥ 235
Tensile strenght Rm N/mm ² :		≥ 340
Elongation A ($L_0 = 5d_0$) %:		≥ 14
Impact work ISO-V KV J	+ 20 °C:	≥ 35

(*) u untreated, as-welded

Operating Data

rod marking: front: ---- O I back: 1.0324 ø mm 2.0 2.5 3.2 4.0

Base Materials

steels up to a yield strength of 235 N/mm² (34 ksi) S235JR, L195 ASTM A36 Gr. all; A283 Gr. B, C, D; A570 Gr. 33, 36, 40

Approvals and Certificates

TÜV-D (06315.), UDT, LTSS

EN 12536:2000: AWS A5.2-92: W.Nr.: O III R 60-G 1 6215 **BÖHLER BW XII**

rod for gas welding, mild steel

Description

Gas welding rod, nickel alloyed. Easy to operate due to very easy weld pool and slag control and good gap bridging ability.

Weld pools are not susceptible to overheating when welded with a too hot flame.

Typical Composition of Welding Rod

	С	Si	Mn	Ni
wt-%	0.08	0.1	1.1	0.4

Mechanical Properties of All-weld Metal

(*)		u
Yield strength R _e N/mm ² :		≥ 275
Tensile strenght R _m N/mm ² :		≥ 410
Elongation A ($L_0 = 5d_0$) %:		≥ 14
Impact work ISO-V KV J	+ 20 °C:	≥ 47

(*) u untreated, as-welded

Operating Data

-	rod marking:	ø mm
	front: 🔶 O III	2.0
	back: 1.6215	2.5
		3.0

Base Materials

steels up to a yield strength of 275 N/mm² (40 ksi)

S235JR - S275JR, P275GH, L235 - L290NB

ASTM A36 Gr. all; A283 Gr. B, C, D; A285 Gr. B; A414 Gr.C; A442 Gr.60; A515 Gr. 60; A516 Gr. 55, 60; A570 Gr. 33, 36, 40

Approvals and Certificates

TÜV-D (02323.), DB (70.014.01), ÜZ (./.), ÖBB, UDT

Notes

Notes

2.3. Filler Metals for Pipeline Welding

Objectives

This section provides detailed product information for filler metals that may be used to weld pipelines.

The significance of oil and gas as a source of energy leads to the construction and planning of cross-country pipelines throughout the world. In this case new high-strength pipe steels place the highest possible demands on welding technology. As a result various filler metals have been developed that can cover all the requirements of individual steel qualities.

Welding procedure when using cellulosic electrodes

Recommended joint preparation

Wall thicknesses ≤ 20 mm (≤ 3/4 inch)

Wall thicknesses > 20 mm (> 3/4 inch)

Preheating and interpass temperatures in relation to wall thicknesses

Cellulose electrodes

Generally speaking the welds are performed in the vertical-down position using cellulose electrodes. The use of vertical-down electrodes makes it possible to use larger electrode diameters, higher welding currents and higher travel speeds. As a result it is possible to achieve a much higher degree of economic efficiency than with vertical-up welding.

Basic vertical-down electrodes

Basic vertical-down electrodes excel due to their outstanding mechanical and technological properties and their low hydrogen content (HD < 5 ml/100 g). They are thus suitable for welding thick-walled pipes, high-strength pipe steels or where there are high requirements for toughness. They allow the same travel speeds for filler and cover passes as cellulose electrodes.

Basic vertical up electrodes

Especially designed for welding of circumferential beads in the vertical up position. The electrodes are preferably used in cases where the imprecise joint preparation do not allow the use of the vertical down process, or vertical down skilled welders are not available. Root runs are basically welded on the minus polarity, where as for filler and cap layers the plus polarity should be applied.

Solid wires

For the sake of higher productivity and in order to reduce production costs semi/fully automated welding processes are introduced. For these applications the wire types SG3-P and NiMo 1-IG have been developed. Both wires fullfil the high quality demands applied in pipeline constructions.

Contents

OVERVIEW	.51
SMAW STICK ELECTRODES, CELLULOSIC-COATED	.52
SMAW STICK ELECTRODES, BASIC-COATED	.58
GMAW SOLID WIRES FOR AUTOMATIC WELDING	.67

Overview – Standard Classifications

Böhler	EN		AWS
SMAW stick ele	ctrodes		
FOX CEL	EN 499:	E 38 3 C 2 1	AWS A5.1-04: E6010
FOX CEL+	EN 499:	E 38 2 C 2 1	AWS A5.1-04: E6010
FOX CEL 75	EN 499:	E 42 3 C 2 5	AWS A5.5-96: E7010-P1
FOX CEL Mo	EN 499:	E 42 3 Mo C 2 5	AWS A5.5-96: E7010-A1
FOX CEL 85	EN 499:	E 46 4 1Ni C 2 5	AWS A5.5-96: E8010-P1
FOX CEL 90	EN 499:	E 50 3 1Ni C 2 5	AWS A5.5-96: E9010-G
FOX BVD RP	EN 499:	E 46 3 B 4 5 H5	AWS A5.5-96: E8018-G
FOX BVD 85	EN 499:	E 46 5 1Ni B 4 5 H5	AWS A5.5-96: E8018-G
FOX BVD 90	EN 757:	E 55 5 Z2Ni B 4 5 H5	AWS A5.5-96: E9018-G
FOX BVD 100	EN 757:	E 62 5 Z2Ni B 4 5 H5	AWS A5.5-96: E10018-G
FOX BVD 110	EN 757:	E 69 3 Mn2NiMo B 4 5 H5	AWS A5.5-96: E11018-G
FOX BVD 120	EN 757:	E 69 3 Mn2NiMo B 4 5 H5	AWS A5.5-96: E12018-G
FOX EV PIPE	EN 499:	E 42 4 B 1 2 H5	AWS A5.1-04: E7016-1H4R
FOX EV 60 PIPE	EN 499:	E 50 41 Ni B 1 2 H5	AWS A5.5-96: E8016-GH4R
FOX EV 70 PIPE	EN 757:	E 55 4 Z(Mn2NiMo) B 12 H5	AWS A5.5-96: E9016-GH4R

GTAW rod

I 52 Ni	EN 1668: W 3 Ni 1	AWS A5.18:	ER80S-Ni1
GMAW solid wires			
00 0 D			1 50300.0

SG 3-P	EN 440:	G 46 5 M G0 G4 SI1	AWS A5.18-01: ER70S-G
		G 42 4 C G0 G4 SI1	
K-Nova Ni	EN 440:	G 3 Ni 1	AWS A5.28-96: ER80S-G
NiMo 1-IG	EN 12534	: G 55 6 M Mn3Ni1Mo	AWS A5.28-96: ER90S-G
		G 55 4 C Mn3Ni1Mo	

Overview – Typical Chemical Composition

Böhler	С	Si	Mn	Cr	Ni	Мо	Ti
SMAW stick elec	trodes						
Simave stick effect FOX CEL FOX CEL 75 FOX CEL 85 FOX CEL 90 FOX BVD RP FOX BVD 85 FOX BVD 100 FOX BVD 110 FOX BVD 112 FOX EV PIPE FOX EV 70 PIPE	0.12 0.17 0.14 0.1 0.14 0.17 0.05 0.04 0.07 0.07 0.07 0.07 0.06 0.07 0.06	$\begin{array}{c} 0.14\\ 0.15\\ 0.14\\ 0.14\\ 0.1\\ 0.15\\ 0.3\\ 0.4\\ 0.3\\ 0.4\\ 0.4\\ 0.4\\ 0.6\\ 0.6\\ 0.5\\ \end{array}$	0.5 0.6 0.7 0.4 0.9 1.0 0.9 1.2 1.5 1.85 0.9 1.2 1.7		0.6 0.8 0.9 2.2 2.3 2.0 2.25 0.17 0.9 2.2	0.5 0.3 0.35 0.3	
GTAW rod							
I 52 Ni	0.07	0.7	1.6		0.9		
GMAW solid wires							
SG 3-P K Nova Ni NiMo 1-IG	0.05 0.06 0.08	0.75 0.7 0.6	1.5 1.5 1.8		0.9 0.9	0.3	+ +

EN 499:1994: AWS A5.1-04: AWS A5.1M-04: E 38 3 C 2 1 E6010 E4310 **BÖHLER FOX CEL**

SMAW stick electrode for vertical-down welding, cellulosic coated, pipe welding

Description

Cellulose-coated electrode for vertical-down welding of large diameter pipelines; suitable for root runs, hot passes, filler and cover layers. Especially recommended for root run welding. Highly economical compared with vertical-up welding. Apart from its excellent welding and gap bridging characteristics FOX CEL offers a weld deposit with outstanding impact strength values and thus offers the benefit of still more safety in field welding of pipelines. It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-test are available too.

Typical	Compo	sition o	of All-we	Id Metal					
wt-%	C 0.12	Si 0.14	Mn 0.5						
Mechan	ical Pro	operties	s of All-w	veld Met	al				
(*) yield streng tensile stre elongation impact wor (*) u untre	gth R₀ N/m ngth R _m N/ A (L₀ = 5da k ISO-V k vated, as-w	m²: /mm²:)) %: (V J	+ 20 °C: ± 0 °C: - 20 °C: - 30 °C: - 40 °C:	u 450 26 110 105 95 65 45	(≥ 39 (470 (≥ 2 (≥ 7 (≥ 4	0) - 540) 2) 0) 7)			
Operati	ng Data	l I							
	re-dry electro FOX (prehe see P	ing: not a ode identi CEL 6010 ating and age 2-49	Ilowed fication: E 38 3 C interpass te	mperature	ø mm 2.5 3.2 4.0 5.0	L mm 250/300 350 350 350	amps A 50 - 90 80 - 130 120 - 180 160 - 210	polarity negative for root pass	
Base M	aterials	Base Materials							

S235JR, S275JR, S235J2G3, S275J2G3, S355J2G3, P235GH, P265GH, P355T1, P235T2 - P355T2, L210NB - L415NB, L290MB - L415MB, P235G1TH, P255G1TH Root pass up to L555NB, L555MB API Spec. 5 L: A, B, X 42, X 46, X 52, X 56, Root pass up to X 80

Approvals and Certificates

TÜV-D (1281.), TÜV-A (1), CL (0366), DNV (3), FI (E 38 3 C 21), ISPESL (X), Statoil, UDT, SEPROZ, PDO; VNIIST(ø3.2-4.0 mm)

EN 499:1994: AWS A5.1-04: AWS A5.1M-04: E 38 2 C 2 1 E6010 E4310 **BÖHLER FOX CEL+**

SMAW stick electrode, un-alloyed, pipe welding

Description

Cellulose-coated electrode for vertical-down welding of large diameter pipelines.

Especially recommended for root pass welding on D.C. positive polarity in the vertical down and vertical up welding positions.

Apart from its good welding and gap bridging characteristics Böhler FOX CEL+ provides a powerful arc that deposites well penetrated, smooth root passes with high travel speeds as well as high safety against the formation of piping or hollow bead and undercut.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.17	0.15	0.6

Mechanical Properties of All-weld Metal

(*) yield strength R _* N/mm ² : tensile strength R _m N/mm ² : elongation A (L ₀ = 5d ₀ %: impact work ISO-V KV J	+ 20 °C: ± 0 °C: - 20 °C:	u 450 520 26 105 95 65	(≥ 390) (470 - 540) (≥ 22) (≥ 70) (≥ 47)
	- 30 °C:		(≥ 27)

(*) u untreated, as-welded

Operating Data

re-drying: not allowed electrode identification: FOX CEL+ 6010 E 38 2 C preheating and interpass temperature see Page 2-49	ø mm 2.5 3.2 4.0	L mm 300 350 350	amps A 50 - 90 80 - 130 120 - 180	=+	
--	---------------------------	---------------------------	---	----	--

Base Materials

S235JR, S275JR, S235J2G3, S275J2G3, S355J2G3, P235GH, P265GH, P355T1, P2355T2, P2355T2, L210NB - L415NB, L290MB - L415MB, P235G1TH, P255G1TH Root pass up to L555NB, L555MB API Spec. 51 : A, B, X 42, X 46, X 52, X 56, Root pass up to X 80

Approvals and Certificates

2-53

E 42 3 C 2 5 E7010-P1

BÖHLER FOX CEL 75

SMAW stick electrode for vertical-down welding,

un-alloyed, pipe welding

pass

Description

Cellulose-coated electrode for vertical-down welding of high strength large diameter pipelines. Especially recommended for hot passes, filler and cover layers. Highly economical compared with conventional vertical-up welding. The penetrating arc characteristics and the low slag formation allow good bead control and ensure best performance in all positions even with the larger diameter electrodes and high amperages

It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-test are available too.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.14	0.14	0.7

Mechanical Properties of All-weld Metal

(*) yield strength R_{\circ} N/mm ² : tensile strength R_{m} N/mm ² : elongation A ($L_{\circ} = 5d_{\circ}$) %:		480 550 23	(≥ 420) (510 - 610) (≥ 22)
Impact work ISO-V KV J	+ 20 °C:	100	(≥ 85)
	- 20 °C:	85	
	- 30 °C:	55	(≥ 47)
	- 40 °C:	45	(≥ 27)

(*) u untreated, as-welded

Operating Data

re-drying: not allowed electrode identification: FOX CEL 75 7010-PI E 42 3 C preheating and interpass temperature see Page 2-49	ø mm 3.2 4.0 5.0	L mm 350 350 350	amps A 80 - 130 120 - 180 160 - 210	polarity negative
---	---------------------------	---------------------------	---	----------------------

Base Materials

S235JR, S275JR, S235J2G3, S275J2G3, S355J2G3, P235GH, P265GH, L210 - L415NB, L290MB - L415MB, P355T1, P235T2 - P355T2, P235G1TH, P255G1TH Root pass up to L480MB API Spec. 5 L: Grade A, B, X 42, X 46, X 52, **X 56, X 60**, Root pass up to X 70

Approvals and Certificates

TÜV-A (533), CL (0553), FI (E 42 3 C 25), UDT

E 42 3 Mo C 2 5 E7010-A1 **BÖHLER FOX CEL Mo**

SMAW stick electrode for vertical-down welding cellulosic coating, pipe welding

Description

Cellulose-coated electrode for vertical-down welding of high strength large diameter pipelines. Highly economical compared with conventional vertical-up welding.

Especially recommended for hot passes, filler and cover layers. Besides the excellent weld metal toughness properties it offers easy operation, and a concentrated intensive arc with deep penetration characteristics in order to ensure sound joint welds with good X-ray quality. It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-

test are available too.

Typical Composition of All-weld Metal								
wt-%	C 0.1	Si 0.14	Mn 0.4	Mo 0.5				
Mechanic	al Pro	perties	of All-we	eld Met	al			
(*) yield strength tensile streng elongation A i impact work I (*) u untreate	R₀ N/mm th R _∞ N/n (L₀ = 5d₀) SO-V KV	1²: nm²: %: / J	+ 20 °C: ± 0 °C: - 20 °C: - 30 °C: - 40 °C:	u 480 550 23 100 95 85 50 42	(≥ 42 (510 (≥ 2 (≥ 7 (≥ 4	20) - 590) 22) 70) 17)		
Operating	g Data							
	re-dryir electroo FOX C prehea see Pa	ng: not all de identifi EL Mo 70 ting and i ge 2-49	lowed cation: 110-A1 E 42 nterpass terr	3 Mo C operature	ø mm 3.2 4.0 5.0	L mm 350 350 350	amps A 80 - 130 120 - 180 160 - 210	polarity negative for root

Base Materials

S235JR, S275JR, S235J2G3, S275J2G3, S355J2G3, P235GH, P265GH, L210 - L415NB, L290MB - L415MB, P355T1, P235T2 - P355T2, P235G1TH, P255G1TH Root pass up to L555MB API Spec. 5 L: Grade A, B, X 42, X 46, X 52, **X 56, X 60**, Root pass up to X 80

Approvals and Certificates

TÜV-D (1325.), TÜV-A (2), ABS (E 7010-A1), CL (0960), ISPESL (X), UDT, SEPROZ, VNIST(ø4.0 mm)

E 46 4 1Ni C 2 5 E8010-P1 **BÖHLER FOX CEL 85**

SMAW stick electrode for vertical-down welding, cellulosic coating, pipe welding

Description

Cellulose-coated electrode for vertical-down welding of high strength large diameter pipelines. Highly economical compared with conventional vertical-up welding.

Especially recommended for hot passes, filler and cover layers. Without doubt BÖHLER FOX CEL 85 is the most popular cellulosic electrode which meets all the exacting demands of the field welding of cross country pipelines extremely well. It ensures highest joint weld quality down to temperatures of -40 °C

It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-test are available too.

Typical Composition of All-weld Metal

	С	Si	Mn	Ni
wt-%	0.14	0.1	0.7	0.6

Mechanical Properties of All-weld Metal

(*)		u	(
yield strength R _e N/mm ² :		490	(≥ 460)
tensile strength R _m N/mm ² :		570	(550 - 650
elongation $A(L_0 = 5d_0)$ %:		23	(≥ 20)
impact work ISO-V KV J	+ 20 °C:	110	(≥ 80)
	± 0 °C:	105	. ,
	- 20 °C:	100	
	- 40 °C:	70	(≥ 47)

(*) u untreated, as-welded

Operating Data

'- --

J	re-drying: not allowed electrode identification: FOX CEL 85 8010-P1 E 46 4 1Ni C	ø mm 3.2 4.0	L mm 350 350	amps A 80 - 130 120 - 180	=+
	preheating and interpass temperature see Page 2-49	5.0	350	160 - 210	

Base Materials

L415NB - L485NB, L415MB - L485MB API Spec. 5 L: X 56, X 60, X 65, X 70

Approvals and Certificates

TÜV-D (1361.), TÜV-A (3), ABS (E 8010-P1), CL (0809), FI (E 46 4 1Ni C 25), GdF (X), ISPESL (X), UDT, SEPROZ, GdFø3.2;4.0;5.0 mm, PDO

E 50 3 1Ni C 2 5 E9010-G **BÖHLER FOX CEL 90**

SMAW stick electrode for vertical-down welding cellulosic coating, pipe welding

Description

Cellulose-coated electrode for vertical-down welding of high strength large diameter pipelines. Highly economical compared with conventional vertical-up welding.

Especially recommended for hot passes, filler and cover layers.

The special design of the coating and the core wire guarantees the highest metallurgical quality & soundness of the weld metal deposit with excellent mechanical properties. The electrode allows good weld pool visability, and easy manipulation in all positions, as well as high safety margins against porosity and slag inclusions.

Typical Composition of All-weld Metal

	С	Si	Mn	Ni
wt-%	0.17	0.15	0.9	0.8

Mechanical Properties of All-weld Metal

(*) yield strength $R_{\rm e}$ N/mm²: tensile strength $R_{\rm m}$ N/mm²: elongation A (Lo = 5do) %: impact work ISO-V KV J	+ 20 °C: ± 0 °C: - 20 °C:	u 610 650 21 100 90 75 65	(≥ 530) (620 - 720) (≥ 18) (≥ 80)
	- 30 °C:	65	(≥ 47)
	- 40 °C:	40	(≥ 27)

(*) u untreated, as-welded

Operating Data

ſ

re-drying: not allow electrode identifical FOX CEL 90 9010 preheating and inte see Page 2-49	ød ø mm ion: 4.0 G E 50 3 1Ni C 5.0 rpass temperature 5.0	L mm 350 350	amps A 120 - 180 160 - 210	=+
--	---	--------------------	---	----

Base Materials

L450MB, L485MB, L555MB API Spec. 5 L: X 65, **X 70,** X 80

Approvals and Certificates

TÜV-D (1324.), TÜV-A (4), CL (0564), GdF (X), ISPESL (X), Statoil, UDT, SEPROZ, GdF ø3.2; 4.0; 5.0 mm; VNIIST

E 46 3 B 4 1 H5 E8018-G **BÖHLER FOX BVD RP**

SMAW stick electrode for vertical-down welding,

basic coating, pipe welding

Description

Basic coated electrode for vertical-down welding of root passes in pipeline construction and structural work. Also suitable for vertical- up welding of root passes. The deposit is extremely crack resistant and features high toughness and a very low hydrogen content (HD < 5 ml/100 g). Highly economical compared with conventional vertical-up welding.

It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-test are available too.

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.05	0.3	1.0

Mechanical Properties of All-weld Metal

+ 20 °C: ± 0 °C: - 20 °C:	u 510 560 26 170 150 120	(≥ 460) (550 - 650) (≥ 22) (≥ 130)
- 30 °C:	60	(≥ 47)

(*) u untreated, as-welded

Operating Data

ļ	re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification:	ø mm 2.5 3.2	L mm 350 350	amps A 80 - 110 100 - 160	=+	
	FOX BVD RP 8018-G E 46 3 B					

Base Materials

root passes for following steels: S235J2G3 - S355J2G3, L290NB - L415NB, L290MB - L555MB, P235GH - P310GH API Spec. 5 L: X 42, X 46, X 52, X 56, X 60, X 70, X 80

Approvals and Certificates

TÜV-D (03532.), UDT, SEPROZ

E 46 5 1Ni B 4 5 H5 E8018-G **BÖHLER FOX BVD 85**

SMAW stick electrode for vertical-down welding,

basic coating, pipe welding

Description

Basic coated electrodes for vertical-down welds of large diameter pipelines and for structural work. Suitable for filler and cover pass welding in pipeline construction. Deposit is extremely crack resistant, and features high toughness and a very low hydrogen content (HD < 5 ml/100 g). Deposition rate is 80-100 % higher than for vertical up welding. The weld deposit of BOHLER FOX BVD 85 shows an ideal combination between high strength and cryogenic toughness down to < 50 °C (- 58 °F). Special design and development work has enabled this electrode to provide exceptional striking characteristics and the avoidance of start porosity on cover (cap) passes. Due to this and the good welding characteristics this special basic electrode offers easy handling even under field conditions.

It can be used in sour gas applications (HIC-Test acc. NACE TM-02-84). Test values for SSC-test are available too.

Typical Composition of All-weld Metal

	С	Si	Mn	Ni
wt-%	0.04	0.4	0.9	0.9

Mechanical Properties of All-weld Metal

(*) yield strength R₀ N/mm²:		u 510	(≥ 460)
		500	(550 - 650)
elongation A ($L_0 = 50_0$) %:		27	(≥ 22)
impact work ISO-V KV J	+ 20 °C:	170	(≥ 130)
	± 0 °C:	150	` '
	- 20 °C:	120	
	- 40 °C:	85	(> 60)
	- 50 °C:	65	(≥ 47)
(4)			· · ·

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification: EOX BVD 85 8018-C E 46 5 1Ni B	ø mm 3.2 4.0	L mm 350 350	amps A 110 - 160 180 - 210 200 - 240	=+
FOX BVD 85 8018-G E 46 5 1NI B	4.5	350	200 - 240	

Base Materials

S235J2G3 - S355J2G3, L290NB - L450NB, L290MB - L450MB, P235GH - P295GH API Spec. 5 L: A, B, X 42, X46, **X 52, X 56, X 60, X 65**

Approvals and Certificates

TÜV-D (03531.), CL (1404), GdF, UDT, SEPROZ

EN 757:1997: AWS A5.5-96: E 55 5 Z2Ni B 4 5 H5 E9018-G **BÖHLER FOX BVD 90**

SMAW stick electrode for vertical-down welding,

basic coating, pipe welding

Description

Basic coated electrodes for vertical-down welds of large diameter pipelines and for structural work. Suitable for filler and cover pass welding in pipeline construction. Deposit is extremely crack resistant, and features high toughness and a very low hydrogen content (HD < 5 ml/100 g). Special design and development work has enabled this electrode to provide exceptional striking characteristics and the avoidance of start porosity on cover (cap) passes. Due to this and the good welding characteristics this special basic electrode offers easy handling even under field conditions. Deposition rate is 80-100 % higher than for vertical up welding.

Typical Co	omposi	tion of	All-weld	Metal				
wt-% C	C).04	Si 0.3	Mn 1.2	Ni 2.2				
Mechanica	al Prop	erties	of All-we	ld Met	al			
(*) yield strength tensile strengt elongation A (l impact work IS (*) u untreate	R₀ N/mm²: h R _m N/mr L₀ = 5d₀) % SO-V KV √	n²: 5: J + - - led	20 °C: ± 0 °C: 20 °C: 40 °C: 50 °C:	u 600 650 27 170 145 130 110 80	(≥ 550) (620 - 72((≥ 20) (≥ 120) (≥ 47)))		
Operating	Data							
	re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification: FOX BVD 90 9018-G E 55 5 Z 2Ni B			ø mm 3.2 4.0 4.5	L mm 350 350 350	amps A 110 - 160 180 - 210 200 - 240	=+	
Base Mate	Base Materials							

L485MB, L555MB API Spec. 5 L: X 70, X 80

Approvals and Certificates

TÜV-D (03402.), CL (1178), GdF (X), Statoil, UDT, GdF ø3.2; 4.0; 5.0 mm, SEPROZ

EN 757:1997: E 62 5 Z2Ni B 4 5 H5 AWS A5.5-96: E10018-G **BÖHLER FOX BVD 100**

SMAW stick electrode for vertical-down welding,

basic coating, pipe welding

Description

Basic coated electrodes for vertical-down welds of large diameter pipelines and for structural work. Suitable for filler and cover pass welding in pipeline construction. Deposit is extremely crack resistant, and features high toughness and a very low hydrogen content (HD <5 ml/100 g). Special design and development work has enabled this electrode to provide exceptional striking characteristics and the avoidance of start porosity on cover (cap) passes. Due to this and the good welding characteristics this special basic electrode offers easy handling even under field conditions. Deposition rate is 80-100 % higher than for vertical up welding.

Typical Composition of All-weld Metal								
wt-%	С 0.07	Si 0.4	Mn 1.2	Ni 2.3				
Mechan	ical Pro	perties	s of All-v	veld Me	tal			
(*) yield streng tensile stren elongation / impact work (*) u untrea	ith R∘ N/m ngth R _™ N/ A (L⁰ = 5d∉ K ISO-V K ated, as-w	m²: /mm²:)) %: :V J	+ 20 °C: ± 0 °C: - 20 °C: - 50 °C:	u 670 730 24 150 125 120 70	(≥ 620) (690 - 81 (≥ 18) (≥ 110) (≥ 47)	0)		
Operating Data								
	re-dry 300 - electro FOX I	ing if nece 350 °C, m ode identi 3VD 100	essary: iin. 2 h fication: 10018-G E	62 5 Z2Ni I	ø mm 4.0 4.5 B	L mm 350 350	amps A 180 - 210 200 - 240	=+

Recommended interpass temperature > 100 °C

Base Materials

L555MB API Spec. 5 L: X 80

Approvals and Certificates

TÜV-D (06333.), UDT, SEPROZ

EN 757:1997: E 6 AWS A5.5-96: E11

E 69 3 Mn2NiMo B 4 5 H5 E11018-G

BÖHLER FOX BVD 110

SMAW stick electrode for vertical-down welding,

basic coating, pipe welding

Description

Basic coated electrodes for vertical-down welds of large diameter pipelines and for structural work. Suitable for filler and cover pass welding in pipeline construction. Deposit is extremely crack resistant, and features high toughness and a very low hydrogen content (HD < 5 ml/100 g). Deposition rate is 80-100 % higher than for vertical up welding.

This stick electrode has become optimised for best striking properties and for avoiding start porosity in the cap layer. With its excellent welding properties the electrode offers easy handling also under difficult conditions.

Typical	Typical Composition of All-weld Metal							
wt-%	C 0.07	Si 0.4	Mn 1.5	Ni 2.0	Mo 0.3			
Mechan	ical Pro	operties	s of All-w	eld Me	tal			
(*) yield streng tensile stre elongation impact wor (*) u untre	gth R₀ N/m ngth R _m N/ A (L₀ = 5d₀ k ISO-V K ated, as-w	m²: /mm²:)) %: (V J <i>velded</i>	+ 20 °C: - 20 °C: - 40 °C:	u 720 810 90 70 50	(≥ 690) (≥ 760) (≥ 17) (≥ 80) (≥ 50) (≥ 40)			
Operating Data								
re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification: FOX BVD 110 11018-G E 69 3 Mn2NiN Recommended interpass temperature				ø mm 4.0 4.5 o B e > 110 °C	L mm 350 350	amps A 180-210 200-240	=+	
Rase Materials								

L690* API Spec. 5 L: X100* * not standardised yet

Approvals and Certificates

SEPROZ

EN 757: 1997: AWS A5.5-96: E 69 3 Mn2NiMo B 4 5 H5 E12018-G

BÖHLER FOX BVD 120

SMAW stick electrode for vertical-down welding basic coating, pipe welding

Description

Basic coated electrodes for vertical-down welds of large diameter pipelines and for structural work. Suitable for filler and cover pass welding in pipeline construction. Deposit is extremely crack resistant, and features high toughness and a very low hydrogen content (according AWS condition HD <4ml/100 g). Deposition rate is 80-100 % higher than for vertical up welding. This stick electrode is optimised for best striking properties and for avoiding start porosity in the cap layer. With its excellent welding properties the electrode offers easy handling also under difficult conditions.

Typical Composition of All-weld Metal							
wt-%	C 0.07	Si 0.4	Mn 1.85	Ni 2.25	Mo 0.35		
Mechanic	al Prop	erties	of All-w	eld Met	al		
(*) yield strength tensile streng elongation A (impact work l	R₀ N/mm²: th Rm N/m L0=5d0) % SO-V KV J	im2: 6:	+20 °C: -20 °C: -40 °C:	u 815 870 18 80 60 50	(≥ 740) (≥ 830) (≥ 17) (≥ 80) (≥ 50) (≥ 40)		
(*) u untrea	ated, as-we	elded					
Operating Data							
₹]	re-drying 300-350 electrode FOX BV Recomm	if neces °C, min. identific D 120 12 nended in	sary 2 h ation: 2 018-G E 6 9 iterpass ten	ø mi 3.2 4.0 9 3 Mn2Ni nperature :	m Lmm 350 350 MoB ⊳120 °C	amps A 110-160 180-220	=+

Base Materials

EN: L690¹⁾ API Spec. 5 L: X100¹⁾, X110¹⁾

1) not standardised yet

EN 499-1994 E 42 4 B 1 2 H5 AWS A5 1-04 F7016-1H4 R AWS A5 1M-04 E4916-1H4 B

BÖHLER FOX EV PIPE

SMAW stick electrode for vertical-up welding. basic coating, pipe welding

Description

BÖHLER FOX EV PIPE is a basic coated electrode with some additions of rutile and silicates. It is excellent suited for positional welding of root passes using D.C. negative polarity as well as for filler and cover passes of pipes, tubes and plates on D.C. positive polarity, or even AC. It is user friendly and provides a good gap bridging ability together with easy slag removal to ensure minimum grinding. Weld metal toughness is available down to -46 °C: very low hydrogen content (HD < 5 ml/100 g). BÖHLER FOX EV PIPE offers considerable time savings against AWS E 7018 type electrodes when welding root passes due to increased travel speeds. Also the use of dia, 3.2 mm is possible for root passes in case of wall thicknesses of 8 mm and more

Typical Composition of All-weld Metal

	С	Si	Mn	Ni
wt-%	0.06	0.6	0.9	0.17

Mechanical Properties of All-weld Metal

(*) yield strength R _e N/mm ² : tensile strength R _m N/mm ² :		u 470 560	(≥ 420) (520 - 640)
elongation A ($L_0 = 5d_0$) %: impact work ISO-V KV J	+ 20 °C: - 20 °C:	29 170 100	(≥ 22) (≥ 120)
	- 40 °C: - 46 °C:	60 55	(≥ 47) (≥ 27)

(*) u untreated, as-welded

Operating Data

†	re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification: FOX EV PIPE 7016-1 E 42 4 B	ø mm 2.0 2.5 3.2	L mm 300 300 350	amps A 30 - 60 40 - 90 60 - 130	=± ∼
	FOX EV PIPE /016-1 E 42 4 B	3.2	350	60 - 130	polarity
		4.0	350	110 - 180	

negative Preheated and interpass temperatures as required by the base material. The optimum for root gap width for root passes is 2 - 3 mm, the root face should be in the range 2 - 2.5 mm. pass The electrodes are ready for use straight from the hermetically sealed tins.

Base Materials

EN

P235GH, P265GH, P295GH, P235T1, P275T1, P235G2TH, P255G1TH, S255N - S420N¹⁾, S255NL1 up to S420NL1, L290NB up to L360NB, L290MB up to L415MB, L450MB2 up to L555MB2 API Spec. 5L: X 42, X46, X52, X56, X60, X65-X80²

ASTM A53 Gr. A-B, A106 Gr. A-C, A179, A192, A210 Gr. A-1

¹⁾ stress relieved up to S380N / S380NL1

2) only for root pass

Approvals and Certificates

TÜV-D (7620.), CL (1469), UDT, LTSS, SEPROZ, VNIIST, VNIIGAZ

EN 499:1994: E 50 4 1 Ni B 1 2 H5 AWS A5.5-96: E8016-GH4 R

BÖHLER FOX EV 60 PIPE

SMAW stick electrode for vertical up welding,

basic coating, pipe welding

larity

Description

Basic coated electrode excellent suited for positional welding of root passes using D.C. negative polarity as well as for filler and cover passes for pipes, tubes and plates on D.C. positive polarity, or even A.C. The electrode offers considerable time savings against AWS E 8018 type electrodes when welding root passes due to increased travel speeds.

Good impact properties down to - 40 °C, low hydrogen content (HD < 5 ml/100 g), as well as packaging in hermetically sealed tins are further features for the user. BÖHLER FOX EV 60 PIPE offers considerable time savings against AWS E 8018 type electrodes when welding root passes due to increased travel speeds. Also the use of dia. 3.2 mm is possible for root passes in case of wall thicknesses of 8 mm and more.

Typical Composition of All-weld Metal

C Si	Mn	Ni
wt-% 0.07 0.6	1.2	0.9

Mechanical Properties of All-weld Metal

(*)		u	
vield strength R _e N/mm ² :		550	(≥ 500)
tensile strength Rm N/mm ² :		590	(560 - 720)
elongation A ($L_0 = 5d_0$) %:		29	(≥ 22) [′]
impact work ISO-V KV J	+ 20 °C:	170	(≥ 130)
	0 °C:	150	(/
	-20 °C	140	
	- 40 °C:	110	(≥ 47)

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification:	,	ø mm 2.5 3.2	L mm 300 350	amps A 40 - 90 60 - 130	=
FOX EV 60 PIPE 8016-G E 50 4	1 NI B	4.0 5.0	350 450	110 - 180 180 - 230	p

5.0 450 180-230 negative for root The optimum gap width for root passes is 2-3 mm, the root face should be in the range pass 2-2.5 mm. The electrodes are ready for use straight from the hermetically sealed tins.

Base Materials

EN:

S235J2G3 - S355J2G3, L210NB - L450NB, L210MB - L450MB, P235GH - P295GH, E295, E335, S355J2G3, C35-C45, P310GH, S380N - S460N, P380NH-P460NH, S380NL - S460NL, S380NL1 - S460NL2, GE260-GE300

API Spec. 5 L: A, B, X 42, X46, **X 52, X 56, X 60, X 65** ASTM A516 Gr. 65, A572 Gr. 55, 60, 65, A633 Gr. E, A612, A618 Gr. I, A537 Gr. 1-3

Approvals and Certificates

VNIIGAZ

EN 757:1997: E 55 4 Z (Mn 2Ni Mo) B 1 2 H5 AWS A5.5-96: E9016-GH4 R **BÖHLER EV 70 PIPE**

SMAW stick electrode for vertical-up welding

basic coating, pipe welding

Description

BÖHLER FOX EV 70 PIPE is a high strength basic coated electrode. It is excellent suited for positional welding of root passes using D.C. negative polarity as well as for filler and cover passes of pipes, tubes and plates on D.C. positive polarity, or even A.C.

BÖHLER FOX EV 70 PIPE offers considerable time savings against AWS E 9018 type electrodes when welding root passes due to increased travel speeds. Also the use of dia. 3.2 mm is possible for root passes in case of wall thicknesses of 8 mm and more.

It is user friendly and provides a good gap bridging ability together with easy slag removal to ensure minimum grinding. Good impact properties down to -40 °C, low hydrogen content (HD < 5 ml/100 g), as well as packaging in hermetically sealed tins are further features for the user.

Typical Composition of All-weld Metal

	С	Si	Mn	Ni	Mo
wt-%	0.06	0.50	1.7	2.2	0.3

Mechanical Properties of All-weld Metal

+ 20 °C: - 20 °C:	u 620 680 20 140 80	(≥ 550) (630 - 780) (≥ 18) (≥ 90)
 - 20 °C: - 40 °C:	80 70	(≥ 47)

u untreated, as-welded

Operating Data

•	re-drying: 300-350 °C, min. 2 h	ø mm	L mm	amps A	
	electrode identification:	2.5	300	40 - 90	
-	FOX EV 70 PIPE 9016-G	3.2	350	60 - 130	1
		10	350	110 - 180	

Preheat and interpass temperature as required by the base material. The optimum gap width for root passes is 2-3 mm, the root face should be in the range 2-2.5 mm. The electrodes are ready for use straight from the hermetically sealed tins.

negative for root pass

Base Materials

EN: L450MB, L485MB, L555MB API Spec. 5 L: X 65, X 70, X 80

Approvals and Certificates

_

EN 440:1995:	G4Si1 (for wire)
EN 440:1995:	G 46 5 M G0 G4 Si1
AWS A5.18-01: AWS A5.18M-01:	G 42 4 C G0 G4 Si1 ER70S-G ER485S-G

BÖHLER SG 3-P

GMAW solid wire for automatic welding, pipe welding

Description

BÖHLER SG 3-P is a micro alloyed GMAW solid wire designed for high quality automatic welding of pipelines. An optimum balanced alloying concept ensures good weld metal properties to fulfil the high requirements in the On-Offshore-Pipeline Industry. Deposit is extremely crack resistant and the weld metal toughness is available down to -50 °C.

The very important quality aspects, prerequisite for uninterrupted feedability of the solid wire e.g. helix of the wire, copper coating, close wire diameter tolerance and precision layer wound spooling are taken into account during the production.

Typical Composition of Solid Wire

	С	Si	Mn	Ti
wt-%	0.05	0.75	1.5	+

Mechanical Properties of All-weld Metal

+ 20 °C: - 40 °C:	u1 510 640 25 120 75	(≥ 470) (600 - 680) (≥ 24) (≥ 100) (≥ 65)	u2 470 610 26 100 60	(≥ 440) (570 - 640) (≥ 25) (≥ 95) (≥ 47)
- 50 °C:	55	(≥ 47)		(=)

(*) u1 untreated, as-welded - shielding gas Ar + 15 - 25 % CO₂ u2 untreated, as-welded - shielding gas 100 % CO₂

Operating Data

shielding gases: ømm Argon + 15 - 25 % CO₂ 0.9 100 % CO₂ Preheating and interpass temperature as required by the base metal.

Base Materials

EN: L290MB - L485MB API Spez. 5L: X42, X46, X52, X56, X60, X65

Approvals and Certificates

TÜV-D (07682.), UDT

EN 440:1995: EN 440:1995: AWS A5.28-96: G3Ni1 G 42 5 M G3Ni1 ER80S-G BÖHLER K NOVA Ni

GMAW solid wire for automatic welding

Description

GMAW wire micro alloyed, designed for high quality automatic welding of pipelines. An optimum balanced alloying concept ensures good weld metal properties to fulfil the high requirements in the on-offshore pipeline industry. The deposit is extremely crack resistant and the weld metal offers high impact values down to -50 °C.

Typical Composition of Solid Wire										
wt-%	C 0.06	Si 0.70	Mn 1.50	Ni 0.90	Ті +					
Mecha	Mechanical Properties of All-weld Metal									
(*) yield strer tensile str elongatior impact wc (*) u ur u1 ur	ngth R₀ N/m ength R _™ N n A (L₀ = 5d ork ISO-V P ntreated, as	nm²: /mm²: •) %: KV J s-welded s: s-welded s:	+ 20 °C: - 50 °C: hielding gas	u 500 590 24 150 80 5: Ar +15-2 5: 100 % C	(> 420) (> 550) (> 20) (≥ 47) 5 % CO ₂ ;O ₂	u1 470 560 25 110 45	(> 420) (> 500) (> 20)			
Operat	ing Data	1								
t_ļ	Shield Argo Argo 100 %	ding gases n +15-25 % n +0-5 % (6 CO ₂	% CO2 CO2 +3-10 %	% O 2	ø mm wire 0.9 1.0 1.2		=+			

Preheating and interpass temperature as required by the base metal.

Base Materials

API5L: X 42 – X 70 (X 80) EN 10208-2: L290MB – L485MB DIN 17172: StE290TM up to StE480.7TM

Approvals and Certificates

DNV

EN 12534:1999: EN 12534:1999:	Mn3Ni1Mo (for wire) G 55 6 M Mn3Ni1Mo
	G 55 4 C Mn3Ni1Mo
AWS A5.28-96:	ER90S-G

BÖHLER NiMo 1-IG

GMAW solid wire for automatic welding. pipe welding

=+

Description

Copper coated GMAW wire for high strength, quenched and tempered fine-grained constructional steels. The wire is suited for joint welding in boiler, pressure vessel, pipeline, and crane construction as well as in structural steel engineering. The typical composition of the wire fulfils the requirements of the NORSOK-regulation for "water injection systems".

Due to the precise addition of micro alloving elements NiMo1-IG wire features excellent ductility and crack resistance in spite of its high strength. Good cryogenic impact energy down to -60 °C. low hydrogen contents in the deposit, best feedability and low copper contents are other advantages of this wire.

Typical Composition of Solid Wire

	С	Si	Mn	Mo	Ni
wt-%	0.08	0.6	1.8	0.3	0.9

Mechanical Properties of All-weld Metal

+ 20 °C: - 40 °C:	u 620 700 23 140 110	(≥ 550) (650 - 800) (≥ 20) (≥ 120) (≥ 90) (> 47)	u2 590 680 22 120	(≥ 550) (620 - 770) (≥ 20) (≥ 100) (≥ 47)
- 60 °C:		(≥ 47)		

(*) u untreated, as-welded - shielding gas Ar + 15 - 25 % CO² u2 untreated, as-welded - shielding gas 100 % CO2

Operating Data

shielding gases: ø mm Argon ∓ 15 - 25 % CO2 0.9 Argon + 0.5 % CO₂ + 3-10 % O₂ 10 100 % CO₂

Preheating and interpass temperature as required by the base metal.

Base Materials

pipe steels and fine-grained steels S460N - S500N, S460NL - S500NL, S500NC - S550NC, L480MB, L555MB quenched and tempered fine-grained steels e. a. N-A-XTRA 56-70, BHV 70, PAS 700, HSM 700, 20MnMoNi5-5 API Spec. 5L: X 70, X 80

Approvals and Certificates

DB (42.014.06), ÜZ (42.014/4), ÖBB, GL (4Y56S), UDT, SEPROZ

Notes

2.4. Filler Metals for Weather-resistant, High-strength and Cryogenic Steels

Objectives

This section provides detailed product information for filler metals that may be used to weld weather-resistant, high-tensile and cryogenic steels.

Weather-resistant steels are used in all areas of structural steel engineering and light-gauge steel construction, amongst other things for overhead wire and overhead trolley wire masts, in the form of rod and sectional steel, lightgauge sheets and heavy plates. Due to their excellent strength properties they may also be used for higher operating temperatures (over 400 °C) although in this case the proof stress decreases considerably.

High-tensile steels may be used down to very low temperatures in structural steel engineering and plant construction, the construction of vehicles, wagons and agricultural machinery for welded structures subject to high static and dynamic loads. The cryogenic qualities and special qualities of steel may be used down to -60 °C without fear of brittle fracture. Generally speaking it should be noted that increased care must be taken during fabrication and a structural design suitable for welding and withstanding stress is an essential prerequisite since the minimum values of the yield stress rise as the wall thickness.

Cryogenic steels are intended for components subject to static and dynamic loads at operating temperatures below -40 °C in gas liquefaction plants in the processing of mineral oil, for fractionated distillation of hydrocarbons, for the transport of liquefied natural gas and in air liquefaction plants. Consult the building regulations for pressurised vessels with regard to special applications.

Contents

OVERVIEW	72
SMAW STICK ELECTRODES	74
GTAW RODS	85
GMAW SOLID WIRES	88
FLUX CORED WIRE	95
SAW WIRE/FLUX-COMBINATIONS	96

Overview – Classifications

Böhler	EN		AWS	
SMAW stick elec	trodes			
FOX NiCuCr	EN 499: E	46 4 Z (NiCrCu) B 4 2 H5	AWS A5.5-96:	E8018-W2H4R
FOX EV 60	EN 499: E	46 6 1Ni B 4 2 H5	AWS A5.5-96:	E8018-C3H4R
FOX EV 63	EN 499: E	50 4 B 4 2 H5	AWS A5.5-96:	E8018-GH4R
FOX EV 65	EN 757: E	55 6 1NiMo B 4 2 H5	AWS A5.5-96:	E8018-GH4R E8018-D1H4R (mod.)
FOX EV 70	EN 757: E	55 6 1NiMo B 4 2 H5	AWS A5.5-96:	E9018-GH4R E9018-D1H4R (mod.)
FOX EV 70 Mo	EN 757: E	55 3 MnMo B T 4 2 H10	AWS A5.5-96:	E9018-G E9018-D1(mod.)
FOX NiMo 100	EN 757: E	62 4 Mn1NiMoB 42 H5	AWS A5.5-96:	E10018-G (E10018-D2mod)
FOX EV 75	EN 757: E	62 6 Mn2NiCrMo B42 H5	AWS A5.5-96:	E10018-GH4R
FOX EV 85	EN 757: E	69 6 Mn2NiCrMo B42 H5	AWS A5.5-96:	E11018-GH4R E11018-MH4R(mod.)
FOX EV 85 M	_		AWS A5 5-96	E11018-MH4R
FOX EV 100	EN 757: E	89 4 Mn2Ni1CrMoB42 H5	AWS A5.5-96:	E12018G
FOX 2.5 Ni	EN 499: E	46 8 2Ni B 4 2 H5	AWS A5.5-96:	E8018-C1H4R
GTAW rods				
DMO-IG	EN 1668: \	N 46 3 W2Mo	AWS A5.28-96:	ER80S-G ER70S-A1
I 52 Ni	EN 1668: \	V 3 Ni 1	AWS A5.18:	ER80S-Ni1
2.5 Ni-IG	EN 1668: \	V 50 8 W2Ni2	AWS A5.28-96:	ER80S-Ni2
GMAW solid wire	s			
NiCu 1-IG	EN 440:	G 42 4 M G0	AWS A5.28-96:	ER80S-G
		G 42 4 C G0		
K Nova Ni	EN 440:	G 3 Ni 1	AWS A5.28-96:	ER80S-G
NiMo 1-IG	EN 12534:	G 55 6 M Mn3Ni1Mo G 55 4 C Mn3Ni1Mo	AWS A5.28-96:	ER90S-G
NiCrMo 2.5-IG	EN 12534:	G 69 6 M Mn3Ni2.5CrMo G 69 4 C Mn3Ni2.5CrMo	AWS A5.28-96:	ER110S-G
X 70-IG	EN 12534:	G 69 5 M Mn3Ni1CrMo	AWS A5.28-96:	ER110S-G
X 90-IG	EN 12534:	G 89 6 M Mn4Ni2CrMo	AWS A5.28-96:	ER120S-G
2.5 Ni-IG	EN 440:	G 46 8 M G2 Ni2 G 46 6 C G2 Ni2	AWS A5.28-96:	ER80S-Ni2
Flux cored wire				
Ti 60-FD	EN 758:	T 50 6 1 Ni P M 1 H5	AWS A5.20-95:	E81T1-Ni1MH8
SAW wire/flux-co	mbinati	ons		
3 NiMo 1-UP	EN 756: S	Z3Ni1Mo	AWS A5.23-97:	EF3(mod.)
3 NiMo 1-UP/BB24	EN 756: S	50 4 FB SZ3Ni1Mo	AWS A5.23-97:	F9A4-EF3(mod.)-F3 F62A4-EF3(mod.)-F3
3 NiCrMo 2.5-UP	EN 756: S	Z 3Ni2CrMo	AWS A5.23-97:	EM4(mod.)
3 NiCrMo 2.5-UP/BB 24	S 69 6 FB	S Z 3Ni2CrMo	AWS A5.23-97:	F11A8-EM4(mod.)-M4 F76A6-EM4(mod.)-M4
Ni 2-UP	EN 756: S	2Ni2	AWS A5.23-97:	ENi2
Ni 2-UP/BB 24	EN 756: S	46 6 FB S2Ni2	AWS A5.23-97:	F8A8-ENi2-Ni2 F55A6-ENi2-Ni2

Overview – Typical Chemical Composition

Böhler	С	Si	Mn	Cr	Ni	Мо	V	Cu
SMAW stick electro	odes							
FOX NICuCr FOX EV 60 FOX EV 63 FOX EV 65	0.05 0.07 0.06 0.06	0.4 0.4 0.7 0.3	0.7 1.15 1.7 1.2	0.6	0.6 0.9 0.8	0.35		0.45
FOX EV 70	0.035	0.3	1.1		0.9	0.4		
FOX EV 70 Mo	0.06	0.4	1.6			0.5		
FOX NiMo 100	0.11	0.25	1.85		0.95	0.4		
FOX EV 75	0.05	0.4	1.6	0.4	2.0	0.4		
FOX EV 85	0.05	0.4	1.7	0.4	2.0	0.5		
FOX EV 85 M FOX EV 100 FOX 2.5 Ni	0.05 0.06 0.04	0.2 0.35 0.3	1.5 1.8 0.8	0.35 0.7	2.2 2.5 2.4	0.35 0.5	0.07	
GTAW rods								
DMO-IG	0.1	0.6	1.2			0.5		
2.5 Ni-IG	0.1	0.6	1.1		2.5			
GMAW solid wires								
NiCu 1-IG	0.1	0.5	1.1		0.9			0.4
K Nova Ni NiMo 1-IG	0.06 0.08	0.7 0.6	1.5 1.8		0.9 0.9	0.3		Ti +
NiCrMo 2.5-IG	0.08	0.6	1.4	0.30	2.5	0.4		
X 70-IG X 90-IG 2.5 Ni-IG	0.1 0.1 0.1	0.6 0.8 0.6	1.6 1.8 1.1	0.25 0.35	1.3 2.25 2.5	0.25 0.6	0.1	
Flux cored wire								
Ti 60-FD	0.06	0.45	1.2		0.85			
SAW wire/flux-combinations		ns						
3 NiMo 1-UP 3 NiMo 1-UP/BB24	0.12 0.08	0.3 0.45	1.6 1.55		1.0 0.95	0.6 0.55		
3 NiCrMo 2.5-UP 3 NiCrMo 2.5-UP/BB 24	0.12 0.06	0.15 0.3	1.5 1.5	0.6 0.50	2.3 2.2	0.55 0.50		
Ni 2-UP Ni 2-UP/BB 24	0.11 0.07	0.1 0.25	1.0 1.05		2.25 2.2			

EN 499:1994: E 46 4 Z(NiCrCu) B 4 2 H5 AWS A5.5-96: E8018-W2H4R

BÖHLER FOX NiCuCr

SMAW stick electrode, low-alloyed,

weather resistant

Description

NICuCr alloyed basic coated electrode for welding weathering resistant constructional steels such as CORTEN, PANTINAX, CORALDUR and KORRALPIN. Excellent mechanical properties, and high crack resistance even when subjected to restraint.

Metal recovery approx. 115 %. Easily weldable in all positions except vertical-down. Very low hydrogen contents (according AWS condition HD \leq 4 ml/100 g weld metal).

Typical Composition of All-weld Metal									
wt-%	C 0.05	Si 0.4	Mn 0.7	Cr 0.6	Ni 0.6	Cu 0.45			
Mechanica	al Pro	pertie	s of <i>l</i>	All-we	ld Me	tal			
) u s strength R= N/mm ² : 520 (≥ 460) 500 (490 - 610) s s (≥ 410) s s s s strength R= N/mm ² : 570 (530 - 680) 550 (490 - 610) s s strength R= N/mm ² : 570 (≥ 25) 27 (≥ 26) s s strength R= N/mm ² : 27 (≥ 25) 27 (≥ 26) s s strength R= N/mm ² : 150 (≥ 110) (≥ 118) s s strength R= N/max^2 s s trength R= N/max^2 s s strength R= N/mm ² : 130 (≥ 90) s s trength R= N/max^2 s strength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/mm ² : 130 (≥ 90) s s trength R= N/m ² : 1									
Operating	Data								
	re-dryi 300 - 3 electro FOX N	ng if neo 350 °C, de iden liCuCr 8	cessary min. 2 tifikatior 3018-W	: h 1: 2 E 46 4	ZB	ø mm 2.5 3.2 4.0	L mm 350 350 450	amps A 80 - 110 130 - 150 150 - 190	=+

Base Materials

weather-resistant constructional steels S235JR, S235JRW, S355JRW, S355J2G3 Cu ASTM A36, A283 Gr. B, C

Approvals and Certificates

RMR (3 YHH), UDT

Similar-alloy Filler Metals

GMAW solid wire: NiCu 1-IG

EN 499-1994 E 46 6 1Ni B 4 2 H5 AWS A5.5-96: E8018-C3H4R

BÖHLER FOX EV 60

SMAW stick electrode, low-alloyed, hiah strenath

Description

Basic coated MnNi alloyed electrode with excellent mechanical properties, particularly high toughness and crack resistance. For higher strength fine-grained constructional steels. Suitable for service temperatures at - 60 °C to + 350 °C. Very good impact strength in aged condition. Metal recovery about 115 %. Easily weldable in all positions except vertical-down. Very low hydrogen content (according AWS condition HD ≤ 4 ml/100 g weld metal).

Typical Composition of All-weld Metal									
wt-%	С 0.07	Si 0.4	Mn 1.15	Ni 0.9					
Mechar	nical Pro	operties	s of All-we	eld Me	tal				
(*) yield stren tensile stre elongation impact wo (*) u untre s stres	gth R₀ N/m ength R _m N A (L₀ = 5d rk ISO-V k eated, as-w s relieved	m²: /mm²:)) %: (V J <i>velded</i> 580 °C/2 I	+ 20 °C: - 60 °C: h/furnace dow	u 510 610 27 180 110 m to 300	(≥ 460) (580 - 680 (≥ 23) (≥ 130) (≥ 65) °C/air	s 480 580 27 160	(≥ 460 (560 - (≥ 23 (≥ 120) 680)))	
Operati	ng Data	l I							
	re-dry 300 - electr	ing if nece 350 °C, n ode identi	essary: 1 in. 2 h fikation:		ø mm 2.5 3.2	L mm 350 350	amps A 80 - 100 110 - 140	=+	

Base Materials constructional steels, pipe- and vessel steels, cryogenic fine-grained steels and special grades

E295, E335, S355J2G3, C35-C45, L210 - L450NB, L245MB - L450MB, P310GH, P355 NL1 -P460NL1, P355NL2 - P460NL2, S380N - S460N, P355NH-P460NH, S380NL - S460NL, S380NL1, GE260-GE300

4.0

5.0

450

450

140 - 180

190 - 230

ASTM A516 Gr. 65, A572 Gr. 55, 60, 65, A633 Gr. E, A612, A618 Gr. I, A537 Gr. 1-3.

Approvals and Certificates

FOX EV 60 8018-C3 E 46 6 1Ni B

TÜV-D (1524.), TÜV-A (275), DNV (3 YHH), ISPESL (X), RMR (3 YHH), Statoil, UDT, LTSS, SEPROZ, CRS (3YH5)
EN 499:1994: E 50 4 B 4 2 H5 AWS A5.5-96: E8018-GH4R

BÖHLER FOX EV 63

SMAW stick electrode, low-alloyed, high strength

Description

Basic coated electrode for carbon and low-alloy steels of higher strength with carbon contents up to 0.6 %. Also suitable for rail joint welding.

Ductile and crack resistant weld metal. Metal recovery approx. 115 %. Weldable in all positions except vertical-down.

Very low hydrogen content (according AWS condition HD ≤ 4 ml/100 g weld metal).

Typical Composition of All-weld Metal

	С	Si	Mn
wt-%	0.06	0.7	1.7

Mechanical Properties of All-weld Metal

$\binom{*}{}$ yield strength R _e N/mm ² : tensile strength R _m N/mm ² : elongation A (L ₀ = 5d ₀) %: impact work ISO-V KV J	+ 20 °C:	u 580 630 26 170	(≥ 500) (610 - 720) (≥ 22) (≥ 140)	s 560 610 26 130	(≥ 500) (590 - 710) (≥ 24) (≥ 100)
•	- 40 °C:	90	(≥ 47)		· · /

(*) u untreated, as-welded

s stress relieved 580 °C/2 h/furnace down to 300 °C/air

Operating Data

FOX EV 63 8018-G E 50 4 B 4.0 450 140 - 180 5.0 450 190 - 230	→ →	re-drying if necessary: 300 - 350 °C, min. 2 h electrode identifikation: FOX EV 63 8018-G E 50 4 B	ø mm 2.5 3.2 4.0 5.0	L mm 350 350 450 450	amps A 80 - 110 100 - 140 140 - 180 190 - 230	=+
--	--------	---	----------------------------------	----------------------------------	---	----

Base Materials

constructional steels, pipe steels, rail steels

S355J2G3, E295 - E360, C35 - C60, S355N - S500N, P315NH - P500NH, GE200 - GE300, R0800

ASTM A225 Gr. C; A517 Gr. A, B, C, E, F, H, J, K, M, P

Approvals and Certificates

TÜV-D (0730.), DB (10.014.07), ÜZ (10.014/1), ÖBB, TÜV-A (X), RMR (3 YHH), UDT, SEPROZ

EN 757:1997: E 55 6 1NiMo B 4 2 H5 AWS A5.5-96: E8018-GH4R E8018-D1H4R(mod.) **BÖHLER FOX EV 65**

SMAW stick electrode, low-alloyed, high strength

Description

Basic coated electrode with high ductility and crack resistance, for high-strength fine-grained steels. Ductile down to -60 °C. Resistant to ageing.

Easy to handle in all positions except vertical-down.

Very low hydrogen content (according AWS condition HD ≤ 4 ml/100 g weld metal).

Typical Composition of All-weld Metal								
wt-%	С 0.06	Si 0.3	Mn 1.2	Ni 0.8	Mo 0.35			
Mechanical Properties of All-weld Metal								
(*) yield strengt tensile stren elongation A impact work	th R₀ N/mm ligth R _m N/n \ (L₀ = 5d₀) \ ISO-V K\	n²: nm²: %: / J	+ 20 °C: - 60 °C:	u 600 650 25 180 80	(≥ 550) (630 - 750) (≥ 20) (≥ 130) (≥ 47)	s 580 630 25 160	(≥ 530) (620 - 730) (≥ 20) (≥ 120)	
(*) u untrea	ted, as-we relieved 5	Ided B0 °C/2	h/furnace do	wn to 300	°C/air			

Operating Data

1	re-drying if necessary: 300 - 350 °C, min. 2 h electrode identifikation:	ø mm 2.5 3.2	L mm 350 350	amps A 80 - 100 100 - 140	=+
	FOX EV 65 8018-G E 55 6 1NiMo B	4.0	450	140 - 180	

Preheating and interpass temperature, as well as post weld heat treatment as required by the base metal.

Base Materials

constructional steels, pipe- and vessel steels, cryogenic fine-grained steels and special grades

E295 - E360, 20MnMoNi5-5, 22NiMoCr4-7, P355NL1 - P460NL1, P355NL2 - P460NL2, S380N - S500N, S355NH - S460NH, S380NL - S500NL, S380NL1 - S500NL1, 15NiCuMoNb5S (WB 36), 20MnMoNi5-5, 17MnMoV6-4 (WB 35), 22NiMoCr4-7

ASTM A302 Gr. A-D; A517 Gr. A, B, C, E, F, H, J, K, M, P; A225 Gr. C; A572 Gr. 65

Approvals and Certificates

TÜV-D (1802.), UDT, SEPROZ

EN 757:1997: AWS A5.5-96: E 55 6 1NiMo B 4 2 H5 E9018-GH4R E9018-D1H4R(mod.) **BÖHLER FOX EV 70**

SMAW stick electrode, low-alloyed, high strength

Description

Basic coated Mo-Ni alloyed electrode exhibiting high ductility and crack resistant for applications on high-strength fine-grained steels. Suitable for service temperatures between -60 °C and +350 °C. Metal recovery approx. 115 %. Easy to handle in all positions except vertical-down. Very low hydrogen content (according AWS condition HD \leq 4 ml/100 g weld metal).

Preheat and interpass temperatures, as well as post weld heat treatment as required by the base metal.

Typical Composition of All-weld Metal

	С	Si	Mn	Ni	Mo
wt-%	0.035	0.3	1.1	0.9	0.4

Mechanical Properties of All-weld Metal

*) u rield strength R _° N/mm²: 650 ensile strength R _m N/mm²: 700	(≥ 600) (680 - 780)	s 650 700	(≥ 580) (660 - 780)
$\frac{1600}{1000} = \frac{1}{20} $	(≥ 22) (≥ 130)	24 130	(≥ 22) (≥ 120)
mpact work ISO-V KV J + 20 °C: 160	(≥ 130)	130	

(*) u untreated, as-welded

s stress relieved 580 °C/2 h/furnace down to 300 °C/air

Operating Data

	re-drying if necessary: 300 - 350 °C, min. 2 h	ø mm 3.2	L mm 350	amps A 100 - 140	=+
→	electrode identifikation:	4.0	450	140 - 180	_ ·

FOX EV 70 9018-G E 55 6 1NiMo B

Preheating and interpass temperature, as well as post weld heat treatment as required by the base metal.

Base Materials

high-strength fine-grained steels

S380N - S500N, P380NL - S500NL

ASTM A517 Gr. A, B, C, E, F, H, J, K, M, P; A225 Gr. C; A633 Gr. E; A572 Gr. 65

Approvals and Certificates

TÜV-D (0112.), UDT, SEPROZ

EN 757:1997: E 55 3 MnMo B T 4 2 H10 AWS A5.5-96: E9018-G E9018-D1(mod.)

SMAW stick electrode, low-alloyed, high strength

Description

Basic coated Mn-Mo alloyed electrode especially suited for high-strength fine-grained constructional steels and high-temperature steels, e.g. 15NiCuMoNb5S. Crack resistant, tough and ageing resistant. Excellent weldability in all positions except vertical-down.

Typical Composition of All-weld Metal								
wt-%	С 0.06	Si 0.4	Mn 1.6	Mo 0.5				
Mechanical Properties of All-weld Metal								
(*) yield streng tensile stren elongation / impact work (*) u untrea s stress	th R _e N/m hgth R _m N/ A (L ₀ = 5do) C ISO-V K hated, as-we relieved 6	n²: mm²:) %: V J elded 550 °C/15	+ 20 °C: - 30 °C: h/furnace do	u 580 680 22 150 85 own to 30	(≥ 550) (620 - 780) (≥ 20) (≥ 120) (≥ 47) 0 °C/air	s 580 650 23 160 90	(≥ 550) (620 - 760) (≥ 20) (≥ 120) (≥ 47)	
Operatir	ng Data							

re-drying if necessary: 300 - 350 °C, min. 2 h electrode identifikation: FOX EV 70 Mo 9018-G E 55 3 MnMo B T	ø mm 2.5 3.2 4.0	L mm 250 350 450	amps A 70 - 100 110 - 140 140 - 180	=+
	5.0	450	180 - 240	

Preheating and interpass temperature, as well as post weld heat treatment as required by the base metal.

Base Materials

high-strength, fine-grained steels, rail steels up to R0800 (for joint welding)

E295 - E360, C35 - C60, P310GH, 17MnMoV6-4, 15NiCuMoNb5S, S380N - S500N, P380NH - S460NH, GE300, 22Mo4

ASTM A225 Gr. C; A302 Gr. A-D; A514 und A517 Gr. A, B, C, E, F, H, J, K, M, P

Approvals and Certificates

TÜV-D (1178.), DB (10.014.11-20.014.12), ÜZ (10.014/2), ÖBB, TÜV-A (122), CL (0754)

EN 757:1997: E 62 4 Mn 1 Ni Mo B 42 H5 AWS A5.5-96: E 10018-G (E 10018-D2 mod.) BÖHLER FOX NiMo 100

Basic covered electrode

Description

Basic covered MnNiMo alloyed electrode. Extremely high resistance to cracking and cold toughness at temperatures as low as -40 °C. Very low H2-content ≤ 5 ml/100 g. For creep resistant steels and cast steel grades, valves and oil tools according to sour gas specification; post-weld heat treatment: stress relieving according to parent metal.

Тур	oical C	Compo	sition o	of All-we	ld Met	al		
wt-%	, 0	С 0.11	Si 0.25	Mn 1.85	Mo 0.40	Ni 0.95		
Me	Mechanical Properties of All-weld Metal							
(*) yield tens elon impa	l strengt ile stren gation A act work	h R₀ N/m gth R๓ N/ (L₀=5d₀) ISO-V K	m²: ′mm²: %: V J	+20 °C: -40 °C:	S ≥ 620 ≥ 690 ≥ 18 ≥ 47 ≥ 47			
(*)	s Stres	ss relieve	d 580 °C/2	2 h/furnace	down to	300 °C/air		

Operating	Data				
	re-drying if necessary: 300-350 °C, min. 2 h electrode identification: FOX NiMo 100	ø mm 3.2 4.0 5.0	L mm 350 350 450	amps A 100-150 140-200 180-250	=+

Base Materials

GS-30CrMoV64, steels acc. ASTM A 487-4Q; AISI 4130

Approvals and Certificates

_

EN 757:1997: E 62 6 Mn2NiCrMo B 4 2 H5 AWS A5.5-96: E10018-GH4R E10018-MH4R(mod.)

BÖHLER FOX EV 75

SMAW stick electrode, low-alloyed, high strength

Description

Mn-Mo-Ni-alloyed basic coated electrode with high ductility and crack resistance for high-strength, quenched and temperature fine-grained constructional steels. Suitable for service temperatures at -60 °C to +400 °C.

Weld metal recovery approx. 120 %. Easily weldable in all positions except vertical-down. Preheat, interpass temperature and post weld heat treatment as required by the base metal. Very low hydrogen content (according AWS condition $HD \le 4 ml/100$ g weld metal).

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Мо
wt-%	0.05	0.4	1.6	0.4	2.0	0.4

Mechanical Properties of All-weld Metal

(*) yield strength R _e N/mm ² : tensile strength R _m N/mm ² : elongation A (L ₀ = 5d ₀) %: impact work ISO-V KV J	u 700 750 23 + 20 °C: 140	(≥ 650) (730 - 850) (≥ 20) (≥ 120)	S 700 (≥ 630) 750 (710 - 830) 23 (≥ 20) 120 (≥ 70)	V 500 (≥ 430) 615 (550 - 670) 24 (≥ 20) 120 (≥ 70)
	- 60 °C:	(≥ 47)	120 (2 70)	120 (2 70)

(*) u untreated, as-welded

s stress relieved 580 °C/2h/furnace down to 300 °C/air

v quenched/tempered 910 °C/1h/air and 600 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h	ø mm 3.2	L mm 350	amps A 100 - 140	=+
electrode identifikation:	4.0	450	140 - 180	
EOX EV 75 10018-G E 62 6 Mn2	NiCrMo B			

Preheating and interpass temperature, as well as post weld heat treatment as required by the base metal.

Base Materials

quenched and tempered fine-grained steels up to 650 $\rm N/mm^2$ yield strength, QT-steels up to 730 $\rm N/mm^2$ tensile strength

S500N, S500NH, S460NL

ASTM A225 Gr. C; A 514 and A517 Gr. A, B, C, E, F, H, J, K, M, P; A656; A678 Gr. C

Approvals and Certificates

UDT, SEPROZ

EN 757:1997: E 69 6 Mn2NiCrMo B 4 2 H5 AWS A5.5-96: E11018-GH4R E11018-MH4R(mod.)

BÖHLER FOX EV 85

SMAW stick electrode, low-alloyed, high strength

Description

Basic coated Mn-Ni-Mo-alloyed electrode with high ductility and crack resistant for highstrength fine-grained constructional steels. Low-temperature ductility at -60 °C and resistant to ageing.

Easily weldable in all positions except vertical-down. Very low hydrogen content (according AWS condition HD \leq 4 ml/100 g weld metal).

Typical Composition of All-weld Metal							
wt-%	С 0.05	Si 0.4	Mn 1.7	Cr 0.4	Ni 2.1	Mo 0.5	
Mechani	cal Pro	pertie	es of All-w	eld Meta	I		
(*) yield strengt tensile stren elongation A impact work	th $R_{\circ} N/mr$ Igth $R_{m} N/r$ $A (L_{\circ} = 5d_{\circ})$ A (SO-V K)	n²: mm²: ⊨%: VJ	u 780 840 20 + 20 °C: 110 - 60 °C: 60	(≥ 720) (790 - 960) (≥ 16) (≥ 90) (≥ 47)	s 750 800 20 80	(≥ 690) (760 - 850) (≥ 16) (≥ 60)	∨ 750 (≥650) 790 (730 - 860) 20 (≥ 19) 80 (≥ 65)

(*) u untreated, as-welded

s stress relieved 580 °C/2 h/furnace down to 300 °C/air

v guenched/tempered 920 °C/1h/air and 600 °C/2 h/furnace down to 300 °C/air

Operating Data

ø mm 2.5 3.2 4.0 5.0	L mm 350 350 450 450	Strom 70 - 100 100 - 140 140 - 180 190 - 230	=+	
	ø mm 2.5 3.2 4.0 5.0	Ø mm L mm 2.5 350 3.2 350 4.0 450 5.0 450	Ø mm L mm Strom 2.5 350 70 - 100 3.2 350 100 - 140 4.0 450 140 - 180 5.0 450 190 - 230	ømm Lmm Strom 2.5 350 70 - 100 3.2 350 100 - 140 4.0 450 140 - 180 5.0 450 190 - 230

Preheat, interpass temperature and post weld heat treatment as required by the base metal.

Base Materials

quenched and tempered fine-grained steels up to 720 N/mm² yield strength, quenched and tempered low-alloyed steels up to 790 N/mm² tensile strength.

S620 QL-S690QL, S620QL1, S690QL1, N-AXTRA 56, 63, 70

Approvals and Certificates

TÜV-D (4313.), DB (10.014.22), ÜZ (10.014/2), ÖBB, UDT, SEPROZ

EN 499:1994: E 46 8 2Ni B 4 2 H5 AWS A5.5-96: E8018-C1H4R

BÖHLER FOX 2.5 Ni

SMAW stick electrode, low-alloyed,

cryogenic application

Description

Ni-alloyed basic coated electrode for unalloyed and Ni-alloyed fine grained construction steels. Tough, crack resistant weld deposit. Low temperature toughness to -80 °C.

Good weldability in all position except vertical down. Very low hydrogen content. (according AWS condition HD ≤ 4 ml/100 g weld metal)

Preheat 100 - 150 °C on wall thickness > 15 mm, interpass temperature max. 150 °C. Post weld heat treatment if necessary only as required by the base metal.

Туріс	al Compo	sition o	of All-wel	d Meta	ıl			
wt-%	C 0.04	Si 0.3	Mn 0.8	Ni 2.4				
Mech	Mechanical Properties of All-weld Metal							
(*) yield str tensile s elongati impact v (*) u ur s str	rength R _e N/m strength R _m N/m ion A (L ₀ = 5d work ISO-V k ntreated, as-w ress relieved	m²: /mm²:) %: (V J <i>relded</i> 580 °C/2	+ 20 °C: - 80 °C: h/furnace do	u 490 570 30 180 110 wn to 300	(≥ 460) (550 - 680) (≥ 24) (≥ 110) (≥ 47) 0°C/air	s 470 550 30 200	(≥ 420) (540 - 640) (≥ 24) (≥ 110)	
Opera	ating Data	I						
	ro-dru	ing if noor	acconv:		a mm I	mm ar	nne A	

→	re-drying if necessary:	ø mm	L mm	amps A	
1T	300 - 350 °C, min. 2 h	2.5	350	70 - 100	
∣ '→	electrode identifikation:	3.2	350	110 - 140	
	FOX 2.5 Ni 8018-C1 E 46 8 2Ni B	4.0	450	140 - 180	
		5.0	450	190 - 230	

Preheat, interpass temperature and post weld heat treatment as required by the base metal.

Base Materials

cryogenic constructional steels and Ni-steels, cryogenic steels for ship building

12Ni14, 14Ni6, 10Ni14, 13MnNi6-3, P355NL1 - P460NL1, P355NL2 - P460NL2, S255N - S460N, S355NH - S460NH, S255NL - S460NL, S255NL1 - S380NL1 ASTM A633 Gr. E: A572 Gr. 65: A203 Gr. D: A333 and A334 Gr. 3: A 350 Gr. LF3.

ASTM A633 Gr. E; A572 Gr. 65; A203 Gr. D; A333 and A334 Gr. 3; A 350 G

Approvals and Certificates

TÜV-D (00147.), DB (10.014.16), ÜZ (10.014/1), ÖBB, ABS (Ni 2.1/2.6), BV (5Y40), WIWEB, CL (0260), DNV (5 YH10), GL (8Y46), LR (5Y40mH15), RINA (5YH5,3H5) Statoil, UDT, SEPROZ

Similar alloy Filler Metals

GTAW rod:	2.5 Ni-IG
SMAW stick electrode:	2.5 Ni-IG
SAW combination:	Ni 2-UP/BB 24

	Approval		
h strength	Current, Welding position		† †
	Form of supply ø (mm)	3.2 / 350 4.0 / 450 5.0 / 450	3.2/350 5.0/450 5.0/450
	Application Base metals	Basic coated electrode for welding of high tensile fine-grained steels.	Basic coated electrode for welding of high tensile fine-grained steels. Weld metal is highly crack resistant.
	yield strength Re tensile strength Rm elongation A impact work RT	> 680 N/mm² > 760 N/mm² > 20 % > 100 J	> 890 N/mm² 980 N/mm² 15 % > 47 J
ectrode, hi	Analysis all weld metal wt- %	C < 0.05 Si C Mo 0.35 No 0.35 2.2 2.2 2.3 2.2 2.2 2.2 2.2 2.2 2.2 2.2	 Signal Control Contro
SMAW stick ele	Böhler Designation EN 757:1997: AWS A5.5-96:	FOX EV 85 M - E11018-MH4R	FOX EV 100 E 89 Min2N1 CrM0B42H5 E12018G E12018G

EN 12070:1999: W Mo Si EN 1668:1997: W2Mo (for rod) EN 1668:1997: W 46 3 W2Mo AWS A5.28-96: ER70S-A1 (ER80S-G) W.Nr.: 1.5424 **BÖHLER DMO-IG**

GTAW rod, low-alloyed, high temperature, high strength

Description

Copper coated GTAW rod for welding in boiler, pressure vessel, pipeline, and crane construction as well as in structural steel engineering.

Very tough deposit of high crack resistant, non-ageing. Recommended for the temperature range from -30 °C to +500 °C. Good copper bonding with low total copper content. Very good welding and flow characteristics.

Typical Composition of Welding Rod

	С	Si	Mn	Мо
wt-%	0.1	0.6	1.2	0.5

Mechanical Properties of All-weld Metal

(*)		u		а	
yield strength R _e N/mm ² :		520	(≥ 480)	480	(≥ 400)
tensile strength Rm N/mm ² :		630	(570 - 720)	570	(≥ 515)
elongation A ($L_0 = 5d_0$) %:		27	(≥ 23) ́	26	(≥ 19)́
impact work ISO-V KV J	+ 20 °C:	200	(≥ 180)́	230	(≥ 200)
•	- 45 °C:		(≥ 47)		. ,

(*) u untreated, as-welded - shielding gas Argon

a annealed, 620 °C/1 h/furnace down to 300 °C/air - shielding gas Argon

Operating Data

*	shielding gas: 100 % Argon	ø mm	
	rod marking:	2.0	
-	front: 🕆 WMoSi	2.4	
	back: 1.5424	3.0	
		2.0	

Preheating, interpass temperature and post weld heat treatment as required by the base metal.

Base Materials

similar alloyed high temperature steels and cast steels, ageing resistant and steels resistant to caustic cracking

S355.12G3, L290 - L415NB, L290 MB - L415MB, P255G1TH, P235GH, P265GH, P295GH, P310GH, P255NH, 16M03, 17MnMoV6-4, 22NiMoCr4-7, 20MnMoNi5-5, 15NiCuMoNb5S, 20MnMoNi4-5, GE240 - GE300, 22M04, S255N - S460N, P255NH - P460NH

ASTM A335 Gr. P1; A161-94 Gr. T1 A A182M Gr. F1; A204M Gr. A, B, C; A250M Gr. T1; A217 Gr. WC1

Approvals and Certificates

TÜV-D (0020.), KTA 1408 1 (8066.02), DB (42.014.09), ÜZ (42.014), ÖBB, TÜV-A (75), BV (UP), CL (0483), DNV (I YMS), FI (W MoSi), UDT, ITI (09.004-0), CRS (3)

Similar alloy Filler Metals

FOX DMO Kb	SAW combination:	EMS 2 Mo/BB 24
FOX DMO Ti		EM2 2 Mo/BB 25
DMO-IG	Gas welding rod:	DMO
	FOX DMO Kb FOX DMO Ti DMO-IG	FOX DMO Kb SAW combination: FOX DMO Ti DMO-IG Gas welding rod:

EN 1668:1997: W3Ni1 AWS A5.28-96: ER80S-Ni1 BÖHLER I 52 Ni

GTAW rod, low alloyed, cryogenic application

Description

Ni-alloyed GTAW rod for welding of offshore pipe work and similar high integrity applications. High impact properties down to -50 °C.

Typical	Compo	sition c	of Weldi	ng Rod	
wt-%	С 0.07	Si 0.7	Mn 1.60	Ni 0.9	
Mechar	nical Pro	operties	of All-	weld Me	tal
(*) yield stren tensile stre elongation impact wo	gth R₀ N/m ength R _m N A (L₀ = 5d rk ISO-V I	nm²: //mm²: // %: (V J		u 500 600 25	(≥ 470) (≥ 550) (≥ 24)
			+20 °C:	150	(> 47)

-50 °C

(*) u untreated, as-welded, shielding gas Argon

Operating Data

	chielding good 100 % Armon	~	
	shielding gas: 100 % Argon	ømm	
I		1.6	
	rod marking:	2.0	
	front: W3Ni1	2.4	
	back: ER80S-Ni 1	3.0	
		32	

Preheating, interpass temperature and post weld heat treatment as required by the base metal.

90

Base Materials

High strength steels up to S500N Pipe steels: L290MB – L485MB, API Spec. 5 L: X52, X56, X60, X65,

Approvals and Certificates

EN 1668:1997: W2Ni2 (for rods) EN 1668-1997 W 46 8 W2Ni2 AWS A5.28-96: ER80S-Ni2

BÖHLER 2.5 Ni-IG

GTAW rod. low-alloved. cryogenic application

Description

Ni-alloyed copper coated GTAW rod, for welding of cryogenic steels. For thin sheets and root pass welding. Useable down to -80 °C.

Typical Composition of Welding Ro

	С	Si	Mn	Ni
wt-%	0.1	0.6	1.1	2.4

Mechanical Properties of All-weld Metal

(*)		u	
vield strength R _e N/mm ² :		510	(≥ 470)
tensile strength Rm N/mm ² :		600	(550 - 720)
elongation A ($L_0 = 5d_0$) %:		26	(≥ 22)
impact work ISO-V KV J	+ 20 °C:	280	(≥ 200)́
•	- 60 °C:	80	· ,
	- 80 °C:		(≥ 47)
(*) u untroated as wolded	chielding asc /	Iraon	` '

ls-weiaea snielaing gas Argon

Operating Data

ĺ	shielding gas: 100 % Argon rod marking: front: + W2Ni2	ø mm 2.0 2.4	=-	
	Dack: ER80S-NI 2	3.0		
Prohoating	internase temperature and post weld he	at treatment as required by the base	motal	

Preheating, interpass temperature and p

Base Materials

cryogenic constructional steels and Ni-steels, cryogenic steels for ship building

12Ni14, 14Ni6, 10Ni14, 13MnNi6-3, P355NL1 - P460NL1, P355NL2 - P460NL2, S255N - S460N, S355NH - S460NH, S255NL - S460NL, S255NL1 - S380NL1

ASTM A633 Gr. E: A572 Gr. 65: A203 Gr. D: A333 and A334 Gr. 3: A 350 Gr. LF3

Approvals and Certificates

TÜV-D (01081.), TÜV-A (254), BV (SA 3 YM; UP), GL (6Y46), Statoil, UDT, SEPROZ

Similar alloy Filler Metals

Stick electrode:	FOX 2.5 Ni
SMAW stick electrode:	2.5 Ni-IG
SAW combination:	Ni 2-UP/BB 24

EN 440:1995: G 42 4 M G0 G 42 4 C G0 AWS A5.28-96: EB80S-G BÖHLER NiCu 1-IG

GMAW solid wires, low-alloyed, weather resistant

Description

NiCu-alloyed copper coated GMAW wire, for welding of weathering resistant constructional steels, standard constructional steels and special constructional steels.

NiCu 1-IG wire features good weldability in the short arc mode at low voltage and in the spray arc process with high voltage. The mechanical properties of the weld deposit, the freedom of porosity and the bead appearance depend on the type of shielding gas used and on the other welding parameters.

The copper content in the welding wire leads to increased resistance to atmospheric corrosion in the weld deposit.

Typical Composition of Solid Wire

	С	Si	Mn	Ni	Cu
wt-%	0.1	0.5	1.1	0.9	0.4

Mechanical Properties of All-weld Metal

	u	(≥ 420)	s	(≥ 390)
	500	(500 - 640)	460	(470 - 570)
	580	(≥ 24)	540	(≥ 24)
	26	(≥ 80)	27	(≥ 80)
	+ 20 °C: 130	(≥ 47)	130	(≥ 47)
(*) u untroated as wolded sh	- 40 °C:	(≥ 47)	00 % 00.	(≥ 47)

s stress relieved, 600 °C/2 h – shielding gas Ar + 15 - 25 % CO₂ or 100 % CO₂ s stress relieved, 600 °C/2 h – shielding gas Ar + 15 - 25 % CO₂ or 100 % CO₂

Operating Data

shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 1.0 1.2	=+
---	--------------------	----

Base Materials

weather-resistant constructional steels, special grade constructional steels S235JRW, S235J2G3 Cu, S355J2G3 Cu, Corten A, Patinax 37, Alcodur 50, Koralpin 52 ASTM A36; A283 Gr. B, C

Approvals and Certificates

DB (42.014.08), ÜZ (42.014/4), ÖBB, UDT

Similar-alloy Filler Metals

SMAW stick electrode: FOX NiCuCr

EN 440:1995: EN 440:1995: AWS A5.28-96: G3Ni1 G 42 5 M G3Ni1 ER80S-G

BÖHLER K NOVA Ni

GMAW solid wire, for automatic welding

Description

GMAW wire micro alloyed, designed for high quality automatic welding of pipelines. An optimum balanced alloying concept ensures good weld metal properties to fulfil the high requirements in the on-offshore pipeline industry. The deposit is extremely crack resistant and the weld metal offers high impact values down to -50 °C.

Typical	Compo	sition o	of Solid	Wire			
wt-%	С 0.06	Si 0.70	Mn 1.50	Ni 0.90	Ti +		
Mechar	nical Pro	operties	of All-v	veld Me	tal		
(*) yield stren tensile stre elongation impact wo (*) u ur u1 ur	gth R₀ N/m ength R _™ N I A (L₀ = 5d rk ISO-V H htreated, as	nm²: /mm²: •) %: KV J s-welded si s-welded si	+ 20 °C: - 50 °C: hielding gas	u 500 590 24 150 80 5: Ar +15-2 5: 100 % C	(≥ 420) (≥ 550) (≥ 20) (≥ 47) 5 % CO ₂ O ₂	u1 470 560 25 110 45	(≥ 420) (≥ 500) (≥ 20) (≥ 47)
Operati	ing Data	1					
ţ	Shield Argo Argo	ding gases n +15-25 % n +0-5 % (6 CO2 CO2 +3-10 9	% O 2	ø mm wire 0.9 1.0		=+

12

Preheating and interpass temperature as required by the base metal.

Base Materials

API5L: X 42 - X 70 (X 80) EN 10208-2: L290MB - L485MB DIN 17172: StE290TM up to StE480.7TM

100 % CO2

Approvals and Certificates

DNV

EN 12534:1999: Mn3Ni1Mo (for wire) EN 12534:1999: G 55 6 M Mn3Ni1Mo G 55 4 C Mn3Ni1Mo AWS A5.28-96: ER90S-G BÖHLER NiMo 1-IG

GMAW solid wires, low-alloyed, high strength

Description

Copper coated GMAW wire for high strength, quenched and tempered fine-grained constructional steels.

The wire is suited for joint welding in boiler, pressure vessel, pipeline, and crane construction as well as in structural steel engineering. The typical composition of the wire fulfils the requirements of the NORSOK-regulation for "water injection systems".

Due to the precise addition of micro alloying elements NiMo1-IG wire features excellent ductility and crack resistance in spite of its high strength. Good cryogenic impact energy down to -60 °C, low hydrogen contents in the deposit, best feedability and low copper contents are other advantages of this wire.

Typical Composition of Solid Wire								
wt-%	C 0.08	Si 0.6	Mn 1.8	Mo 0.3	Ni 0.9			

Mechanical Properties of All-weld Metal

(*) yield strength R ₆ N/mm ₂ : tensile strength R _m N/mm ₂ : elongation A (L ₀ = 5d ₀) %: impact work ISO-V KV J	+ 20 °C:	u 620 700 23 140 110	(≥ 550) (650 - 800) (≥ 20) (≥ 120) (> 90)	u2 590 680 22 120	(≥ 550) (620 - 770) (≥ 20) (≥ 100) (> 47)
	- 40 °C: - 60 °C:	110	(≥ 90) (≥ 47)		(≥ 47)́

(*) u untreated, as-welded – shielding gas Ar + 15 - 25 % CO₂ u2 untreated, as-welded – shielding gas 100 % CO₂

Operating Data

ļ	shielding gases: Argon + 15 - 25 % CO ₂ Argon + 0 - 5 % CO ₂ + 3 - 10 % O ₂ 100 % CO ₂	ømm (0.9) 1.0 1.2	=+
		1.2	

Preheating and interpass temperature as required by the base metal.

Base Materials

pipe steels and fine grained steels, quenched and tempered fine-grained steels

S380N - S500N, S380NL - S500NL, S500NC - S550NC, N-A-XTRA 56-70, BHV 70, PAS 600, HSM 600, 20MnMoNi5-5

ASTM A517 Gr. A, B, C, E, F, H, J, K, M, P; A225 Gr. C; A633 Gr. E; A572 Gr. 65 API-spec 5L: X70, X80

Approvals and Certificates

DB (42.014.06), ÜZ (42.014/4), ÖBB, GL (4Y56S), UDT, SEPROZ

EN 12534:1999: Mn3Ni2.5CrMo (for wire) EN 12534:1999: G 69 6 M Mn3Ni2.5CrMo G 69 4 C Mn3Ni2.5CrMo AWS A5.28-96: ER110S-G

GMAW solid wires, low-alloyed, high strength

Description

GMAW wire for joint welding of high-strength fine-grained constructional steels with stringent requirement on low-temperature toughness down to -60 °C depending on the shielding gas. e.g. in marine engineering for the manufacture of LPG tankers.

Typical Composition of Solid Wire							
wt-%	C 0.08	Si 0.6	Mn 1.4	Cr 0.3	Ni 2.5	Mo 0.4	
Mechani	Mechanical Properties of All-weld Metal						
(*) yield strengt tensile stren elongation A impact work (*) u untre- u2 untre-	th R _e N/mn hgth R _m N/r $A (L_0 = 5d_0)$ A (ISO-V K) ated, as-wa ated, as-wa	n²: nm²: %: / J elded – s elded – s	+ 20 °C: - 40 °C: - 60 °C: shielding gas	u 810 910 18 120 Ar + 15 - 100 % C	(≥ 750) (830 - 980) (≥ 16) (≥ 60) (≥ 47) $25 \% CO_2$ CO_2	u2 780 890 17 70	(≥ 720) (800 - 950) (≥ 16) (≥ 50) (≥ 47)

Operating Data

shie	elding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 1.0 1.2	=+
------	--	--------------------	----

Preheating and interpass temperature as required by the base metal.

Base Materials

quenched and tempered fine-grained steels with high requirements for low-temperature toughness N-A-XTRA 65-70, USS-T 1

Approvals and Certificates

DB (42.014.07), ÜZ (42.014/4), ÖBB, ABS (XYQ690X-5), BV (UP), DNV (5 Y69), GL (4Y69S), LR (X), UDT, SEPROZ

Similar-alloy Filler Metals

SMAW stick electrode: FOX EV 85 SAW combination: 3NiCrMo 2.5-UP / BB 24 EN 12534:1999: Mn3Ni1CrMo (for wire) EN 12534:1999: G 69 5 M Mn3Ni1CrMo AWS A5.28-96: ER110S-G BOHLER X 70-IG

GMAW solid wires, low-alloyed, high strength

Description

GMAW wire for the welding of high-strength, heat treated, fine-grained constructional steels with a minimum yield strength of 690 N/mm².

Due to the precise addition of micro-alloying elements X 70-IG wire features excellent ductility and crack resistance in spite of its high strength.

Good cryogenic impact energy down to -50 °C.

Typical	Compo	sition o	of Solid	Wire				
wt-%	С 0.1	Si 0.6	Mn 1.6	Cr 0.25	Ni 1.3	Mo 0.25	∨ 0.1	
Mecha	Mechanical Properties of All-weld Metal							
(*) yield stren tensile str elongation impact wo	ngth R₀ N/m ength R _™ N n A (L₀ = 5d ork ISO-V H	nm²: //mm²: // %: (V J	+ 20 °C:	u 800 900 19 190	(≥ 690) (≥ 790) (≥ 16) (≥ 170) (> 47)			

- 50 °C: (\geq 47) (*) u untreated, as-welded – shielding gas Ar + 15 - 25 % CO₂

Operating Data

st st	nielding gas: Argon + 15 - 25 % CO ₂	ø mm 1.0 1.2	=+
-------	---	--------------------	----

Preheating and interpass temperature as required by the base metal.

Base Materials

high-strength fine-grained steels

S690Q, L690M, N-A-XTRA 70, USS-T1, BH 70 V, HY 100, Pass 700, HSM 700 ASTM A514 Gr. F

Approvals and Certificates

TÜV-D (5547.), DB (42.014.19), ÜZ (42.014/4), ÖBB, TÜV-A (541), ABS (X), BV (UP), DNV (IV Y69), GL (5Y69S), LR (X), RMR (4Y69), UDT, SEPROZ

Similar-alloy Filler Metals

SMAW stick electrode: FOX EV 85 SAW combination: 3NiCrMo 2.5-UP / BB 24 EN 12534:1999: Mn4Ni2CrMo (for wire) EN 12534:1999: G 89 6 M Mn4Ni2CrMo AWS A5.28-96: ER120S-G **BÖHLER X 90-IG**

GMAW solid wires, low-alloyed, high strength

Description

GMAW wire for the welding of higher-strength, heat treated, fine-grained constructional steels with a minimum yield strength of 890 N/mm².

Due to the precise addition of micro-alloying elements X 90-IG wire features excellent ductility and crack resistance in spite of its high strength.

Good cryogenic impact energy down to -60 °C.

Typical Composition of Solid Wire								
wt-%	C 0.1	Si 0.8	Mn 1.8	Cr 0.35	Ni 2.25	Mo 0.6		

Mechanical Properties of All-weld Metal

(*)		u	
vield strength R _e N/mm ² :		915	(≥ 890)
tensile strength Rm N/mm ² :		960	(≥ 940)́
elongation $A(L_0 = 5d_0)$ %:		20	(≥ 16)
impact work ISO-V KV J	+ 20 °C:	130	(≥ 100)
	- 60 °C:		(≥ 47)
(*) u untreated, as-welded -	shielding gas	Ar + 15 - 2	25 % CO2

Operating Data

shielding gas: Argon + 15 - 25 % CO ₂	ø mm 1.0 1.2	=+
--	--------------------	----

Preheating and interpass temperature as required by the base metal.

Base Materials

high-strength fine-grained steels S890Q, XABO 90, OX 1002

Approvals and Certificates

TÜV-D (5611.), DB (42.014.23), ÜZ (42.014/4), ÖBB, TÜV-A (616), GL (6Y89S), UDT, SEPROZ

EN 440:1994:	G2Ni2 (for wire)
EN 440:1994:	G 46 8 M G2Ni2
	G 46 6 C G2Ni2
AWS A5.28-96:	ER80S-Ni2

BÖHLER 2.5 Ni-IG

GMAW solid wires, low-alloyed, cryogenic application

Description

2.5 % Ni-alloyed GMAW wire for high quality welds in the construction of storage tanks and piping systems for cryogenic applications. The weld deposit is noted for its particularly good low temperature an non-ageing properties down to -80 °C.

Typical	Composition	of Solid Wire	9
---------	-------------	---------------	---

	С	Si	Mn	Ni
wt-%	0.1	0.6	1.1	2.4

Mechanical Properties of All-weld Metal

	+ 20 °C:	u 510 600 22 170	(≥ 470) (550 - 680) (≥ 20) (≥ 120)	u2 500 590 22 120	(≥ 460) (520 - 670) (≥ 20) (≥ 80) (≥ 47)
(*) u untreated, as-welded -	- 80 °C: shielding gas A	Ar + 15 -	(≥ 47) 25 % CO₂		(2 11)

u2 untreated, as-welded - shielding gas 100 % CO2

Operating Data

shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 1.0 1.2	=+
---	--------------------	----

Preheating and interpass temperature as required by the base metal.

Base Materials

cryogenic constructional steels and Ni-steels, cryogenic steels for ship building

12Ni14, 14Ni6, 10Ni14, 13MnNi6-3, P355NL1 - P460NL1, P355NL2 - P460NL2, S255N - S460N, S355NH - S460NH, S255NL - S460NL, S255NL1 - S380NL1

ASTM A633 Gr. E; A572 Gr. 65; A203 Gr. D; A333 and A334 Gr. 3; A 350 Gr. LF3

Approvals and Certificates

TÜV-D (01080.), DB (42.014.16), ÜZ (42.014/4), ÖBB, TÜV-A (732), ABS (XYQ550X-5), BV (SA 3 YM; UP), DNV (5 YMS), GL (6Y38S), LR (5Y40S H15), UDT, SEPROZ

Similar alloy Filler Metals

SMAW stick electrode:	FOX 2.5 Ni
GTAW rod:	2.5 Ni-IG
SAW combination:	Ni 2-UP/BB 24

EN 758:1997: AWS A5.29-98: T 50 6 1 Ni P M 1 H5 E81T1-Ni1MH8 BÖHLER Ti 60-FD

GMAW flux cored wire, low alloyed, rutile type

Description

Rutile based flux-cored wire which provides easy all-position weldability and dependable mechanical properties down to -60 °C.

The fast freezing slag provides a well supported weld pool, allowing welding currents up to 250 A in positional welding. Because it operates in spray arc in all welding positions, welding is comfortable and spatter free. Weld appearance is good, with good tie-in. Thanks to the fast freezing slag system of BÖHLER Ti 60-FD and to good weld pool control, this flux-cored wire is particularly suited for out-of-position welding of butt and fillet joints in high strength steels with yield strength up to 460 N/mm². The flux-cored wire is widely used for offshore constructions, ship building and structures built with high strength steels.

Typical Composition of All-weld Metal

	С	Si	Mn	Ni
wt-%	0.06	0.45	1.2	0.85

Mechanical Properties of All-weld Metal

(*)	u	S
yield strength R _e N/mm ² :	> 500	> 500
tensile strength R _m N/mm ² :	> 560	> 560
elongation A ($L_0 = 5d_0$) %:	> 19	> 24
impact work ISO-V KV J	+ 20 °C: > 120	>120
	- 60 °C: ≥ 47	≥ 47
(*) untroated as wolded	chielding goo Ar , 15	2E 0/ CO.

(*) u untreated, as-welded – shielding gas Ar + 15 - 25 % CO₂ s stress relieved 620 °C/2 h/furnace down to +300 °C – shielding gas Ar + 15 - 25 % CO₂

Operating Data

re-drying: – shielding gas: Argon + 15 - 25 % CO ₂	ø mm 1.2 1.6	=+
Welding with standard welding facilities.	110	

Preheating and interpass temperature as required by the base metal.

Base Materials

constructional steels, pipe- and vessel steels, cryogenic fine-grained steels and special grades

E295, E335, S355.J2G3, C35-C45, L210 - L450NB, L245MB - L450MB, P310GH, P355 NL1 -P460NL1, P355NL2 - P460NL2, S380N - S460N, P355NH-P460NH, S380NL - S460NL, S380NL1 - S460NL2, GE260-GE300

ASTM A516 Gr. 65, A572 Gr. 55, 60, 65, A633 Gr. E, A612, A618 Gr. I, A537 Gr. 1-3.

Approvals and Certificates

CL (0044), LR (DXVuBF, 4Y40SH10)

SAW solid wire: EN 756:2004: SZ3Ni1Mo AWS A5.23-97: EF3 (mod.) sub-arc flux: EN 760:1996: SA FB 1 65 DC H5 wire/flux-combination: EN 756:2004: S 50 4 FB SZ3Ni1Mo AWS A5.23-97: F9A4-EF3(mod.)-F3 AWS A5.23M-97: F62A4-EF3(mod.)-F3

BÖHLER 3 NiMo 1-UP//BB 24

SAW wire/flux-combination, low-alloyed, high strength

Description

Wire /Flux combination for joint welding of high strength and low temperature steels. The flux reacts metallurgically Mn-neutral.

The sub-arc wire/flux combination produces very good low temperature impact properties down to - 40 °C. Excellent slag detachability, smooth beads, good wetting and low hydrogen contents (≤ 5 ml/100 g) are further important features. The combination is ideally suited for multi-pass welding of thick plates.

For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Ni	Mo
Wire %	0.12	0.3	1.6	1.0	0.6
Weld metal %	0.08	0.45	1.55	0.95	0.55

Mechanical Properties of All-weld Metal

(*)		u	
vield strength R _e N/mm ² :		580	(≥ 560)
tensile strength R _m N/mm ² :		650	(620 - 720)
elongation $A(L_0 = 5d_0)$ %:		21	(≥ 20)
impact work ISO-V KV J	+ 20 °C:	180	(≥ 160)
	± 0 °C:	160	(≥ 140)
	- 20 °C:	100	(≥ 80)
	- 40 °C:	60	(≥ 47)́
(+)			· ,

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: ø mm 300 - 350 °C, 2 h - 10 h 4.0 max. amperage of sub-arc flux: 800 A

Preheating and interpass temperature as required by the base metal.

Base Materials

quenched and tempered fine-grained steels

S380N - S500N, S380NL - S500NL, S500NC - S550NC, N-A-XTRA 56-65, BHV 70, PAS 600, HSM 600, 20MnMoNi5-5

ASTM A517 Gr. A, B, C, E, F, H, J, K, M, P, A225 Gr. C, A633 Gr. E, A572 Gr. 65

Approvals and Certificates

TÜV-D (07807.), UDT SAW solid wire: TÜV-D (2603.) SAW solid wire:

EN 756:2004: S Z 3Ni2CrMo AWS A5.23-97: EM4 (mod.)

sub-arc flux:

EN 760:1996: SA FB 1 65 DC H5

SAW wire/flux-combination, low-alloyed, high strength

3 NiCrMo 2.5-UP//BB 24

BÖHLER

wire/flux-combination: EN 756:2004: S 69 6 FB SZ3Ni2CrMo AWS A5.23-97: F11A8-EM4(mod.)-M4 AWS A5.23M-97: F76A6-EM4(mod.)-M4

Description

Wire /Flux combination for joint welding of high strength steels with a minimum yield strength of 690 N/mm².

Depending on the annealing temperature yield strength of approx. 470-600 $\ensuremath{N/mm^2}$ are achievable.

The flux reacts metallurgically Mn-neutral.

The sub-arc wire/flux combination produces very good low temperature impact properties down to -60°C. Excellent slag detachability, smooth beads, good wetting and low hydrogen contents (≤ 5 ml/100 g). are further important features. The combination is ideally suited for multi-pass welding of thick plates.

For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni	Мо
SAW wire wt-%	0.12	0.15	1.5	0.6	2.3	0.55
all-welt metal %	0.06	0.3	1.5	0.50	2.2	0.50

Mechanical Properties of All-weld Metal

(*)		u	
yield strength R _e N/mm ² :		740	(≥ 690)
tensile strength R _m N/mm ² :		850	(780 - 890)
elongation $A(L_0 = 5d_0)$ %:		20	(≥ 18)
impact work ISO-V KV J	+ 20 °C:	120	(≥ 80)
	- 20 °C:	90	(≥ 60)
	- 40 °C:	85	· ,
	- 60 °C:		(≥ 47)
(4)			()

(*) u untreated, as-welded

Operating Data

-

re-drying of sub-arc flux: ø mm **300 - 350 °C / 2 h - 10 h** max. amperage of sub-arc flux: **800 A** 4.0

==

Base Materials

quenched and tempered fine-grained steels with high requirements for low-temperature impact work N-A-XTRA 65-70, USS-T 1 etc.

Approvals and Certificates

UDT

Similar Alloy Filler Metals

SMAW stick electrode:	FOX EV 85
GMAW solid wire:	X /0-IG
	NiCrMo 2.5-IG

SAW solid wire: EN 756.2004 S2Ni2 AWS A5 23-97 FNi₂ sub-arc flux: EN 760.1996 SA FB 1 65 DC H5 wire/flux-combination: EN 756:2004: S 46 6 FB S2Ni2 AWS A5.23-97: F8A8-ENi2-Ni2 AWS A5 23M-97 E55A6-ENi2-Ni2

BÖHLER Ni 2-UP//BB 24

SAW wire/flux-combination. low-alloyed, cryogenic application

Description

The weld deposit of the wire/flux combination (as welded and stress relieved condition) is distinguished by excellent welding characteristic, cryogenic toughness and ageing resistance with low hydrogen content in the deposit.

Under optimum conditions (heat input below 18 kJ/cm or after stress relieving) impact strength transition temperature at -80 °C (ISO-V specimen) can be achieved.

The flux reacts metallurgically Mn-neutral. The sub-arc wire/flux combination produces very good low temperature impact properties down to -60 °C. Excellent slag detachability, smooth beads, good wetting and low hydrogen contents (HD \leq 5 ml/100 g). are further important features. The combination is ideally suited for multi-pass welding of thick plates.

For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Ni
SAW wire wt-%	0.11	0.1	1.0	2.25
all-weld metal %	0.07	0.25	1.05	2.2

Mechanical Properties of All-weld Metal

(*) yield strength R _e N/mm ² : tensile strength R _m N/mm ² :		u (≥ 480) (580 - 680)
impact work ISO-V KV J	+ 20 °C:	(≥ 24) (≥ 130)
	±0 °C:	(≥ 120)
	- 20 °C:	(≥ 100)
	- 60 °C:	(≥ 47)

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: ø mm 300 - 350 °C, 2 h - 10 h max. amperage of sub-arc flux: 800 A

Base Materials

cryogenic constructional steels and Ni-steels, cryogenic steels for ship building 12Ni14, 14Ni6, V10Ni14, 13MnNi6-3, P355NL1 - P460NL1, P355NL2 - P460NL2, S255N - S460N. S355NH - S460NH, S255NL - S460NL, S255NL1 - S380NL1 ASTM A633 Gr. E; A572 Gr. 65; A203 Gr. D; A333 and A334 Gr. 3; A 350 Gr. LF3

Approvals and Certificates

UDT

SAW solid wire: TÜV-D (2603.), KTA 1408 1 (8058.00), DB (52,014.10), ÜZ (52,014/1), ÖBB. TÜV-A (391), SEPROZ

3.0

Similar alloy Filler Metals

SMAW stick electrode: FOX 2.5 Ni GTAW rod: 2.5 Ni-IG

SMAW stick electrode: 2.5 Ni-IG

Notes

Notes

2.5 Filler Metals for High Temperature and Creep-resistant Steels

Objectives

This section contains detailed product information for filler metals that may be used to weld high temperature and creep-resistant steels.

The high temperature properties of general-purpose constructional steels are no longer adequate at operating temperatures above 350 °C. Creep and flow processes occur in the steel at high temperatures under load as a result of which the load permissible becomes time-related. Therefore steels alloy-ed with Mo, Cr-Mo and Cr-Mo-V are used.

Small additions of Mo, Cr and V are sufficient up to 550 °C operating temperature. Above 550 °C increased scale resistance is also necessary. Up to approx. 600 °C it is possible to use quenched and tempered 9 % and 12 % chromium steels with additions of Mo, V, Nb and W respectively. Above this temperature special austenitic Cr-Ni steels are used. The basic type contains 16 % chromium and 13 % nickel with additions of Nb. At temperatures above 700 °C only nickel-base alloys with additions of Mo, W and Nb exhibit adequate creep properties.

Basically the choice of the filler metals and the welding technology is always in line with the parent metal used and must be matched to its behaviour.

Contents

OVERVIEW)2
SMAW STICK ELECTRODES10)6
GTAW RODS	25
GMAW SOLID WIRES14	10
GMAW FLUX CORED WIRES14	47
SAW WIRE/FLUX-COMBINATIONS1	50
GAS WELDING RODS16	62

Overview – Standard Classifications

Böhler	EN	AWS	
SMAW stick el	ectrodes		
FOX DMO Ti	EN 1599: E Mo R 1 2	-	
		-	
FOX DMO Kb	EN 1599: E Mo B 4 2 H5	AWS A5.5-96:	E7018-A1H4R
FOX DCMS Ti	EN 1599: E CrMo1 R 1 2	AWS A5.5-96:	E8013-B2(mod.) E8013-G
FOX DCMS Kb	EN 1599: E CrMo1 B 4 2 H5	AWS A5.5-96:	E8018-B2H4R
FOX DCMV	EN 1599: E Z CrMoV1 B 4 2 H5	AWS A5.5-96:	E9018-G
FOX DMV 83 Kb	EN 1599: E MoV B 4 2 H5	AWS A5.5-96:	E9018-G
FOX CM 2 Kb	EN 1599: E CrMo2 B 4 2 H5	AWS A5.5-96:	E9018-B3H4R
FOX P 23	EN 1599: E ZCrWV 21.5 B42 H5	AWS A5.5-96:	E9018-G
FOX P 24	EN 1599: E ZCrMoVNbB 21 B42 H5	AWS A5.5-96:	E9018-G
FOX CM 5 Kb	EN 1599: E CrMo5 B 4 2 H5	AWS A5.5-96:	E8018-B6H4R
FOX CM 9 Kb	EN 1599: E CrMo9 B 4 2 H5	AWS A5.5-96:	E8018-B8
FOX C 9 MV	EN 1599: E CrMo91 B 4 2 H5	AWS A5.5-96:	E9015-B9
FOX C 9 MVW	EN 1599: E Z CrMoWVNb 9 1 1 B 4	2 H5 AWS A5.5-96:	E9015-B9(mod.)
FOX P 92	EN 1599: E Z CrMoWVNb 9 0.5 2 B 4	2 H5 AWS A5.5-96:	E9015-B9(mod.)
FOX 20 MVW	EN 1599: E CrMoWV12 B 4 2 H5	-	
FOX CN 16/13	EN 1600: E Z 16 13 Nb B 4 2 H5	-	
FOX CN 18/11	EN 1600: E 19 9 B 4 2 H5	AWS A5.4-92:	E308-15
FOX E 308 H	EN 1600: E 19 9 H R 4 2 H5	AWS A5.4-92:	E308H-16
FOX E 347 H	EN 1600: E 19 9 Nb B	AWS A5.4-92:	E347-15
GTAW rods			
DMO-IG	EN 12070: W Mo Si	AWS A5.28-96:	ER70S-A1
			ER80S-G
DCMS-IG	EN 12070: W CrMo1 Si	AWS A5.28-96:	ER80S-G
			ER80S-B2(mod.)
DMV 83-IG	EN 12070: W MoV Si	AWS A5.28-96:	ER80S-G
CM 2-IG	EN 12070: W CrMo2 Si	AWS A5.28-96:	ER90S-G
B 44 10			ER90S-B3(mod.)
P 23-IG	EN 12070: E ZCrWV 21.5 B42 H5	AWS A5.28-96:	ER90S-G
P 24-IG	EN 12070: W Z CRVIOV 2	AWS A5.28-96:	ER905-G
CIM 5-IG	EN 12070: W Crivios Si	AVVS A5.28-96:	ER805-86
	EN 12070: W CRM09 SI	AWS A5.28-96:	ER805-88
	EN 12070: W GIVI091	AWS A5.20-90.	ER903-D9
	EN 12070: W Z CHVIOW VIND 9 1 1	AVVO AD.28-96:	ED000 D0(mod)
P 92-10	EN 12070: W Z GIVIOWVIND 9 0.5 1.5	AVV5 A5.28-96:	EH903-09(M00.)
CN 16/13-IG	EN 12070. W CHVIOW V 12 SI	_	
CN 18/11-IG	EN 12072: W 10 0 H	AW/S A5 0 02-	EB10-10H
ER 308 H-IG	EN 12072: W 10.0 H	AWG A5.9-93.	EB308H
LI1 300 1410	LIN 12012. W 133 H	ANG AD.9-93.	LINGOOT

Overview – Typical Chemical Composition

Böhler	С	Si	Mn	Cr	Ni	Мо	Nb	V	Т	N	
SMAW stick ele	ctrod	es									
FOX DMO Ti	0.06	0.3	0.6			0.5					
FOX DMO Kb FOX DCMS Ti	0.08 0.06	0.4 0.4	0.8 0.6	1.1		0.5 0.5					
FOX DCMS Kb FOX DCMV 83 Kb FOX DCM V83 Kb FOX P 23 FOX P 23 FOX P 24 FOX CM 5 Kb FOX CM 9 Kb FOX C 9 MVW FOX C 9 MVW FOX C 9 MVW FOX C 9 MVW FOX CN 16/13 FOX CN 16/13 FOX CN 18/11 FOX E 347 H GTAW rods	0.07 0.12 0.05 0.08 0.06 0.08 0.07 0.07 0.09 0.10 0.10 0.10 0.18 0.15 0.04 0.05 0.05	0.4 0.35 0.4 0.2 0.4 0.4 0.3 0.25 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3	0.8 0.9 1.1 0.8 0.5 0.5 0.7 0.7 0.7 0.7 0.6 3.6 1.3 0.7 1.3	1.1 1.35 0.4 2.3 2.4 5.0 9.0 8.5 9.1 11.0 16.0 19.0 19.4 19.0	0.9 0.7 0.6 13.0 10.3 10.4 10.0	0.5 1.0 0.9 1.0 1.0 0.5 1.0 0.9 1.0 0.55 1.0 <0.2	0.04 0.03 0.05 0.05 1.5 ≥8xC	0.22 0.5 0.22 0.22 0.2 0.2 0.2 0.3	1.5 1.0 1.7 0.5	0.05 0.045	B0.003
DMO-IG	0.10	0.6	1.2			0.5					
DCMS-IG	0.11	0.6	1.0	1.2		0.5					
DMV 83-IG CM 2-IG	0.08 0.06	0.6 0.7	0.9 1.1	0.45 2.6		0.85 1.0		0.35			
P 23-IG P 24-IG CM 5-IG CM 9-IG C 9 MV-IG C 9 MVW-IG P 92-IG 20 MVW-IG CN 16/13-IG CN 18/11-IG ER 308 H-IG	0.07 0.10 0.08 0.07 0.09 0.11 0.10 0.21 0.16 0.05 0.06	0.3 0.25 0.4 0.5 0.3 0.35 0.4 0.4 0.4 0.4 0.4	0.5 0.55 0.5 0.5 0.45 0.4 0.6 2.5 1.8 1.7	2.2 2.5 5.8 9.0 9.0 8.6 11.3 16.0 18.8 20.0	0.9 0.75 0.6 13.5 9.3 9.5	1.0 0.6 1.0 0.9 0.98 0.4 1.0	0.05 0.05 0.06 0.05 +	0.22 0.22 0.2 0.2 0.3	1.7 1.05 1.5 0.45	0.01 Ti0.002 0.07 0.05	B0.002

Overview – Standard Classifications (continued)

Böhler	EN		AWS	
GMAW solid wire	s			
DMO-IG	EN 12070:	G MoSi	AWS A5.28-96:	ER70S-A1
				ER80S-G
DCMS-IG	EN 12070:	G CrMo1Si	AWS A5.28-96:	ER80S-G
DMV 83-IG	EN 12070	G MoV Si	AWS 45 28-96	ER805-62(1100.)
CM 2-IG	EN 12070:	G CrMo2 Si	AWS A5.28-96:	ER90S-G
				ER90S-B3(mod.)
CM 5-IG	EN 12070:	G CrMo5 Si	AWS A5.28-96:	ER80S-B6
C 9 MV-IG	EN 12070:	G CrMo 91	AWS A5.28-96:	ER90S-B9
CN 18/11-IG	EN 12072:	G 19 9 H	AWS A5.9-93:	ER19-10H
GMAW flux-cored	wires			
C 9 MV-MC	EN 12070:	T CRMO91	AWS A5.28-96:	EC90S-B9
E 308 H-FD	EN 12073:	T Z 19 9 H R M 3	AWS A5.22-95:	E308H10-4
	EN 10072-	T Z 199H R C 3	ANNE AE 22 OE.	E308H10-1
E 300 H PW-FD	EN 12073.	T 7 19 9 H P C 1	AWG A5.22-95.	E308HT1-1
		. 2 .00 0 .		200011111
SAW wire/flux-co	mbinations			
EMS 2 Mo	EN 756:	S 2 Mo	AWS A5.23-97:	EA2
EMS 2 Mo/BB 24	EN 756:	S 46 4 FB S2Mo	AWS A5.23-97:	F8A4-EA2-A2
EMS 2 Mo/BB 25	EN 756	S 46 3 EB S2Mo	AMS A5 23-07-	F55A4-EA2-A2
EM3 2 M0/BB 23	LIN 750.	0 40 0 1 D 02100	AWO AJ.20-37.	F55A4-FA2-A2
EMS 2 CrMo	EN 12070:	S CrMo1	AWS A5.23-97:	EB2
EMS 2 CrMo/BB 24	EN 12070/760:	S CrMo1 / SA FB 1	AWS A5.23-97:	F8P4-EB2-B2
				F55P4-EB2-B2
EMS 2 CrMo/BB 25	EN 12070/760:	S CrMo1 / SA FB 1	AWS A5.23-97:	F8P4-EB2-B2
CM 2 UP	EN 10070-	S CrMo2	ANNE AE 22 07:	F55P4-EB2-B2
CM 2-UP/BB 24	EN 12070.	S CrMo2 / SA FB 1	AWS A5.23-97.	E02-E83-83
	214 12070/700.		/10/10/10/20 07:	F55P3-EB3-B3
P 23-UP	EN 12070:	S ZCrWV2	AWS A5.23-97:	EG
P 23-UP/BB 430	EN 12070:760:	SA FB 1 55 AC	AWS A5.23-97:	-
P 24-UP	EN 12070:	S ZCrMV2	AWS A5.23-97:	EG
P 24-UP/BB 430	EN 12070:760:	SA FB 1 55 AC	AWS A5.23-97:	-
CM 5-UP/BB 24	EN 12070.	S CrMo5 / SA EB 1	AWS A5.23-97:	EDD E0P7-EB6-B6
CW 5-0F/DD 24	LIN 12070/700.	S OIWOS / SATE T	AWO AJ.20-37.	F62PZ-EB6-B6
C 9 MV-UP	EN 12070:	S CrMo91	AWS A5.23-97:	EB9
C 9 MV-UP/BB 910	EN 12070/760:	S CrMo91 / SA FB 2	AWS A5.23-97:	F9PZ-EB9-B9
				F62PZ-EB9-B9
P 92-UP	EN 12070: S Z	CrMoWVNb 9 0.5 1.5	AWS A5.23-97:	EB9(mod.)
P 92-0P/BB 910	EN 12070/760:			
20 MVW-UP	EN 12070	S CrMoWV12	-	
20 MVW-UP/BB 24	EN 12070/760:	SCrMoWV12/SA FB 2	-	
CN 18/11-UP	EN 12072:	S 19 9 H	AWS A5.9-93:	ER19-10H
CN 18/11-UP/BB 202	EN 12072/760:	S 19 9 H / SA FB 2	-	
Gas welding rode				
and monaling rous				

DMO	EN 12536:	O IV	AWS A5.2-92:	R60-G
DCMS	EN 12536:	OV	AWS A5.2-92:	R65-G

Overview – Typical Chemical Composition (continued)

Böhler	С	Si	Mn	Cr	Ni	Мо	Nb	V	Т	Ν	
GMAW solid wir	es										
DMO-IG	0.10	0.6	1.2			0.5					
DCMS-IG	0.11	0.6	1.0	1.2		0.5					
DMV 83-IG CM 2-IG	0.08 0.06	0.6 0.7	0.9 1.1	0.45 2.6		0.85 1.0		0.35			
CM 5-IG C 9 MV-IG CN 18/11-IG	0.08 0.12 0.05	0.4 0.3 0.6	0.5 0.5 1.4	5.8 9.0 18.8	0.7 9.8	0.6 0.9	0.055	0.2			
GMAW flux-core	ed wi	res									
C 9 MV-MC E 308 H-FD	0.1 0.06	<0.3 0.5	0.6 1.1	9.0 19.4	0.7 10.1	1.0	0.055	0.2		0.04	
E 308 H PW-FD	0.06	0.5	1.1	19.4	10.1						
SAW wire/flux-c	ombi	natio	ns								
EMS 2 Mo EMS 2 Mo/BB 24	0.12 0.08	0.15 0.25	1.10 1.15			0.50 0.45					
EMS 2 Mo/BB 25	0.07	0.40	1.50			0.50					
EMS 2 CrMo EMS 2 CrMo/BB 24	0.12 0.08	0.15 0.25	0.90 1.00	1.1 1.0		0.50 0.45					
EMS 2 CrMo/BB 25	0.07	0.40	1.35	1.0		0.50					
CM 2-UP CM 2-UP/BB 24	0.11 0.07	0.10 0.25	0.60 0.80	2.6 2.3		1.00 0.95					
P 23-UP P 23-UP/BB 430 P 24-UP P 24-UP/BB 430 CM 5-UP CM 5-UP/BB 24	0.07 0.05 0.10 0.10 0.08 0.05	0.22 0.27 0.25 0.25 0.40 0.50	0.5 0.9 0.55 0.75 0.50 0.75	2.2 2.05 2.5 2.2 5.8 5.5		1.0 1.0 0.60 0.55	0.05 0.04 0.005 0.005	0.22 0.20 0.24 0.22	1.7 1.6	0.01 0.01	Ti0.002 B0.002
C 9 MV-UP C 9 MV-UP/BB 910	0.12 0.11	0.25 0.30	0.60 0.60	9.0 9.0	0.70 0.70	0.90 0.80	0.06 0.05	0.22 0.20			
P 92-UP P 92-UP/BB 910	0.10 0.09	0.40 0.45	0.40 0.40	8.6 8.6	0.60 0.60	0.40 0.35	0.05 0.04	0.20 0.20	1.50 1.50		
20 MVW-UP 20 MVW-UP/BB 24 CN 18/11-UP CN 18/11-UP/BB 202	0.27 0.16 0.05 0.04	0.20 0.30 0.40 0.55	0.70 0.80 1.60 1.20	11.3 10.3 18.8 18.4	0.50 0.40 9.30 9.30	0.90 0.85		0.30 0.25	0.50 0.45		
Gas welding roo	ds										
DMO DCMS	0.12 0.12	0.15 0.15	1.0 0.9	1.0		0.5 0.5					
		1	1		1		1	1		1	1

High Temperature and Creep-resistant Filler Metals - SMAW Stick Electrodes

EN 1599:1997: E Mo R 1 2

BÖHLER FOX DMO Ti

SMAW stick electrode, low-alloyed,

high temperature

Description

Rutile-coated electrode for 0.5 % Mo-alloyed boiler, plates, and tube steels. Approved in longterm condition up to +550 °C service temperature. Specifically preferred for thin walled welds up to 30 mm and root pass welding. It offers excellent striking and restriking characteristics, easy slag removal, smooth beads, AC/DC weldability and produces first class X-ray quality welds in all positions (except vertical down).

	С	Si	Mn	Мо
wt-%	0.06	0.3	0.6	0.5

Mechanical Properties of All-weld Metal

(*)		u		а	
yield strength R _e N/mm ² :		500	(≥ 460)	470	(≥ 440)
tensile strength Rm N/mm ² :		570	(≥ 550)́	550	(≥ 540)
elongation $A(L_0 = 5d_0)$ %:		23	(≥ 22)	23	(≥ 22)
impact work ISO-V KV J	+ 20 °C:	90	(≥ 47)	100	(≥ 47)
(*)			· /		· · ·

(*) u untreated, as-welded a annealed, 620 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: - electrode identification: FOX DMO TI E Mo R	ø mm 2.0 2.5 3.2	L mm 250 250/350 350	amps A 60 - 80 80 - 110 110 - 140	=- ∼
FOX DINO TI E NO R	4.0	450	140 - 180	

Preheating, interpass temperature, and post weld heat treatment as required by the base metal.

Base Materials

high temperature steels and similar alloyed cast steels

16Mo3, S355J2G3, E295, P255G1TH, L320 - L415NB, L320MB - L415MB, S255N, P295GH, P310GH, P255 - P355N, P255NH - P355NH

ASTM A335 Gr. P 1; A161-94 Gr. T1; A182M Gr. F1; A204M Gr. A, B, C; A250M Gr. T1

Approvals and Certificates

TÜV-D (0018.), DB (10.014.04), ÜZ (10.014/3), ÖBB, TÜV-A (84), BV (2YM), CL (0746), DNV (X), RMR (-), Statoil, UDT, VUZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX DMO Kb	SAW combination:	EMS 2 Mo/BB 24
GTAW rod:	DMO-IG		EMS 2 Mo/BB 25
GMAW solid wire:	DMO-IG	Gas welding rod:	DMO

EN 1599:1997: E Mo B 4 2 H5 AWS A5.5-96: E7018-A1H4R

BÖHLER FOX DMO Kb

SMAW stick electrode, low-alloyed,

high temperature

Description

Basic coated low-hydrogen electrode for 0.5 % Mo-alloyed boiler, plates, and tube steels. Approved in long-term condition up to +550 °C service temperature.

For high quality welds of long term stressed components with reliable mechanical properties under high and low temperature conditions. Crack resistant, tough and ageing resistant. Very low hydrogen content (acc. AWS condition HD <4 m/100 g). Metal recovery approx. 115 %.

Typical Composition of All-weld Metal

	С	Si	Mn	Mo
wt-%	0.08	0.4	0.8	0.5

Mechanical Properties of All-weld Metal

(*) yield strength R_{\circ} N/mm ² : tensile strength Rm N/mm ² : elongation A (L ₀ = 5d ₀) %: impact work ISO-V KV J	+ 20 °C:	u 550 600 25 200	(≥ 480) (≥ 560) (≥ 22) (> 120)	a 530 580 26 180	(≥ 470) (≥ 560) (≥ 22) (> 120)
impact work ISO-V KV J	+ 20 °C: - 50 °C:	200	(≥ 120) (≥ 32)	180	(≥ 120)́

(*) u untreated, as-welded

a annealed, 620 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification: FOX DMO Kh 2018-A1 F Mo B	ømm 2.5 3.2 4 0	L mm 250/350 350 350/450	amps A 80 - 110 100 - 140 130 - 180	=+	
FOX DWO KO 7010-AT L WO D	4.0	450	100 - 220		

Preheat, interpass temperature, and post weld heat treatment as required by the base metal.

Base Materials

high temperature steels and similar alloyed cast steels, steels resistant to caustic cracking and ageing resistant steels

16Mo3 S355,J2G3, E295, E335, P255G1TH, L320 - L415NB, L320MB - L415NB, S255N, P295GH, P310GH, 15NiCuMoNb5, 20MnMoNi4-5, 17MnMoV6-4, S255N - S500N, S255NH - S500NH, S255NL - S500NL, GE240 - GE300, 22Mo4, GP240GH ASTM A335 Gr. P1; A161-94 Gr. T1; A217 Gr. WC1; A182M Gr. F1; A204M Gr. A, B, C; A250M Gr. T1

Approvals and Certificates

TÜV-D (0019.), KTA 1408 1 (8053.00), DB (10.014.14), ÜZ (10.014/3), ÖBB, TÜV-A (71), ABS (E 7018-A1), CL (0348), DNV (NV 0,3Mo), FI (E Mo B 42 H5), GL (15 Mo 3), RMR (-), Statoil, UDT, LTSS, VUZ, SEPROZ, CRS (3YH10)

Same Alloy Filler Metals

SMAW stick electrode:	FOX DMO Kb	SAW combination:	EMS 2 Mo/BB 24
GMAW solid wire:	DMO-IG DMO-IG	Gas welding rod:	DMO

High Temperature and Creep-resistant Filler Metals - SMAW Stick Electrodes

EN 1599:1997: E CrMo1 R 1 2 AWS A5.5-96: E8013-G E8013-B2(mod.)

BÖHLER FOX DCMS Ti

SMAW stick electrode, low-alloyed,

high temperature

Description

Rutile coated low hydrogen electrode for 1 % Cr 0.5 % Mo alloyed boiler, plate, and tube steels. Approved in long-term condition up to +570 °C service temperature.

Easy to operate. Fully alloyed core wire. Specifically preferred for thin walled welds and root pass welding in all positions (except vertical down). First class X-ray quality.

Post weld tempering at 660-700 °C for at least 1/2 h followed by cooling in furnace down to 300 °C and still air.

Typical	Composition	of All-weld	Metal
---------	-------------	-------------	-------

	С	Si	Mn	Cr	Мо
wt-%	0.06	0.4	0.6	1.1	0.5

Mechanical Properties of All-weld Metal

(*)		а		
yield strength R _e N/mm ² :		510	(≥ -	490)
tensile strength R _m N/mm ² :		610	(≥ :	590)
elongation $A(L_0 = 5d_0)$ %:		21	(≥	20)
impact work ISO-V KV J	+ 20 °C:	100	(≥	47)
(*) a annealed, 680 °C/2 h/furr	nace down to	300 °C/a	ir`	,

Operating Data

 re-drying if necessary: electrode identification: 	ø mm 2.5 3.2	L mm 250 350	amps A 80 - 110 110 - 140	
FOX DCMS Ti 8013-G E CrMo1 R	4.0	350	140 - 180	
oat and internace temperatures of 200-250 °C	are required	for 12Crl	Act E stools	

Preheat and interpass temperatures of 200-250 °C are required for 13CrMo4-5 steels.

Base Materials

high temperature steels and similar alloyed cast steels, case hardening and nitriding steels of similar chemical composition, similar alloyed heat treatable steels with tensile strength up to 780 N/nm², steels resistant to caustic cracking.

1.7335 13CrMo4-5, 1.7205 15CrMo5, 1.7225 42CrMo4, 1.7728 16CrMoV4, 1.7218 25CrMo4, 1.7258 24CrMo5, 1.7354 G22CrMo5-4, 1.7357 G17CrMo5-5

ASTM A193 Gr. B7; A335 Gr. P11 a. P12; A217 Gr. WC6

Approvals and Certificates

TÜV-D (0764.), DB (10.014.05), ÜZ (10.014/3), ÖBB, TÜV-A (90), ABS (Cr 0,8/1,2 Mo), CL (0413), DNV (X), GL (13 CrMo 44), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX DCMS Kb GTAW rod: DCMS-IG GMAW solid wire: DCMS-IG SAW combination:

Gas welding rod:

EMS 2 CrMo/BB 24 EMS 2 CrMo/BB 25 DCMS EN 1599:1997: E CrMo1 B 4 2 H5 AWS A5.5-96: E8018-B2H4R

BÖHLER FOX DCMS Kb

SMAW stick electrode, low-alloyed,

high temperature

Description

Basic coated low hydrogen electrode for 1 % Cr 0.5 % Mo alloyed boiler, plate, and tube steels. Approved in long-term condition up to +570 °C service temperature. Fully alloyed core wire which will provide reliable creep rupture properties for the whole service life of a boiler plant. High ductility and crack resistance. The weld metal deposit is heat treatable. Very low hydrogen content (acc. AWS condition HD < 4 ml/100 g). Metal recovery approx. 115%. Bruscato ≤15ppm. Post weld tempering at 660-700 °C for at least 1/2 h followed by cooling in furnace down to 300 °C and still air.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Мо	Р	As	Sb	Sn	
wt-%	0.07	0.4	0.8	1.1	0.5	≤ 0.010	< 0.005	≤ 0.005	≤ 0.005	

Mechanical Properties of All-weld Metal

(*) a vield strength B _* N/mm ² : 530	(> 490)	∨ 380	(> 330)
tensile strength R _m N/mm ² : 630	(≥ 590)	520	(≥ 490)
elongation A ($L_0 = 5d_0$) %: 23	(≥ 22)	28	(≥ 24)
impact work ISO-V KV J $+ 20$ °C: 160	(≥ 100)	190	(≥ 100)

v guenched/tempered 930 °C/0.5 h/air + 680 °C/10 h/furnace down to 300 °C/air

Operating Data

→ →	re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification: FOX DCMS Kb 8018-B2 E CrMo 1 B	ø mm 2.5 3.2 4.0 5.0	L mm 250/350 350 350/450 450	amps A 80 - 110 100 - 140 130 - 180 180 - 220	=+	

Preheat and interpass temperature for 13CrMo4-5 steels 200-250 °C.

Base Materials

high temperature steels and similar alloyed cast steels, case hardening and nitriding steels of similar chemical composition, similar alloyed heat treatable steels with tensile strength up to 780 N/nm², steels resistant to caustic cracking.

1.7335 13CrMo4-5, 1.7205 15CrMo5, 1.7225 42CrMo4, 1.7728 16CrMoV4, 1.7218 25CrMo4, 1.7258 24CrMo5, 1.7354 G22CrMo5-4, 1.7357 G17CrMo5-5

ASTM A193 Gr. B7; A335 Gr. P11 a. P12; A217 Gr. WC6

Approvals and Certificates

TÜV-D (0728.), DB (10.014.32), ÜZ (10.014/3), ÖBB, TÜV-A (14), ABS (E 8018-B2), CL (0066), DNV (NV 1Cr 0,5Mo), FI (E CrMo1 B 42 H5), GL (13 CrMo 44), UDT, LTSS, VUZ, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX DCMS Ti
GTAW rod:	DCMS-IG
GMAW solid wire:	DCMS-IG

SAW combination:

EMS 2 CrMo/BB 24 EMS 2 CrMo/BB 25 DCMS

Gas welding rod:

EN 1599:1997: E Z CrMoV1 B 4 2 H5 AWS A5.5-96: E9018-G

BÖHLER FOX DCMV

SMAW stick electrode, low-alloyed, high temperature

Description

Basic coated electrode for highly stressed joint and production welds on GS-17 CrMoV 5-10 type high temperature cast steel used in the construction of steam turbines and valve casings. Approved in long-term condition up to +600 $^\circ$ C service temperature.

High creep rupture strength thanks to the C, Cr, Mo and V-content. High fracture toughness, low hydrogen content, good welding characteristics. The deposit is heat treatable. Metalrecovery approx. 115 %.

Typical Composition of All-weld Metal								
wt-%	C 0.12	Si 0.35	Mn 0.9	Cr 1.35	Мс 1.0	0 V 0.22		
Mechanical Properties of All-weld Metal								
(*) yield strengt tensile stren elongation A impact work (*) <i>u</i> untrea	th R _e N/mm gth R _m N/m $(L_0 = 5d_0)$ ISO-V KV ted, as-we	² : 1m ² : %: / J + /ded	20 °C:	u 720 1000 12 22	a 680 770 19 90	(≥ 530) (≥ 620) (≥ 17) (≥ 47)	v 500 630 20 155	

a annealed 680 °C/8 h/furnace down to 300 °C/air

v guenched/tempered 940 °C/0.5 h/oil + 720 °C/12 h/furnace down to 300 °C/air

Operating Data

1	re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification:	ø mm 4.0 5.0	L mm 450 450	amps A 130 - 180 180 - 230	=+	
·>	FOX DCMV 9018-G F Z CrMoV1 B	0.0	400	100 200		

Preheat and interpass temperatures 300-350 °C, stress relieving > 20 °C below the tempering temperature of the cast steel, but not less than 680 °C.

Base Materials

similar alloyed high temperature steels and cast steels

1.7706 G17CrMoV5-10

Approvals and Certificates

TÜV-D (6077.), UDT, LTSS, SEPROZ

EN 1599-1997: E MoV B 4 2 H5 AWS A5 5-96 E9018-G

BÖHLER FOX DMV 83 Kb

SMAW stick electrode, low-alloved, high temperature

Description

Basic coated core wire alloyed stick electrode with special suitability for 14MoV6-3 (1/2 Cr 1 Mo) steels. Approved in long- term condition up to +580 °C service temperature. Crack resistant and ductile deposit. low hydrogen content, Good weldability in all positions except vertical down. Metal recovery approx. 115 %.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Mo	V
wt-%	0.05	0.4	1.1	0.4	0.9	0.5

Mechanical Properties of All-weld Metal

(*)	а		v	
yield strength R _e N/mm ² :	510	(≥ 470)	410	(≥ 380)
tensile strength R _m N/mm ² :	660	(≥ 610)	580	(≥ 540)
elongation A ($L_0 = 5d_0$) %:	22	(≥ 20)	26	(≥ 24)́
impact work ISO-V KV J + 20 °C:	200	(≥ 110)́	150	(≥ 110)́
(*) a appealed 720 °C/2 h/furnace down to 2	no octair			` '

(°) a annealed 720

a annealed 720 °C/2 h/turnace down to 300 °C/air v auenched/tempered 940 °C/0.5 h/oil + 730 °C/0.5 h/turnace down to 300 °C/air

Operating Data

t →	re-drying if necessary: 300 - 350 °C, min. 2 h	ø mm 2.5	L mm 250	amps A 70 - 100	=+
' →	electrode identification:	3.2	350	110 - 140	
	FOX DMV 83 Kb 9018-G E MoV B	4.0	350	140 - 180	

Preheating and interpass temperatures 200-300 °C. Post weld heat treatment at 700-720 °C for at least 2 hours followed by cooling in furnace down to 300 °C and still air.

Base Materials

similar alloved high temperature steels and cast steels

1.7715 14MoV6-3. 1.7733 24CrMoV5-5. 1.7709 21CrMoV5-7. 1.8070 21CrMoV5-11. 1.7706 G17CrMoV5-10.

ASTM A389 Gr. C23 a. C24: A405 Gr. P24: UNS I21610

Approvals and Certificates

TÜV-D (1094.), TÜV-A (119), UDT, SEPROZ

Same Alloy Filler Metals

GTAW rod:	DMV	83-IG
GMAW solid wire:	DMV	83-IG
EN 1599-1997 E CrMo2 B 4 2 H5 AWS A5.5-96: E9018-B3H4R

BÖHLER FOX CM 2 Kb

SMAW stick electrode. low-alloved.

high temperature

Description

Basic coated electrode for 21/4 % Cr 1% Mo alloyed boiler, plate and tube steels. Approved in long- term condition up to +600 °C service temperature. Core wire alloved electrode which will provide reliable creep rupture properties for the whole service life of a boiler plant.

Crack resistant and ductile deposit, high creep rupture strength, low hydrogen content (acc. AWS condition HD < 4 ml/100 q). Good weldability in all positions except vertical down. Deposit is nitridable and heat treatable. Metal recovery approx. 115 %. Brucato \leq 15 ppm.

Typical Composition of All-weld Metal									
wt-%	С 0.07	Si 0.3	Mn 0.8	Cr 2.3	Mo 1.0	P ≤ 0.010	As < 0.005	Sb ≤ 0.005	Sn ≤ 0.005
Mechanical Properties of All-weld Metal									
(*) a v a2 yield strength R _* N/mm ² : 510 (\geq 440) 480 (\geq 400) (\geq 530) tensile strength R _* N/mm ² : 640 (\geq 570) 620 (\geq 570) (\geq 620) elongation A (L ₀ = 564) %: 22 (\geq 20) 21 (\geq 18) (\geq 17) impact work ISO-V KV J + 20 °C: 180 (\geq 100) 180 (\geq 100) (*) a annealed 720 °C/2 h/furnace down to 300 °C/air a2 annealed, 700 °C/1 h/furnace down to 200 °C/air v quenched/tempered, 930 °C/0.5 h/oil + 730 °C/0.5 h/furnace down to 300 °C/air									
Ope	rating D	Data							

re-drying if necessary: 300 · 350 °C, min. 2 h electrode identification: FOX CM 2 Kb 9018-B3 E CrMo2 B	ø mm 2.5 3.2 4.0 5.0	L mm 250 350 350/450 450	amps A 80 - 110 100 - 140 130 - 180 180 - 230	=+
---	----------------------------------	--------------------------------------	---	----

Preheating and interpass temperatures 200-350 °C. Post weld annealing at 700-750 °C at least 1 hour followed by cooling in furnace down to 300 °C and still air.

Base Materials

high temperature steels and similar alloved cast steels. QT-steels similar alloved up to 980 N/mm² tensile strength, similar alloyed case hardening steels, nitriding steels

1.7380 10CrMo9-10, 1.8075 10CrSiMoV7, 1.7379 G17CrMo9-10

ASTM A335 Gr. P22: A217 Gr. WC 9

Approvals and Certificates

TÜV-D (0722.), DB (10.014.30), ÜZ (10.014/3), ÖBB, TÜV-A (13), ABS (E 9018-B3), CL (0908), DNV (NV 2.25Cr 1Mo), FI (E CrMo2 B 42 H5), GL (10 CrMo 9 10), UDT, VUZ, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX CM 2 Ti	GMAW solid wire:
GTAW rod:	CM 2-IG	SAW combination:

CM 2-IG CM 2-UP/BB 24 EN 1599:1997: AWS A5.5: 1996: E ZCrWV 2 1.5 B42 H5 E9018-G BÖHLER FOX P 23

low-alloyed, high temperature

Description

Basic coated core wire alloyed stick electrode for welding bainitic steels such as P23/T23 (ASTM A 213, code case 2199), pipe material. For high quality welds, which will provide reliable creep rupture properties for the whole service life of a boiler plant.

Typical Composition of All-weld Metal									
wt-%	C	Si	Mn	Cr	W	V	Nb		
	0.06	0.2	0.5	2.3	1.5	0.22	0.04		

Mechanical Properties of All-weld Metal

(*) yield strength R _° N/mm ² : tensile strength R _m N/mm ² : elongation A (L==56) %: impact work ISO V KV	a 520 620 19	(≥ 400) (≥ 510) (≥ 17)
impact work ISO-V KV J	130	(≥ 47)

(*) a annealed 740°C/2 h

Operating Data

L

-	re-drying if necessary: 300-350°C, min. 2 h	ø mm 2.5	L mm 250	amps A 80-110	=+
→	electrode identification: FOX P 23 9018-G E ZCrWV 2 1.5 B	3.2 4.0	350 350	100-140 130-180	

Preheat and interpass temperature depends on wall thickness.

Base Materials

HCM2S, P/T23 ASTM A 213 code case 2199

Approvals and Certificates

TÜV-D (applied)

GTAW rod:	P 23-IG
SAW combination:	P 23-UP/BB 430

EN 1599:1997: EZ CrMoVNbB 21 B42 H5 AWS A5.5:1996: E 9018-G

BÖHLER FOX P 24

SMAW stick electrode low-alloyed, high temperature

Description

Basic coated core wire alloyed stick electrode for welding bainitic steels like 7CrMoVTiB10-10. For high quality welds, which will provide reliable creep rupture properties for the whole service life of a boiler plant.

Typical Analysis of All-weld Metal								
wt-%	C	Si	Mn	Cr	Mo	V	Nb	B
	0.08	0.4	0.5	2.4	1.0	0.22	0.03	0.003

Mechanical Properties of All-weld Metal

(*) yield strength R₀ N/mm²: tensile strength R _m N/mm²: elongation A (Lo=5d₀) %: impact work ISO-V KV J	a 560 660 18 100	(≥ 450) (≥ 585) (≥ 15) (≥ 47)
---	------------------------------	--

(*) a annealed 740°C/2 h

Operating Data

->	re-drying if necessary: 300-350°C, min. 2 h	ø mm 2.5	L mm 250	amps A 80-110	-+	
	electrode identification:	3.2	350	100-140		
	FOX P 24 9018-G EZCIMOVNDB 2 1 B	4.0	350	130-180		

Preheat and interpass temperature depends on wall thickness.

Base Materials

7CrMoVTiB10-10, P24 acc. to ASTM A 213 Draft

Approvals and Certificates

TÜV-D (10454.)

GTAW rod:	P 24-IG
SAW combination:	P 24-UP/BB 430

EN 1599:1997: E CrMo 5 B 4 2 H5 AWS A5.5-96: E8018-B6H4R

BÖHLER FOX CM 5 Kb

SMAW stick electrode, high-alloyed,

high temperature

Description

Basic coated core wire alloyed electrode for high temperature steels and steels for hot hydrogen service. Preferably used for X12CrMo5 (5 Cr 0.5 Mo) steels. Approved in long-term condition up to +650 °C service temperature.

High crack resistance, very low hydrogen content (acc. AWS condition HD < 4 ml/100 g). Good weldability in all positions except vertical down. The deposit is heat treatable. Metal recovery approx. 115 %.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Mo
wt-%	0.07	0.4	0.8	5.0	0.5

Mechanical Properties of All-weld Metal

(*)	а		v		a2
yield strength R _e N/mm ² :	520	(≥ 420)	440	(≥ 390)	(≥ 460)
tensile strength Rm N/mm2:	620	(≥ 590)	580	(≥ 570)	(≥ 550)
elongation $A(L_0 = 5d_0)$ %:	21	(≥ 18)	26	(≥ 18)	(≥ 19)
impact work ISO-V KV J + :	20 °C: 90	(≥ 80)	110	(≥ 80)	
(*) a appealed 700 °C/0 h/furnage	dauum ta 000 00	lair			

(*) a annealed 730 °C/2 h/furnace down to 300 °C/air

a2 annealed, 760 °C/1 h/furnace down to 200 °C/air

v quenched/tempered, 960 °C/0.5 h/oil + 730 °C/0.5 h/furnace down to 300 °C/air

Operating Data

t →	re-drying if necessary: 300 - 350 °C, min. 2 h	ø mm 2.5	L mm 250	amps A 70 - 90	=+
 →	electrode identification: FOX CM 5 Kb 8018-B6 E CrMo 5 B	3.2 4.0	350 350	110 - 130 140 - 170	· ·

Preheat and interpass temperatures 300-350 °C. Post weld annealing at 730-760 °C for at least 1 hour followed by cooling in furnace down to 300 °C and still air.

Base Materials

high temperature steels and similar alloyed cast steels, QT-steels similar alloyed up to 1180 N/mm^2 tensile strength.

1.7362 X12CrMo5, 1.7363 GX12CrMo5

ASTM A213 Gr. T5; A217 Gr. C5; A335 Gr. P5

Approvals and Certificates

TÜV-D (0725.), TÜV-A (695), CL (0160), UDT, LTSS, VUZ, SEPROZ

GTAW rod:	CM 5-IG
GMAW solid wire:	CM 5-IG
SAW combination:	CM 5-UP/BB 24

EN 1599:1997: AWS A5.5-96: E CrMo9 B 4 2 H5 E8018-B8

BÖHLER FOX CM 9 Kb

SMAW stick electrode, high-alloyed, high temperature

Description

Basic coated alloyed core wire electrode for high temperature steels and steels for hot hydrogen service, particularly in the petrochemical industry. Preferably used for 9% Cr 1% Mo steels (e.g. X12CrMo9-1). Approved in long-term condition up to + 650 °C service temperature. The weld metal is heat treatable. Metal recovery approx. 115 %.

Detailed information on welding technology available on request.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Мо
wt-%	0.07	0.4	0.7	9.0	1.0

Mechanical Properties of All-weld Metal

(*) yield strength R₀ N/mm²: tensile strength Rm N/mm²:	a 610 730 20	(≥ 550) (≥ 690)	V 600 730	(≥ 550) (≥ 690)
impact work ISO-V KV J + 20 °C:	20 70	(≥ 19) (≥ 55)	100	(≥ 19) (≥ 55)
(*) a annealed, 760 °C/1 h/furnace down to 3	300 °C/air			

v guenched/tempered, 930 °C/10 min/air + 740 °C/2 h/air

Operating Data

	re-drying if necessary: 300 - 350 °C, mind. 2 h electrode identification:	ø mm 2.5 3.2	L mm 250 350	amps A 70 - 90 100 - 130	=+
-	FOX CM 9 Kb 8018-B8 E CrMo9 B	4.0	350	130 - 160	
In a shire of		De et une lei	a contra la la Una su	-+ 740 70000	f

Preheating and interpass temperatures 250-350 °C. Post weld annealing at 710-760°C for at least 1 hr followed by cooling in furnace down to 300 °C and still air.

Base Materials

highly high temperature steels, same alloyed

1.7386 X12CrMo9-1, 1.7388 X7CrMo9-1, 1.7389 GX12CrMo10

ASTM A217 Gr. C12; A 234 Gr. WP9; A335 Gr. P9

Approvals and Certificates

TÜV-D (2183.), TÜV-A (522), UDT, VUZ, SEPROZ

Same Alloy Filler Metals

GTAW rod: CM 9-IG

EN 1599-1997 E CrMo91 B 4 2 H5 AWS A5 5-96 E9015-B9

BÖHLER FOX C 9 MV

SMAW stick electrode, high-alloved. creep resistant

Description

Basic coated core wire alloved electrode suited for high temperature martensitic 9-12 % chromium steels, especially for T 91 and P91 steels and operating temperatures up to +620 °C (approved up to +650 °C). High creep rupture strength and good toughness properties under long term stresses. Low hydrogen content. The electrode is suitable in all positions except vertical down. It features excellent striking and re-striking properties.

Typical Composition of All-weld Metal									
wt-%	C 0.09	Si 0.3	Mn 0.5	Cr 9.0	Ni 0.9	Mo 0.9	Nb 0.05	∨ 0.2	
Mechan	Mechanical Properties of All-weld Metal								
(*) a1 yield strength R _° N/mm ² : 500 (≥ 415) tensile strength R _° N/mm ² : 720 (≥ 585) elongation A (L ₀ = 560) %: 19 (≥ 17) impact work ISO-V KV J + 20 °C: 60 (≥ 41) (*) a1 annealed, 760 °C/2 h/furnace down to 300 °C/air									
Operating Data									

re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification: FOX C 9 MV 9015-B9 E CrMo91 B	ø mm 2.5 3.2 4.0 5.0	L mm 250 350 350 450	amps A 60 - 80 90 - 120 110 - 140 150 - 180	=+
	5.0	450	100 - 100	

Preheating and interpass temperature 200-300 °C. After welding the joint should be cooled down below 80 °C to finish the martensite transformation. A cooling down to room temperature is possible up to a wall thickness of 45 mm. In case of greater wall thickness or complex components the possibility of residual stresses must be considered. The following post weld heat treatment is recommended: annealing 760 °C/min. 2 hrs, max. 10 hrs, heating and cooling rates up to 550 °C max. 150 °C/h, above 550 °C max. 80 °C/h. For optimised toughness values a welding technology should be applied which produces thin welding layers (app. 2 mm).

Base Materials

similar alloyed creep resistant steels

1.4903 X10CrMoVNb9-1

ASTM A199 Gr. T91; A335 Gr. P91 (T91); A213/213M Gr. T91

Approvals and Certificates

TÜV-D (6762.), CL (1267), UDT, SEPROZ

Same Alloy Filler Metals

GTAW rod:	C 9 MV-IG
GMAW wire:	C 9 MV-IG

GMAW solid wire: GMAW metal cored wire: C 9 MV-MC SAW combination:

C 9 MV-IG C 9 MV-UP/BB 910 EN 1599:1997: E Z CrMoWVNb 9 1 1 B 4 2 H5 AWS A5.5-96: E9015-B9 (mod.)

BÖHLER FOX C 9 MVW

SMAW stick electrode, high-alloyed, creep resistant

Description

Basic coated core wire alloyed Cr-Mo-Ni-V-W-Nb-electrode for the welding of high temperature martensitic steels like e.g. X11CrMoWVNb9-1-1 (P911/T911). Approved in long-term condition up to +650 °C service temperature. Good welding properties in all positions except vertical down.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Мо	Ni	W	V	Ν	Nb
wt-%	0.1	0.25	0.7	8.5	1.0	0.7	1.0	0.2	0.05	0.05

Mechanical Properties of All-weld Metal

(*)			а
vield strength R _e N/mm ² :	560	(≥	530)
tensile strength R _m N/mm ² :	720	(≥	700)
elongation A ($L_0 = 5d_0$) %:	15	(≥	15)
impact work ISO-V KV J + 20 °C:	40	(≥	27)
(*) a annealed, 760 °C/2 h/furnace down	to 300 °C/ai	r`	,

Operating Data

†	re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification:	ø mm 3.2 4.0	L mm 350 350	amps A 90 - 120 110 - 140	=+
	FOX C 9 MVW E Z CrMoWVNb 9 1 1 B	5.0	450	150 - 180	

Preheating and interpass temperature 200-300 °C. After welding the joint should be cooled down below 80 °C to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered.

The following post weld heat treatment is recommended: annealing 760 °C/ min. 2 hrs, max. 10 hrs, heating and cooling rates up to 550 °C max. 150 °C/h, above 550 °C max. 80 °C/h. For optimised toughness values a welding technology should be applied which produces thin welding layers (app. 2 mm).

Base Materials

similar alloyed creep resistant steels

1.4905 X11CrMoWVNb9-1-1

ASTM A335 Gr. P911; A213 Gr. T911

Approvals and Certificates

TÜV-D (9176.), UDT, SEPROZ

Same Alloy Filler Metals

GTAW rod: SAW combination: C 9 MVW-IG C 9 MVW-UP/BB 910 EN 1599:1997: E Z CrMoWVNb 9 0,5 2 B 4 2 H5 AWS A5.5-96: E9015-B9(mod.)

BÖHLER FOX P 92

SMAW stick electrode, high-alloyed, creep resistant

Description

Basic coated Cr-Mo-Ni-V-W-Nb alloyed stick electrode suited for welding of high temperature steel 9%Cr-1.5% W-Mo-Nb-N. Approved in long-term condition up to + 650 °C service temperature. The stick electrode features a stable arc, good striking and re-striking properties, low spatter loss and an easy removable slag.

Typical Composition of All-weld Metal											
wt-%	С 0.1	Si 0.3	Mn 0.7	Cr 9.1	Mo 0.55	Ni 0.7	W 1.7	∨ 0.2	N 0.045	Nb 0.05	
Mechanical Properties of All-weld Metal											
(*) yield strength $R_* N/mm^2$: tensile strength $R_* N/mm^2$: elongation $A (L_* = 540) \%$: impact work ISO-V KV J + 20 °C:				a 690 810 19 55	(≥ 560 (≥ 720 (≥ 15 (≥ 4	0) 0) 5) 1)	a2 630 760 20 80 50	a2 (650 230 (≥ 330 22) °C test temp) ₂ 125)		
(*) a annealed 760 °C/2 h/furnace down to 300 °C/air a2 annealed 760 °C/6 h/furnace down to 300 °C/air											

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification:	ø mm 3.2 4.0	L mm 350 350	amps A 90 - 120 110 - 140	=+
	P			

Preheating and interpass temperature 200-300 °C. After welding the joint should cool down below 80 °C, to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered.

The following postweld heat treatment is recommended: Annealing 760 °C/min. 2 hours, max. 10 hours, heating/cooling rate up to 550 °C max. 150 °C/h, above 550 °C max. 80 °C/h. In case of heat treatments less than 2 hours the requirements have to be proved by a procedure test.

For optimised toughness values a welding technology should be applied which produces thin welding layers (approx. 2 mm).

Base Materials

similar alloyed creep resistant steels

NF 616

ASTM A335 Gr. P 92 (T92); A213 Gr. T92

Approvals and Certificates

TÜV-D (9291.), UDT, SEPROZ

Same Alloy Filler Metals

GTAW rod: P 92-IG

SAW combination:

P 92-UP/BB 910

High Temperature and Creep-resistant Filler Metals - SMAW Stick Electrodes

EN 1599-1997 E CrMoWV 12 B 4 2 H5

BÖHLER FOX 20 MVW

SMAW stick electrode, high-alloved. creep resistant

Description

Basic coated, core wire alloved electrode for high temperature, heat treatable 12 % chromium steels in turbine and boiler construction as well as in the chemical industry. Preferably used for X20CrMoV12-1. Approved in long-term condition up to +650 °C service temperature.

High creep rupture strength and excellent toughness under long term stresses. Optimum chemical composition ensures a high quality weld metal. Low hydrogen content (HD < 5 ml/100 g). Good weldability in all positions except vertical down. The weld metal deposit is heat treatable.

Metal recovery approx, 115 %.

Typical Composition of All-weld Metal

C Si Mn Cr Ni Mo V W wt-% 0.18 0.3 0.6 11.0 0.6 1.0 0.3 0.5		-								
	wt-%	C 0.18	Si 0.3	Mn 0.6	Cr 11.0	Ni 0.6	Mo 1.0	∨ 0.3	W 0.5	

Mechanical Properties of All-weld Metal

(*)	a	V	(> 550)
vield strength B. N/mm ²	610 (> 5	90) 590	
tensile strength R_m N/mm ² :	800 (≥ 7	00) 790	(≥ 330) (≥ 740)
elongation A ($L_0 = 5d_0$) %:	18 (≥	15) 18	(≥ 15)
	45 (>	35) 45	(≥ 35)
(*) a appealed 760 °C/4 b/furnace down to	200 °C/furnaga	down to 200 °C /oir	(≥ 00)

down to 300 °C/turnace down to 300 °

v quenched/tempered 1050 °C/0.5 h/oil + 760 °C/2 h/furnace down to 300 °C/air

Operating Data

re-drying if necessary: 300 - 350 °C, min. 2 h electrode identification:	ø mm 2.5 3.2	L mm 250 350	amps A 60 - 80 90 - 120	=+
FOX 20 MVW E CrMoWV12 B	4.0	350	110 - 140	
	5.0	450	150 - 180	

Preheating and interpass temperatures 400-450 °C (austenitic welding) or 250-300 °C (martensitic welding). Root passes should principally be welded in the martensitic range. Lower preheat and interpass temperatures are possible, yet must be approved by practical welding tests and process qualification tests.

After welding cooling down to 90±10 °C, followed by tempering at 720-760 °C for three minutes / mm wall thickness (at least for 2 hours). Tempering, if specified, at 1050 °C for 1/2 hour/oil and annealing at 760 °C for 2 hours

Base Materials

similar alloyed creep resistant steels

1.4922 X20CrMoV12-1, 1.4935 X20CrMoWV12-1, 1.4923 X22CrMoV12-1, 1.4913 X19CrMoVNb11-1 (Turbotherm, 20 MVNb), 1.4931 GX22CrMoV12-1

Approvals and Certificates

TÜV-D (01082.), KTA 1408 1 (8088.00), DB (10.014.31), ÜZ (10.014/3), ÖBB, TÜV-A (81), CL (0218), UDT, LTSS, SEPROZ

GTAW rod:	20 MVW-IG
SAW combination:	20 MVW-UP/BB 24

High Temperature and Creep-resistant Filler Metals - SMAW Stick Electrodes

EN 1600: E Z 16 13 Nb B 4 2 H5

BÖHLER FOX CN 16/13

SMAW stick electrode, high-alloyed,

creep resistant

Description

Basic coated core wire alloyed electrode for high quality weld joints in high efficiency boilers and turbine components. Approved in long-term condition up to +800 °C. Fully austenitic weld deposit. Insusceptible to embrittlement and resistant to hot cracking.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Nb
wt-%	0.15	0.4	3.6	16.0	13.0	1.5

Mechanical Properties of All-weld Metal

(*)		u	
yield strength R _e N/mm ² :		450	(≥ 300)
tensile strength Rm N/mm2:		600	(≥ 550)
elongation $A(L_0 = 5d_0)$ %:		31	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	55	(≥ 50)
(*) u untreated as-welded			. ,

Operating Data

★ ◆	re-drying if necessary: 250 - 300 °C, min. 2 h electrode identification: EOX CN 16(13 E Z 16 13 Nb B	ø mm 2.5 3.2	L mm 250 350	amps A 60 - 80 80 - 110	=+	
	FUX CN 10/13 E Z 10 13 NU D	4.0	350	110 - 140		

Preheating is not required, only in case of wall thickness above 25 mm preheat up to 150 °C. Low heat input is recommended. Interpass temperatures should not exceed 150 °C.

Base Materials

similar alloyed creep resistant steels

1.4961 X8CrNiNb16-13, 1.4910 X3CrNiMoN17-13, 1.4981 X8CrNiMoNb16-16 1.4988 X8CrNiMoVNb16-13, 1.4878 X12CrNiTi18-9

Approvals and Certificates

TÜV-D (0550.), UDT, SEPROZ

Same Alloy Filler Metals

GTAW rod: CN 16/13-IG

EN 1600:1997: E 19 9 B 4 2 H5 AWS A5.4-92: E308-15

BÖHLER FOX CN 18/11

SMAW stick electrode, high-alloyed, creep resistant

Description

Basic coated, core wire alloyed electrode with controlled delta ferrite content (3-8 FN) for austenitic CrNi steels with increased carbon contents (e.g. 1.4948 / 304H), in the boiler, reactor and turbine fabrication. Approved in long-term condition up to +700 °C service temperature (300 °C in the case of wet corrosion). Resistant to hot cracking, scaling and corrosion. Excellent weldability in all positions except vertical down. Also suitable for German material no. 1.4551 and no. 1.4550, which are approved for temperatures up to +550 °C.

Typical Composition of All-weld Me	etal
------------------------------------	------

wt-%	C	Si	Mn	Cr	Ni	FN
	0.05	0.3	1.3	19.0	10.3	3-8

Mechanical Properties of All-weld Metal

(*)		u	
vield strength R _e N/mm ² :		420	(≥ 350)
tensile strength Rm N/mm2:		580	(≥ 550)
elongation A (L ₀ = 5d ₀) %:		40	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	85	(≥ 70)
(*) untreated as-welded			

Operating Data

re-drying if necessary: 250 - 300 °C, min. 2 h electrode identification: FOX CN 18/11 308-15 F 19 9 B	ø mm 2.5 3.2 4 0	L mm 250 350 350	amps A 50 - 80 80 - 100 110 - 140	=+
FOX GN 10/11 300-13 L 19 9 D	4.0	330	110 - 140	

Preheating is not required, only in case of wall thickness above 25 mm preheat up to 150 °C Interpass temperature should not exceed 200 °C.

Base Materials

similar alloyed creep resistant steels

1.4948 X6CrNi18-11, 1.4949 X3CrNiN18-11 AISI 304H, 321H, 347H

Approvals and Certificates

TÜV-D (0138.), KTA 1408 1 (8067.00), TÜV-A (447), CL (0332), UDT, LTSS, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick algebrades		CMAW flux cored wire:	
SIVIAW SLICK Electrode.	FUX E 300 H	GIVIAW Hux cored wire.	E 300 H-FD
GTAW rod:	ER 308 H-IG		E 308 H PW-FD
	CN 18/11-IG	SAW combination:	CN 18/11-UP/BB 202
GMAW solid wire:	CN 18/11-IG		

EN 1600:1997: E 19 9 H R 4 2 H5 AWS A5.4-92: E308H-16

BÖHLER FOX E 308 H

SMAW stick electrode, high-alloyed,

creep resistant

Description

Rutile-basic coated, core wire alloyed electrode for the use of high temperature CrNi austenitic steel for service temperatures up to +700 °C. Specially designed for the base metal AISI 304H (W. no. 1.4948). Controlled ferrite content of 3-8 FN. The deposit is insusceptible to embrittlement and scaling. Excellent weldability in all position except vertical down.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Mo	FN
wt-%	0.05	0.6	0.7	19.4	10.4	0.2	3-8

Mechanical Properties of All-weld Metal

(*)		u	
yield strength R _e N/mm ² :		420	(≥ 350)
tensile strength R _m N/mm ² :		580	(≥ 550)
elongation $A(L_0 = 5d_0)$ %:		40	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	75	(≥ 47)
(*) u untreated, as-welded			. ,

Operating Data

<u>↑</u>	re-drying if necessary: 120 - 200 °C, min. 2 h	ø mm 2.5	L mm 300	amps A 45 - 75	=+
' →	electrode identification:	3.2	350	70 - 110	
	FOX E 308 H-16 E 19 9 H R	4.0	350	110 - 145	
			000	110 - 145	150.00

Preheating is not required, only in case of wall thickness above 25 mm preheat up to 150 °C, Interpass temperature should not exceed 200 °C.

Base Materials

similar alloyed creep resistant steels

1.4948 X6CrNi18-11, 1.4878 X12CrNiTi18-9

AISI 304, 304H, 321H, 347H

Approvals and Certificates

UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 18/11	GMAW flux cored wire:	E 308 H-FD
GTAW rod:	ER 308 H-IG		E 308 H PW-FD
GMAW solid wire:	CN 18/11-IG CN 18/11-IG	SAW combination:	CN 18/11-UP/BB 202

EN 1600: 1997: E 19 9 AWS A5.4-92: E 347

E 19 9 Nb B E 347-15 BÖHLER FOX E 347 H

SMAW stick electrode high-alloyed, creep resistant

Description

Basic coated, core wire alloyed electrode for the use of high temperature CrNi austenitic steel for service temperatures exceeding +400 °C. Specially designed for the base metal AISI 347H. Controlled ferrite content of 3-8 FN. The deposit is less susceptible to embrittlement and is scaling resistant. Excellent weldability in all position except vertical down.

Typical Composition of All-weld Metal									
wt-%	С 0.05	Si 0.3	Mn 1.3	Cr 19.0	Ni 10.0	Nt ≥8x	c :	FN 3-8	
Mechanic	al Prop	erties	of All-we	eld Me	tal				
Operating	g Data								
	re-drying – electrode FOX E 3	if necess identifica 47 H-15 I	sary: ation: E 19 9 Nb B	ør 2. 3. 3. 4.	nm L 5 2 0	300 350 350	amps A 50- 80 75-110 110-145	=+	
Base Materials									

similar alloyed creep resistant steels AISI 347H, AISI 321H

Approvals and Certificates

-

EN 12070:1999: W Mo Si EN 1668:1997: W2Mo (for rod) EN 1668:1997: W 46 3 W2Mo AWS A5.28-96: ER70S-A1 (ER80S-G) W.Nr.: 1.5424 BÖHLER DMO-IG

GTAW rod, low-alloyed, high temperature (high strength)

Description

Copper coated GTAW rod for welding in boiler, pressure vessel, pipeline, and crane construction as well as in structural steel engineering. Very tough deposit of high crack resistant, non-ageing. Recommended for the temperature range from -30 °C to +500 °C. Good copper bonding with low total copper content. Very good welding and flow characteristics.

Typical Composition of Welding Rod

	С	Si	Mn	Мо
wt-%	0.1	0.6	1.2	0.5

Mechanical Properties of All-weld Metal

(*)		u		а	
vield strength R _e N/mm ² :		520	(≥ 480)	480	(≥ 400)
tensile strength R _m N/mm ² :		630	(≥ 570)́	570	(≥ 515)
elongation A (L ₀ = 5d ₀) %:		27	(≥ 23)	26	(≥ 19)́
impact work ISO-V KV J	+ 20 °C:	200	(≥ 180)́	230	(≥ 200)
	- 30 °C:		(≥ 47)́		· · ·

(*) u untreated, as-welded – shielding gas Argon a annealed, 620 °C/1 h/furnace down to 300 °C/air – shielding gas Argon

Operating Data

shielding gas: 100 % Argon	ø mm	
	1.6	
rod marking:	2.0	
front: WMoSi	2.4	
back: 1.5424	3.0	
	32	

Preheat, interpass temperature and post weld heat treatment as required by the base metal. For high strength applications please consult us.

Base Materials

similar alloyed high temperature steels and cast steels, ageing resistant and steels resistant to caustic cracking

16Mo3, S355J2G3, L320 - L415NB, L320 MB - L415MB, P255G1TH, P235GH, P265GH, P295GH, P310GH, P255NH, 17MnMoV6-4, 22NiMoCr4-7, 20MnMoNi5-5, 15NiCuMoNb5, 20MnMoNi4-5, GE240 - GE300, 22Mo4, S255N - S460N, P255NH - P460NH

ASTM A335 Gr. P1; A161-94 Gr. T1; A182M Gr. F1; A204M Gr. A, B, C; A250M Gr. T1; A217 Gr. WC1

Approvals and Certificates

TÜV-D (0020.), KTA 1408 1 (8066.02), DB (42.014.09), ÜZ (42.014), ÖBB, TÜV-A (75), BV (UP), CL (0483), DNV (I YMS), FI (W MoSi), UDT, CRS (3)

-			
SMAW stick electrode:	FOX DMO Kb	SAW combination:	EMS 2 Mo/BB 24
	FOX DMO Ti		EMS 2 Mo/BB 25
GMAW solid wire:	DMO-IG	Gas welding rod:	DMO

EN 12070:1999:	W CrMo1 Si
AWS A5.28-96:	ER80S-G
	ER80S-B2 (mod.)
W.Nr.:	1.7339

BÖHLER DCMS-IG

GTAW rod, low-alloyed, high temperature

Description

GTAW rod for 1.25 % Cr 0.5 % Mo alloyed boiler, plate and tube steels as well as for the welding of quenched and tempered and case hardening steels. Preferably used for the steels 13CrM04-5 or ASTM A335 P11/P12. Approved in long-term condition up to + 570 °C service temperature. The deposit is noted for its good mechanical properties and good toughness. Further, good resistance to cracking, when attacked by caustic soda, and the fact that it is suitable for nitriding, quenching and tempering are additional features. The values of the creep rupture strength lay within the scatter band of the material 13CrM04-5. Brucato \leq 15 ppm. Very good operating characteristics.

Typical Composition of Welding Rod										
wt-%	C 0.11	Si 0.6	Mn 1.0	Cr 1.2	Mo 0.5	P ≤ 0.012	As ≤ 0.010	Sb ≤ 0.005	Sn ≤ 0.006	
Мес	Mechanical Properties of All-weld Metal									
(*) yield s tensile elonga impac a1 ar a2 an	strength R strength ation A (Lo t work ISC anealed, 6 nealed, 62	∝ N/mm²: R _™ N/mm³ = 5d₀) %: D-V KV J 80 °C/2 h 20 °C/1 h/	2: + 2 /furnace c furnace de	0 °C: lown to 30 own to 32	a1 490 590 25 250 00 °C/air 0 °C/air	(≥ 440) (≥ 520) (≥ 22) (≥ 47) r – shieldir – shieldir	ng gas Ar ng gas Ar	a2 510 520 22 200 rgon rgon	(≥ 470) (≥ 550) (≥ 19)	

Operating Data

↓	shielding gas: 100 % Argon	ø mm	
		1.6	=-
' →→	rod marking:	2.0	
	front: W CrMo1 Si	2.4	
	back: 1.7339	3.0	

Preheat, interpass temperature and post weld heat treatment as required by the base metal. Preheating and interpass temperature for 13CrMo4-5 (P11/P12), 200-250 °C. Tempering at 660-700 °C at least 1/2 hr followed by cooling in furnace down to 300 °C and still air.

Base Materials

similar alloyed high temperature steels and cast steels, case hardening and nitriding steels of similar chemical composition, steels resistant to caustic cracking

1.7335 13CrMo4-5, 1.7205 15CrMo5, 1.7225 42CrMo4, 1.7728 16CrMoV4, 1.7218 25CrMo4, 1.7258 24CrMo5, 1.7354 G22CrMo5-4, 1.7357 G17CrMo5-5

ASTM A193 Gr. B7; A217 Gr. WC6; A335 Gr. P11 a. P 12

Approvals and Certificates

TÜV-D (0727.), TÜV-A (91), FI (W CrMo1Si), UDT, SEPROZ

SMAW stick electrode:	FOX DCMS Kb	SAW combination:	EMS 2 CrMo/BB 24
	FOX DCMS Ti		EMS 2 CrMo/BB 25
GMAW solid wire:	DCMS-IG	Gas welding rod:	DCMS

EN 12070-1999: W MoV Si AWS A5.28-96: ER80S-G W Nr · 1 5407

BÖHLER DMV 83-IG

GTAW rod, low-alloved, high temperature

Description

GTAW rod specially designed for the base metal 14MoV6-3 (1/2 Cr 1/2 Mo 1/4 V). Approved in long-term condition up to +560 °C service temperature. Tough, cracking resistant deposit with good creep rupture strength.

Typical Composition of Welding Rod									
wt-%	С 0.08	Si 0.6	Mn 0.9	Cr 0.45	Mo 0.85	V 0.35			
Mechanical Properties of All-weld Metal									
(*) yield stre tensile st	ength R₀ N/m rength R _∞ N	nm²: /mm²:		a 520 670	(≥ 470) (≥ 580)				

elongation A ($L_0 = 5d_0$) %: 24 (≥ 20) impact work ISO-V KV J + 20 °C: 220 (≥ 47)

(*) a annealed, 700 °C/2 h/furnace down to 300 °C/air - shielding gas Argon

Operating Data

shielding gas: 100 % Argon ø mm

24

rod marking: front - W MoV Si

back: 1 5407

Preheating and interpass temperatures 200-300 °C. Tempering at 700-720 °C at least 2 hrs followed by cooling in furnace down to 300 °C and still air.

Base Materials

similar alloyed high temperature steels and cast steels

1.7715 14MoV6-3, 1.7733 24CrMoV5-5, 1.7709 21CrMoV5-7, 1.8070 21CrMoV5-11, 1.7706 G17CrMoV5-10.

ASTM A389 Gr. C23 a. C24: A405 Gr. P24: UNS I21610

Approvals and Certificates

TÜV-D (1093.), TÜV-A (120), UDT, LTSS, SEPROZ

SMAW stick electrode:	FOX DMV 83 Kb
GTAW rod:	DMV 83-IG
GMAW solid wire:	DMV 83-IG

EN 12070:1999: W CrMo2 Si AWS A5.28-96: ER90S-G ER90S-B3(mod.) W.Nr.: 1.7384 **BÖHLER CM 2-IG**

GTAW rod, low-alloyed, high temperature

Description

GTAW rod for 2.25 Cr 1 % Mo alloyed boiler, plate and tube steels as well as in oil refineries. Preferably used for base metal 10CrMo9-10 (ASTM A335 P22). Approved in long-term condition up to +600 °C service temperature. Also for similarly alloyed quenched and tempered steels as well as case hardening steels. The weld metal meets all prerequisites for reliable long term creep properties without embrittlement due to very low content of trace elements. Brucato ≤ 15 pm. Very good operating characteristics.

Typical Composition of Welding Rod									
wt-%	С	Si	Mn	Cr	Mo	P	As	Sb	Sn
	0.06	0.7	0.95	2.6	1.0	≤ 0.010	≤ 0.010	≤ 0.005	≤ 0.006

Mechanical Properties of All-weld Metal

(*)	a			
yield strength R _e N/mm ² :	47	0 (≥4	20)	
tensile strength Rm N/mm ² :	60	0 (≥5	520)	
elongation A ($L_0 = 5d_0$) %:	2	3 (≥	22)	
impact work ISO-V KV J	+ 20 °C: 19	0 (≥	47)	
(*) a annealed, 720 °C/2 h/furn	ace down to 300	°C/air – s	hielding gas	Argon

Operating Data

	shielding gas: 100 % Argon	ø mm
		1.6
	rod marking:	2.0
_	front: W CrMo2 Si	2.4
	back: 1 7384	3.0

Preheating and interpass temperature 200-350 °C. Tempering at 700-750 °C at least 1 hr followed by cooling in furnace down to 300 °C and still air.

Base Materials

high temperature steels and similar alloyed cast steels, similar alloyed case hardening steels, nitriding steels

1.7380 10CrMo9-10, 1.8075 10CrSiMoV7, 1.7379 G17CrMo9-10

ASTM A335 Gr. P22; A217 Gr. WC 9

Approvals and Certificates

TÜV-D (1564.), TÜV-A (89), CL (0899), FI (W CrMo2Si), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX CM 2 Kb

GMAW solid wire: SAW combination:

CM 2-IG CM 2-UP/BB 24 EN 12070:1999: AWS A5.28:1996 E ZCrWV 21,5 B42 H5 ER90S-G **BÖHLER P 23-IG**

GTAW rod low-alloyed, high temperature

Description

For manual or automatic GTAW-welding of creep resistant steels such as HCM2S (P23/T23 acc. to ASTM A 213 code case 2199), pipe or tube material.

Ту	Typical Composition of Welding Rod									
wt-9	6	С 0.07	Si 0.3	Mn 0.5	Cr 2.2	W 1.7	V 0.22	Nb 0.05	N 0.01	B 0.002
Ме	Mechanical Properties of All-weld Metal									
(*) yield strength $R_{\rm e}$ N/mm ² : tensile strength $R_{\rm m}$ N/mm ² : elongation A (L ₀ =5d.) %: impact work ISO-V KV J				58 65 1	u 85 60 15	a 450 585 17 120				
(*) u untreated, as-welded – shieldir a annealed 740°C/2 h			ing gas Ai	rgon						

Operating Data

Shielding gas: 100% Argon rod marking: W Cr2WV/T23	ømm 1.0 1.2 1.6 2.0 2.4 3.2	L mm 1000 1000 1000 1000	Spools BS300 BS300	=-
---	---	--------------------------------------	--------------------------	----

Base Materials

HCM2S, P/T23 ASTM A 213 code case 2199

Approvals and Certificates

TÜV-D (applied)

SMAW stick electrode:	FOX P 23
SAW combination:	P 23-UP/BB 430

EN 12070:1999: AWS A5.28:1996 W Z CrMoV 2 E 90S-G BÖHLER P 24-IG

GTAW rod low-alloyed, high temperature

Description

For manual or automatic GTAW-welding of creep resistant steels such as 7CrMoVTiB10-10 (P24/T24 acc. to ASTM A 213 Draft), pipe or tube material.

Typical	Comp	ositior	n of We	lding F	lod				
wt-%	C 0.10	Si 0.25	Mn 0.55	Cr 2.5	Mo 1.0	Nb 0.05	V 0.22	Ti 0.002	B 0.002
Mechan	Mechanical Properties of All-weld Metal								
(*) yield strengten tensile strengtion elongation impact wor	gth R₀ N/ ength R _∞ A (L₀=5d 1k ISO-V	/mm²: N/mm²: b) %: KV J		60 70 1	u 0 5 0	a 540 620 20 120			

(*) u untreated, as-welded – shielding gas Argon

a annealed 740 °C/2 h

Operating Data

ihielding gas: 00% Argon od marking: ├─ W CrMoVTiB/T24	ømm 1.0 1.2 1.6 2.0 2.4 3.2	L mm 1000 1000 1000	Spools BS300 BS300	=-
	0.2	1000		

Preheat and interpass temperature depends on wall thickness.

Base Materials

7CrMoVTiB10-10, P24 acc. to ASTM A 213 Draft

Approvals and Certificates

TÜV (10455.)

Same Alloy Filler Metals

SMAW stick electrode: FOX P 24 SAW combination: P 24-UP/BB 430 EN 12070:1999: W CrMo5 Si AWS A5.28-96: ER80S-B6 W.Nr.: 1.7373

BÖHLER CM 5-IG

GTAW rod, high-alloyed, high temperature

Description

GTAW rod for 5 % Cr 0.5 % Mo steels and steels for hot hydrogen service, particularly for application in oil refineries and the base metals X12CrMo5 / P5. Approved in long-term condition up to +650 °C service temperature.

Typical	Compo	osition	of Weldi	ng Rod	
wt-%	C	Si	Mn	Cr	Mo
	0.08	0.4	0.5	5.8	0.6

Mechanical Properties of All-weld Metal

(*)	а			
yield strength R _e N/mm ² :	510 (≥ 470)	
tensile strength R _m N/mm ² :	620 (≥ 550)	
elongation A ($L_0 = 5d_0$) %:	20 (≥ 18)	
impact work ISO-V KV J + :	20 °C: 200 (≥ 47)	
(*) a annealed, 730 °C/2 h/furnace	e down to 300 °C/air	– shie	lding gas	Argon

Operating Data

Í	
μ	

shielding gas: 100 % Argon	ømm
rod marking:	1.6 2.0
front: 🔶 W CrMo5 Si	2.4
back FR80S-R6	30

Preheating and interpass temperatures 300-350 °C. Tempering at 730-760 °C at least 1 hr followed by cooling in furnace down to 300 °C and still air.

Base Materials

high temperature steels and similar alloyed cast steels 1.7362 X12CrMo5, 1.7363 GX12CrMo5 ASTM A213 Gr. T5; A217 Gr. C5; A335 Gr. P5

Approvals and Certificates

TÜV-D (0724.), TÜV-A (524), UDT, SEPROZ

SMAW stick electrode:	FOX CM 5 Kb
GMAW solid wire:	CM 5-IG
SAW combination:	CM 5-UP/BB 24

EN 12070:1999: W CrMo9 Si AWS A5.28-96: ER80S-B8

BÖHLER CM 9-IG

GTAW rod, high-alloyed, high temperature

Description

GTAW rod for 9 % Cr 1 % Mo high temperature steels and steels for hot hydrogen service, particularly for application in oil refineries and the base metals X12CrMo9-1 (P9). Approved in long-term condition up to +600 °C service temperature.

Typica	I Compo	sition o	of Weldir	ng Rod		
wt-%	0.07	Si 0.5	Mn 0.5	Cr 9.0	Mo 1.0	
					-	

Mechanical Properties of All-weld Metal

(*)	а			
yield strength R _e N/mm ² :	530	(≥ 45	50)	
tensile strength R _m N/mm ² :	670	(≥ 60) (OC	
elongation $A(L_0 = 5d_0)$ %:	24	(≥ '	18)	
impact work ISO-V KV J +	20 °C: 250	(≥ 4	47)	
(*) a annealed, 760 °C/2 h/furnad	ce down to 300 °C	/air`– sł	nielding g	as Argon

Operating Data

1	
I	

shielding gas: 100 % Argon	ø mm	
	1.6	
rod marking:	2.0	
front: W CrMog Si	2.4	

=-

back: ER80S-B8 Preheating and interpass temperature 250-350 °C. Tempering at 710-760 °C for at least 1 hr followed by cooling in furnace down to 300 °C/air. For detailed information about the welding technology please contact our service departments.

Base Materials

similar alloyed creep resistant steels

1.7386 X12CrMo9-1, 1.7388 X7CrMo9-1, 1.7389 GX12CrMo10

ASTM A217 Gr. C12; A 234 Gr. WP9; A335 Gr. P9

Approvals and Certificates

TÜV-D (2182.), TÜV-A (523), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX CM 9 Kb

EN 12070:1999: W CrMo91 AWS A5.28-96: ER90S-B9 W.Nr.: 1.4903

BÖHLER C 9 MV-IG

GTAW rod, high-alloyed, creep resistant

Description

GTAW rod for high temperature, creep resistant martensitic 9-12 % chromium steels. Especially designed for the ASTM steels T91/P91. Approved in long-term condition up to +650 °C service temperature.

Typical Composition of Welding Rod									
wt-%	C 0.12	Si 0.3	Mn 0.5	Cr 9.0	Ni 0.7	Mo 0.9	V 0.2	Nb 0.055	
Mechanical Properties of All-weld Metal									
(*) yield streng tensile streng elongation impact wor (*) a anne	gth R₀ N/m ngth R _™ N A (L₀ = 5d k ISO-V ∤ <i>aled, 760</i>	1m²: /mm²: ₀) %: ⟨V J ° <i>C/2 h/furn</i>	+ 20 °C: hace down i	a 660 760 17 55 to 300 °C/a	(≥ 520) (≥ 620) (≥ 16) (≥ 50) air - shieldi	ng gas Ar	gon		
Operati	ng Data	1							

shielding gas: 100 % Argon rod marking: front: WCrMo91 back: EB 905-B9	ømm 2.0 2.4 3.0	=-
back: ER 90S-B9		

Preheating and interpass temperature 200-300 °C. After welding, the weld joint should cool down below 80 °C to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered. The following post weld heat treatment is recommended: annealing 760 °C/min. 2 hrs, max. 10 hrs, heating and cooling rates below 550 °C max. 150 °C/hr, above 550 °C max. 80 °C/hr. For optimised toughness values a welding technology should be applied which produces thin welding layers (approx. 2 mm).

Base Materials

similar alloyed creep resistant steels

1.4903 X10CrMoVNb9-1

ASTM A199 Gr. T91; A335 Gr. P91; A213/213M Gr. T91

Approvals and Certificates

TÜV-D (07106.), CL (1225), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX C 9 MV GMAW solid wire: C 9 MV-IG GMAW metal cored wire: C 9 MV-MC SAW combination: C 9 MV-UP/BB 910 EN 12070: 1999: W Z CrMoWVNb 911 AWS A5.28-96: ER90S-B9(mod.)

BÖHLER C 9 MVW-IG

GTAW rod, high-alloyed, creep resistant

Description

GTAW-rod for high temperature, creep resistant martensitic 9 % chromium steels, especially designed for the steel P 911 according to ASTM A335. Approved in long-term condition up to +650 °C service temperature. Preheating and interpass temperature 200-300 °C. After welding the joint should be cooled down below 80°C to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered. The following post weld heat treatment is recommended: annealing 760 °C/ min. 2 hrs, max. 10 hrs, heating and cooling rates below 550 °C max. 150 °C/h, above 550 °C max. 80 °C/hr. For optimised toughness values a welding technology should be applied which produces thin welding layers (app. 2 mm).

Typical Composition of Welding Rod

wt-%	C	Si	Mn	Cr	Ni	Mo	V	Nb	W	N
	0.11	0.35	0.45	9.0	0.75	0.98	0.2	0.06	1.05	0.04

Mechanical Properties of All-weld Metal

(*)		а	
yield strength R _e N/mm ² :		660	(≥ 560)
tensile strength R _m N/mm ² :		790	(≥ 720)
elongation A (Lo=5do) %:		16	(≥ 15)
impact work ISO-V KV J	+20 °C:	50	(≥ 41)́

(*) a annealed 760 °C/2 h/furnace down to 300 °C/air – shielding gas 100 % Argon

Operating Data

↓ →	Shielding gas:	ø mm 2 0
l_→	front: - E 911	2.4

Base Materials

similar alloyed creep resistant steels 1.4905 X11CrMoWVNb9-1-1, ASTM A335 Gr. P911, A213 Gr. T911

Approvals and Certificates

TÜV-D (9177.), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX C 9 MVW

EN 12070:1999: W Z CrMoWVNb 9 0.5 1.5 AWS A5.28-96: ER90S-B9(mod.)

BÖHLER P 92-IG

GTAW rod, high-alloyed, creep resistant

Description

GTAW rod especially designed for the welding of a 9 % Cr 1.5 % W Mo-Nb-N / P92, NF616-steels. Approved in long-term condition up to +650 °C service temperature.

Typical Composition of Welding Rod										
wt-%	С 0.10	Si 0.4	Mn 0.4	Cr 8.6	Ni 0.6	Mo 0.4	∨ 0.2	Nb 0.05	W 1.5	N 0.05
Mechanical Properties of All-weld Metal										
(*) yield strength Re tensile strength Re elongation A (Lo = impact work ISO- (*) a annealed 7 a2 annealed 7	N/mm ² : M/mm ² : 5d ₀) %: V KV J 60 °C/2 760 °C/6	²: + 20 °C h/furnac	: ce dow	a 710 820 19 77 n to 300 yn to 300	(≥ 5 (≥ 7 (≥ °C/air 2°C/air	560) 720) 15) 41) – shiel r – shiel	a2 650 770 20 70 ding gas	a2 (6 230 340 21 : Argon	50 °C t (≥ 125	est temp.))

Operating Data

	shielding gas: 100 % Argon rod marking: front: P 92 back:	ø mm 2.0 2.4	=-
--	--	--------------------	----

Preheating and interpass temperature 200-300 °C. After welding the joint should cool down below 80 °C to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered.

The following postweld heat treatment is recommended: Annealing 760 °C/min. 2 hours, max. 10 hours, heating/cooling rate below 550 °C max. 150 °C/h, above 550 °C max. 80 °C/h. In case of heat treatments less than 2 hours the requirements have to be proved by a procedure test.

For optimised toughness values a welding technology should be applied which produces thin welding layers (approx. 2 mm).

Base Materials

similar alloyed creep resistant steels

NF 616

ASTM A335 Gr. P 92 (T92); A213 Gr. T92

Approvals and Certificates

TÜV-D (9292.), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX P 92

SAW combination:

P 92-UP/BB 910

EN 12070:1999: W CrMoWV12 Si W.Nr: 1.4937

BÖHLER 20 MVW-IG

GTAW rod, high-alloyed, creep resistant

Description

GTAW rod for creep resistant, quenched and tempered 12 % Cr steels in turbine and boiler fabrication and in the chemical industry. Preferably used for the base metal X20CrMoV12-1. Approved in long-term condition up to +650 °C service temperature. The deposit exhibits high creep rupture strength and good toughness properties under long term stresses.

Typical Composition of Welding Rod										
wt-%	C 0.21	Si 0.4	Mn 0.6	Cr 11.3	Mo 1.0	∨ 0.3	W 0.45			
Mechanical Properties of All-weld Metal										
(*) yield streit tensile streit elongation	ngth R₀ N/m ength R₅ N	ነm²: /mm²:) %:		a 610 780 18	(≥ 590) (≥ 700) (≥ 15)					

impact work ISO-V KV J $+ 20 \degree$ C: 60 (≥ 35)

(*) a annealed, 760 °C/2 h/furnace down to 300 °C/air - shielding gas Argon

Operating Data

]	shielding gas: 100 % Argon	ømm	
]	rod marking:	2.4	
	front: 🕆 W CrMoWV12 Si back: 1.4937		

Preheating and interpass temperatures 400-450 °C (austentitic welding) or 250-300 °C (martensitic welding). Root passes should principally be welded in the martensitic range. Lower preheat and interpass temperatures are possible, yet must be approved by practical welding tests and process qualification tests. After welding cooling down to 90±10 °C, followed by tempering at 720-760 °C for three minutes / mm wall thickness (at least for 2 hours). Tempering, if specified, at 1050 °C for 1/2 hour/oil and annealing at 760 °C for 2 hours.

Base Materials

similar alloyed creep resistant steels

1.4922 X20CrMoV12-1, 1.4935 X20CrMoWV12-1, 1.4923 X22CrMoV12-1 1.4913 X19CrMoVNb11-1 (Turbotherm, 20 MVNb), 1.4931 GX22CrMoV12-1

Approvals and Certificates

TÜV-D (01083.), KTA 1408 1 (8087.00), DB (42.014.24), ÜZ (42014/3), ÖBB, TÜV-A (82), CL (0437), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX 20 MVW SAW c

SAW combination:

20 MVW-UP/BB 24

EN 12072-1999 W Z 16 13 Nh W Nr 1.4961 / 1.4948 (mod.)

BÖHLER CN 16/13-IG

GTAW rod, high-alloved, creep resistant

Description

GTAW rod for high quality weld joints in high efficiency boilers and turbine components. Approved in long-term condition up to +750 °C service temperature. Fully austenitic weld deposit. Insusceptible to embrittlement and resistant to hot cracking.

Typical Composition of Welding Rod										
wt-%	C	Si	Mn	Cr	Ni	Nb				
	0.16	0.6	2.5	16.0	13.5	+				

Mechanical Properties of All-weld Metal

(*)	u	
vield strength R _a N/mm ² :	460	(≥ 390)
tensile strength R _m N/mm ² :	630	(≥ 550)́
elongation A ($L_0 = 5d_0$) %:	25	(≥ 20)́
impact work ISO-V KV J + 20 °C:	60	(≥ 50)
(*) u untreated, as-welded - shielding gas A	Argon	. ,

Operating Data

shielding gas: 100 % Argon rod marking:

ø mm 20

=	-	

front: + W Z 16 13 Nb back: 1.4961

Preheating is not required, low heat input is recommended, interpass temperature should not exceed 150 °C.

Base Materials

similar alloved creep resistant steels

1.4961 X8CrNiNb16-13, 1.4910 X3CrNiMoN17-13, 1.4981 X8CrNiMoNb16-16,

1.4988 X8CrNiMoVNb16-13, 1.4878 X12CrNiTi18-9

Approvals and Certificates

TÜV-D (2728.), TÜV-A (566), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 16/13

EN 12072:1999: AWS A5.9-93: W.Nr.: W 19 9 H ER19-10H 1.4948 (mod.)

BÖHLER CN 18/11-IG

GTAW rod, high-alloyed, creep resistant

Description

GTAW rod with controlled delta ferrite content (3-8 FN) for austenitic CrNi steels with increased carbon contents (e.g. 1.4948 / 304H), in the boiler, reactor and turbine fabrication. Approved in long-term condition up to +700 °C service temperature (300 °C in the case of wet corrosion). Steels to German material no. 1.4550 and 1.4551 which are approved for the high temperature re range up to +550 °C, can also be welded.

Typical	Comp	ositio	n of V	Velding	g Rod		
wt-%	C 0.05	Si 0.4	Mn 1.6	Cr 18.8	Ni 9.3		FN 3-8
Mechan	nical P	ropert	ies of	All-we	eld Me	etal	
(*) yield streng tensile stre elongation impact work (*) u untre	gth R∝ N ength R _™ A (L₀ = t rk ISO-V eated, as	/mm²: N/mm²: 5d₀) %: ′ KV J :- <i>welded</i>	+ 2 - 1 - shield	0 °C: 0 °C: ing gas A	u 420 620 40 150 Argon	(≥ 400) (≥ 600) (≥ 30) (≥ 100) (≥ 32)	
Operati	ng Da	ta					
Interpass t	shie roc emperat	elding ga d marking fron bac ure shou	s: 100 % t: ++ W k: ER19 ld not e:	6 Argon 7 19 9 H 9-10H xceed 20	0 °C.	ø mm 2.0 2.4 3.0	=-
Base M	ateria	le					
similar allo	ved cree	n resists	int stool	•			
1.4948 X6 AISI 304H	CrNi18-1 , 321H, 3	1, 1.494 347H	9 X3CrN	s liN18-11			
Approv	als an	d Cerl	ificate	es			

TÜV-D (0139.), KTA 1408 1 (8068.00), TÜV-A (448), CL (0749), UDT

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX E 308 H FOX CN 18/11	GMAW flux cored wire:	E 308 H-FD E 308 H PW-FD
GTAW rod: GMAW solid wire:	ER 308 H-IG CN 18/11-IG	SAW combination:	CN 18/11-UP/BB 202

EN 12072:1999: W 19 9 H AWS A5.9-93: ER308H W.Nr.: 1.4948 (mod.)

BÖHLER ER 308 H-IG

GTAW rod, high-alloyed, creep resistant

Description

GTAW rod for high quality joints on high temperature austenitic CrNi-steels, for service temperature up to +700 $^\circ\text{C}.$

The controlled ferrite content ensures hot cracking resistance. The deposit is largely insusceptible to embrittlement.

Typical Composition of Welding Rod								
wt-%	C	Si	Mn	Cr	Ni	Mo	FN	
	0.06	0.4	1.7	20.0	9.5	0.2	3-8	

Mechanical Properties of All-weld Metal

(*)	u
vield strength R _e N/mm ² :	≥ 350
tensile strength R _m N/mm ² :	≥ 550
elongation $A(L_0 = 5d_0)$ %:	≥ 35
impact work ISO-V KV J + 20 °C:	≥ 70
(*) u untreated, as-welded – shielding gas	Argon

Operating Data

ŧ	-,	-	
1_	_	•	

shielding gas: 100 % Argon	ømm
rod marking:	2.0
front: T W 19 9 H back: ER 308 H	2.4

The interpass temperature should not exceed 200 °C.

Base Materials

similar alloyed creep resistant steels 1.4948 X6CrNi18-11, 1.4878 X12CrNiTi18-9 AISI 304/304H, 321H, 347H

Approvals and Certificates

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX E 308 H FOX CN 18/11	GMAW flux cored wire:	E 308 H-FD E 308 H PW-FD
GTAW rod: GMAW solid wire:	CN 18/11-IG CN 18/11-IG	SAW combination:	CN 18/11-UP/BB 202

High Temperature and Creep-resistant Filler Metals - GMAW Solid Wire

EN 12070:1999: G MoSi AWS A5.28-96: ER70S-A1 (ER80S-G) W.Nr.: 1.5424 **BÖHLER DMO-IG**

GMAW solid wire, low-alloyed, high temperature

Description

GMAW wire for 0.5 % Mo alloyed boiler, plate and tube steels as well as in pressure vessel and structural steel engineering. Highly-quality, very tough deposit of high cracking resistance, nonageing. Approved in long-term condition up to +550 °C service temperature, low temperature toughness to -40 °C. The wire shows good feeding and welding characteristics, resulting in smooth welding and wetting behaviour. Uniform copper bonding with low total copper content.

Typical Composition of Solid Wire							
wt-%	C 0.1	Si 0.6	Mn 1.2	Mo 0.5			
Mechanic	al Prop	erties	of All-w	veld Meta	al		
(*) yield strength tensile streng elongation A impact work ((*) u untrea u2 untrea a annea	th R _e N/mm ² th R _m N/m (L ₀ = 5d ₀) $\%$ ISO-V KV ated, as-we ted, as-we hed, 620 $\%$: m²: // J + elded - sh C/1 h/furr	20 °C: 40 °C: ielding gas ielding gas nace down	u 500 (≥ 470 620 (≥ 550 25 (≥ 22 150 (≥ 120 (≥ 47 s Ar + 18 % 5 100 % CO to 300 °C/a	47() 59() 2:) 16() <i>CO</i> 2	2 0 (≥ 450) 0 (≥ 520) 3 (≥ 20) 0 (≥ 47)	a 450 (≥ 400) 570 (≥ 515) 25 (≥ 19) 150 (≥ 120)
Operating	g Data						
t_↓	shielding Argon + 100 % C	g gases: - 15 - 25 : O ₂	% CO2		ø mm 0.8 1.0		=+
Preheating, ir	nterpass te	mperatur	e and post	weld heat t	reatment a	as required b	by the base metal.
Base Mat	erials						
high tempera to caustic cra	ture steels icking	and simi	ilar alloyed	l cast steels	, ageing r	esistant and	steels resistant
16Mo3, S355 P295GH, P3 20MnMoNi4-	5J2G3, L32 10GH, P25 5, GE240-0	0 - L415 5NH, 17 GE300, 2	NB, L320 I MnMoV6-4 2Mo4, S2	MB - L415M I, 22NiMoCr 55N - S460I	IB, P2550 4-7, 20Mi N, P255N	a1TH, P2350 MoNi5-5, 19 H-P460NH	GH, P265GH, 5NiCuMoNb5,
ASTM A335 (A217 Gr. WC	Gr. P1; A16	61-94 Gr.	T1 A A18	2M Gr. F1; /	A204M Gr	. A, B, C; A2	50M Gr. T1;

Approvals and Certificates

TÜV-D (0021.), DB (42.014.09), ÜZ (42.014/3), ÖBB, TÜV-A (76), CL (0216), FI (G MoSi), UDT, SEPROZ

SMAW stick electrode:	FOX DMO Kb	SAW combination:	EMS 2 Mo/BB 24
	FOX DMO Ti		EMS 2 Mo/BB 25
GTAW rod:	DMO-IG	Gas welding rod:	DMO

High Temperature and Creep-resistant Filler Metals - GMAW Solid Wire

EN 12070:1999:	G CrMo1Si
AWS A5.28-96:	ER80S-G
W.Nr.:	1.7339

BÖHLER DCMS-IG

GMAW solid wire, low-alloyed, high temperature

Description

GMAW wire for 1.25 % Cr 0.5 % Mo alloyed boiler, plate and tube steels as well as for the welding of quenched and tempered and case hardening steels. Preferably used for the steels 13CrMo4-5 or ASTM A335 P11/P12. Approved in long-term condition up to +570 °C service temperature. The deposit is noted for its good mechanical properties and good toughness. Further, good resistance to cracking, when attacked by castic soda, and the fact that it is suitable for nitriding, quenching and tempering are additional features. The values of the creep rupture strength lay within the scatter band of the material 13CrMo4-5. The wire shows very good feeding characteristics, resulting in smooth welding and wetting behaviour. Uniform copper bonding with low total copper content.

Typical Composition of Solid Wire	
-----------------------------------	--

wt-%	0.11	0.6	1.0	1.2	0.5	≤ 0.012	< 0.010	≤ 0.005	≤ 0.006
	С	Si	Mn	Cr	Мо	Р	As	Sb	Sn

Mechanical Properties of All-weld Metal

(*)	а	
vield strength R _e N/mm ² :	460	(≥ 420)
tensile strength R _m N/mm ² :	570	(≥ 500)
elongation A ($L_0 = 5d_0$) %:	23	(≥ 20)
impact work ISO-V KV J + 20 °C:	150	(≥ 47)
*) a annealed, 680 °C/2 h/furnace down to	300 °C/air	– shielding gas Ar + 18 % CO ²

Operating Data

→ ↓	shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂ Using 100 % CO ₂ the mechanical	ømm 0.8 1.0 1.2	=+
	properties can be different	1.2	

Preheat, interpass temperature and post weld heat treatment as required by the base metal. Preheating and interpass temperature for 13CrMo4-5 (P11/P12), 200-250 °C. Tempering at 660-700 °C at least 1/2 hr, followed by cooling in furnace down to 300 °C and still air.

Base Materials

high temperature steels and similar alloyed cast steels, case hardening and nitriding steels of similar chemical composition, similar alloyed heat treatable steels with tensile strength up to 780 N/nm², steels resistant to caustic cracking

1.7335 13CrMo4-5, 1.7205 15CrMo5, 1.7225 42CrMo4, 1.7728 16CrMoV4, 1.7218 25CrMo4, 1.7258 24CrMo5, 1.7354 G22CrMo5-4, 1.7357 G17CrMo5-5

ASTM A193 Gr. B7; A335 Gr. P11 a. P12; A217 Gr. WC6

Approvals and Certificates

TÜV-D (1091.), DB (42.014.15), ÜZ (42.014/3), ÖBB, TÜV-A (92), FI (G CrMo1Si), UDT, SEPROZ

SMAW stick electrode:	FOX DCMS Kb	SAW combination:	EMS 2 CrMo/BB 24
	FOX DCMS Ti		EMS 2 CrMo/BB 25
GTAW rod:	DCMS-IG	Gas welding rod:	DCMS

EN 12070:1999: G MoV Si AWS A5.28-96: ER80S-G W.Nr.: 1.5407

BÖHLER DMV 83-IG

GMAW solid wire, low-alloyed, high temperature

Description

GMAW wire for boiler, plate and tube steels. Designed specially for 14MoV6-3 (1/2 Cr 1/2 Mo 1/4 V). Approved in long-term condition up to +560 °C service temperature. Tough, cracking resistant deposit with good creep rupture strength. The wire shows very good feeding characteristics, resulting in smooth welding and wetting behaviour.

Typical	Composition	of Solid	Wire
---------	-------------	----------	------

	С	Si	Mn	Cr	Мо	V
wt-%	0.08	0.6	0.9	0.45	0.85	0.35

Mechanical Properties of All-weld Metal

(*)	а			
yield strength R _e N/mm ² :	610	(≥ 550)		
tensile strength R _m N/mm ² :	710	(≥ 630)		
elongation $A(L_0 = 5d_0)$ %:	20	(≥ 18)		
impact work ISO-V KV J + 20 °C:	80	(≥ 47)		
(*) a annealed, 700 °C/2 h/furnace down to	o 300 °C/ai	ir – shielding	gas Ar + 18	8 % CO

Operating Data

shielding gases: Argon + 15 - 25 % CO₂ 100 % CO₂ ø mm 1.2

=+

Using 100% CO₂ the mechanical properties can be different.

Preheating and interpass temperatures 200-300 °C. Tempering at 700-720 °C for at least 2 hrs followed by cooling in furnace down to 300 °C and still air.

Base Materials

similar alloyed high temperature steels and cast steels

1.7715 14MoV6-3, 1.7733 24CrMoV5-5, 1.7709 21CrMoV5-7, 1.8070 21CrMoV5-11, 1.7706 G17CrMoV5-10,

ASTM A389 Gr. C23 a. C24; A405 Gr. P24; UNS I21610

Approvals and Certificates

TÜV-D (1322.), TÜV-A (121), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX DMV 83 Kb GTAW rod: DMV 83-IG High Temperature and Creep-resistant Filler Metals - GMAW Solid Wires

EN 12070:1999:	G CrMo2 Si EB90S-G
AWO A5.20-50.	ER90S-B3(mod.
W.Nr.:	1.7384

BÖHLER CM 2-IG

GMAW solid wire, low-alloyed, high temperature

Description

GMAW for 2.25 Cr 1 % Mo alloyed boiler, plate and tube steels as well as in oil refineries e.g. in crack plants. Preferably used for the base metal 10CrMo9-10 (ASTM A335 Gr. P22) Approved in long-term condition up to +600 °C service temperature. Also for similar alloyed quenched and tempered steels and case hardening steels. The deposit is noted for its good mechanical properties and cracking resistance, but also for its creep rupture strength which is within the scatter band of 10CrMo9-10. The wire shows very good feeding characteristics, resulting in smooth welding and wetting behaviour.

Typical Composition of Solid Wire								
wt-%	C	Si	Mn	Cr	Mo			
	0.06	0.7	1.1	2.6	1.0			

Mechanical Properties of All-weld Metal

(*)	а	
yield strength R ₆ N/mm ² :	440 (≥ 400)
tensile strength R _m N/mm ² :	580 (≥ 500)
elongation $A(L_0 = 5d_0)$ %:	23 (≥ 22)
impact work ISO-V KV J	⊧20 °C: 170 (≥ 47)
(*) a annealed, 720 °C/2 h/furna	ce down to 300 °C/air	– shielding gas Ar + 18 % CO ₂

Operating Data

t_l	shielding gases: Argon + 15 - 25 % CO₂	ø mm 0.8	=+
 *	100 % CO2	1.0	
		1.2	

Using 100% CO₂ the mechanical properties can be different.

Preheating and interpass temperature 200-350 °C. Tempering at 700-750 °C for at least 1 hr followed by cooling in furnace down to 300 °C and still air.

Base Materials

high temperature steels and similar alloyed cast steels, QT-steels similar alloyed up to 980 N/mm² tensile strength, similar alloyed case hardening steels, nitriding steels

1.7380 10CrMo9-10, 1.8075 10CrSiMoV7, 1.7379 G17CrMo9-10

ASTM A335 Gr. P22; A217 Gr. WC 9

Approvals and Certificates

TÜV-D (1085.), TÜV-A (88), FI (G CrMo2Si), UDT, SEPROZ

SMAW stick electrode:	FOX CM 2 Kb
GTAW rod:	CM 2-IG
SAW combination:	CM 2-UP/BB 24

EN 12070:1999: G CrMo5 Si AWS A5.28-96: ER80S-B6 W.Nr.: 1.7373

BÖHLER CM 5-IG

GMAW solid wire, high-alloyed, high temperature

Description

GMAW wire suitable for 5 % Cr 0.5 % Mo alloyed steels and steels for hot hydrogen service, particularly in oil refineries. Preferably used for steel grades as X12CrMo5 and P5 at service temperatures up to +600 °C.

The wire shows very good feeding characteristics, resulting in smooth welding and flow behaviour. Uniform copper bonding with low total copper content.

Typical Composition of Solid v	wire
--------------------------------	------

	С	Si	Mn	Cr	Мо
wt-%	0.08	0.4	0.5	5.8	0.6

Mechanical Properties of All-weld Metal

(*)	а	
yield strength R _e N/mm ² :	520 (≥ 400)
tensile strength R _m N/mm ² :	620 (≥ 530)
elongation A ($L_0 = 5d_0$) %:	20 (≥ 18)
impact work ISO-V KV J +	⊧20 °C: 200 (≥ 47)
(*) a annealed, 730 °C/2 h/furna	ce down to 300 °C/air	- shielding gas Ar + 18 % CO2

Operating Data

shielding gas: Argon + 15 - 25 % CO ₂	ø mm 1.2	=+	
---	--------------------	----	--

Preheating and interpass temperatures 300-350 °C. Tempering at 730-760 °C for at least 1 hr followed by cooling in furnace down to 300 °C and still air.

Base Materials

high temperature steels and similar alloyed cast steels, QT-steels similar alloyed up to 1180 $\mbox{N/mm}^2$

1.7362 X12CrMo5, 1.7363 GX12CrMo5

ASTM A213 Gr. T5; A217 Gr. C5; A335 Gr. P5

Approvals and Certificates

SMAW stick electrode:	FOX CM 5 Kb
GTAW rod:	CM 5-IG
SAW combination:	CM 5-UP/BB 24

EN 12070: 1999: AWS A5.28-96: W.Nr.: 1.4903

G CrMo91 ER90S-B9 **BÖHLER C 9 MV-IG**

GMAW solid wire high-alloved, creep resistant

Description

GMAW wire for high temperature, creep resistant martensitic 9-12 % chromium steels. Especially designed for the ASTM steels T91/P91. Approved in long-term condition up to +650 °C service temperature. Preheating and interpass temperature 200-300 °C. After welding, the weld ioint should cool down below 80 °C to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered. The following post weld heat treatment is recommended: annealing 760 °C/min. 2 hrs, max. 10 hrs, heating and cooling rates below 550 °C max, 150 °C/hr, above 550 °C max, 80 °C/hr, For optimised toughness values a welding technology should be applied which produces thin welding layers (approx. 2 mm).

Typical composition of Solid Wire								
C Si Mn Cr Ni Mo V Nb wt-% 0.12 0.3 0.5 9.0 0.7 0.9 0.2 0.055								
Mechanical Properties of All-weld Metal								

		а	
yield strength R _a N/mm ² :		660	(≥ 520)
tensile strength R _m N/mm ² :		760	(≥ 620)
elongation A (Lo=5do) %:		17	(≥ 16)
impact work ISO-V KV J	+20 °C:	55	(≥ 50)

a annealed 760 °C/2 h/furnace down to 300 °C/air – shielding gas Argon +2.5 % CO2

Operating Data

Shielding gas: Argon + 2.5 % CO2 a mm 1.0 12

Base Materials

similar alloved creep resistant steels 1.4903 X10CrMoVNb9-1 ASTM A199 Gr. T91, A335 Gr. P91, A213/213M Gr. T91

Approvals and Certificates

Same Allov Filler Metals

SMAW stick electrode: FOX C 9 MV GTAW rod: C 9 MV-IG GMAW metal cored wire: C 9 MV-MC SAW combination: C 9 MV-UP/BB 910 EN 12072:1999: G 19 9 H AWS A5.9-93: ER19-10H W.Nr: 1.4948 (mod.)

BÖHLER CN 18/11-IG

GMAW solid wire, high-alloyed, creep resistant

E 308 H-FD

E 308 H PW-FD CN 18/11-UP/BB 202

Description

GMAW wire with controlled delta ferrite content (3-8 FN) for austenitic CrNi steels with increased carbon contents (e.g. 1.4948 / 304H), in the boiler, reactor and turbine fabrication. Approved in long-term condition up to +700 °C service temperature (300 °C in the case of wet corrosion).

Typical	Compo	sition o	of Solid	Wire		
wt-%	С 0.05	Si 0.4	Mn 1.4	Cr 18.8	Ni 9.8	FN 3-8
Mechan	ical Pro	perties	of All-w	veld Me	tal	
(*) yield streng tensile stre elongation impact wor (*) <i>u untrea</i>	gth R₀ N/mr ngth R _™ N/ A (L₀ = 5d₀ k ISO-V K ated, as-we	m²: mm²:) %: V J V J	+ 20 °C: - 10 °C: ielding gas :	u 400 580 38 120 Ar + 2.5 %	(≥ 350) (≥ 550) (≥ 35) (≥ 70) (≥ 32) $(\geq CO_2$	

Operating Data

Argon + max. 2.5 % CO ₂ 1.2	+	
--	---	--

Preheating is not required, only in case of wall thickness above 25 mm preheat up to 150 °C. Interpass temperature should not exceed 200 °C. Steels to German material no. 1.4550 and 1.4551 which are approved for the high temperature range up to +550 °C, can also be welded.

Base Materials

similar alloyed creep resistant steels

1.4948 X6CrNi18-11, 1.4949 X3CrNiN18-11

AISI 304H, 321H, 347H

Approvals and Certificates

TÜV-D (4466.), CL (0011), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX E 308 H	GMAW flux cored wire:
GTAW rod:	ER 308 H-IG CN 18/11-IG	SAW combination:

2-146

EN 12070: 2000:T CrMo91 AWS A5.28-96: EC90S-B9

BÖHLER C 9 MV-MC

Metal cored wire, high-alloyed, creep resistant

Description

Metal cored wire for high temperature, creep resistant martensitic 9-12 % chromium steels. Especially designed for the ASTM steels T91/P91. For optimised toughness values a welding technology should be applied which produces thin welding layers (approx. 2 mm), also a decisive influence on toughness values is given by the used shielding gas.

		0	0			00			
Typical Composition of All-weld Metal									
wt-%	С 0.10	Si <0.3	Mn 0.6	Cr 9.0	Ni 0.7	Mo 1.0	V 0.2	Nb 0.055	N 0.04
Mechanical Properties of All-weld Metal									
viold stray	acth D N/r	nm ² .			a 00 (> 4	200)			

yield strength R _e N/mm ² :		690	(≥ 520)
tensile strength Rm N/mm ² :		760	(≥ 620)
elongation $A(L_0 = 5d_0)$ %:		18	(≥ 17)
impact work ISO-V KV J	+ 20 °C:	60	(≥ 47)

a annealed 760°C/3 h/furnace down to 300 °C/air - shielding gas Argon + 2.5 % CO2

Operating Data

<u>↓</u>	
 _→	

shielding gases: Argon + 2.5 % CO₂ or Argon + 15 - 20 % CO₂ ømm amps A voltage V 1.2 150 - 290 18 - 30

Welding with conventional or pulsed power sources (preferably slightly trailing torch position, angel appr. 80 °). Recommended stick out 18-20 mm and length of arc 3-5 mm. Preheating and interpass temperature 200-300 °C. After welding, the weld joint should cool

Preheating and interpass temperature 200-300 °C. After welding, the weld joint should cool down below 80 °C to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered.

The following post weld heat treatment is recommended: annealing 760 °C/min. 2 hrs, max. 10 hrs, heating and cooling rates below 550 °C max. 150 °C/hr, above 550 °C max. 80 °C/hr. Positional weldability of metal cored wires is similar to solid wires.

Base Materials

similar alloyed creep resistant steels

1.4903 X10CrMoVNb9-1

ASTM A199 Gr. T91, A335 Gr. P91, A213/213M Gr. T91

Approvals and Certificates

TÜV-D (4466.), CL (0011), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX C 9 MV	GTAW rod:	C 9 MV-IG
SAW combination:	C 9 MV-UP/BB 910	GMAW solid wire:	C 9 MV-IG
High Temperature and Creep-resistant Filler Metals - GMAW Flux cored wires

EN 12073:1999: T Z 19 9 H R M 3 T Z 19 9 H R C 3 AWS A5.22-95: E308HT0-4 E308HT0-1 BÖHLER E 308 H-FD

GMAW flux cored wire, high-alloyed, creep resistant

Description

BÖHLER E 308 H-FD is a flux cored wire with rutile slag characteristic for GMAW of austenitic CrNi steels like 1.4948 / AISI 304H. This wire is designed mainly for downhand and horizontal welding positions. The weld metal is suitable for service temperatures up to approx. +700 °C. This product achieves high productivity and is easy to operate achieving excellent welding characteristics, almost no spatter formation and temper discoloration, smooth weld finish and safe penetration. Increased travel speeds as well as little demand for cleaning and pickling provide considerable savings in time and money.

The weld deposit is scaling resistant and because of the controlled low delta ferrite content high resistant against sigma phase embrittlement.

Typical Co	omposit	ion of A	All-weld	d Met	al		
wt-% C	C).06	Si 0.5	Mn 1.1	Cr 19.4	Ni 10.1		FN 3-8
Mechanica	al Prope	erties o	f All-we	eld M	etal		
(*) yield strength tensile strengt elongation A (l impact work IS (*) <i>u untreate</i>	R₀ N/mm²: h R _m N/mm L₀ = 5d₀) % SO-V KV J d, as-weld₀	1²: ,: + 20 °C: ed – shield	ling gas A	u 390 585 42 80 xr + 18	(≥ 350) (≥ 550) (≥ 30) (≥ 47) % CO ₂	u/500 ° 310 440 30	C
Operating	Data						
	re-drying: possible shielding Argon + 100 % C	, 150 °C / gases: 15 - 25 % O ₂	24 h CO2	7 mm 1.2	amps A 125 - 280	voltage 20 - 34	-+

welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), when using 100 % CO₂ as shielding gas it is necessary to increase the voltage by 2 V, gasflow should be 15-18 l/min

Base Materials

similar alloyed creep resistant steels 1.4948 X6CrNi18-11, 1.4878 X12CrNiTi18-9 AISI 304, 304H, 321H, 347H

Approvals and Certificates

UDT

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 18/11	GMAW solid wire:	CN 18/11-IG
	FOX E 308 H	GMAW fluxcored wire:	E 308 H PW-FD
GTAW rod:	CN 18/11-IG	SAW combination:	CN 18/11-UP/BB 202
	ER 308 H-IG		

High Temperature and Creep-resistant Filler Metals - GMAW flux cored wires

EN 12073:1999: T Z 19 9 H P M 1 T Z 19 9 H P C 1 AWS A5.22-95: E308HT1-4 E308HT1-1

GMAW flux cored wire, high-alloyed, high temperature

Description

Rutile flux cored welding wire with fast freezing slag providing excellent positional welding characteristics with fast travel speeds. It is designed for welding of creep resistant austenitic CrNi-steel like 1.4989 / AISI 304H and service temperatures up to +700 °C.

It is easy to use and operates with a powerful penetrating spray arc transfer and minimum spatter formation. This flux cored welding wire offers many economical and quality advantages over solid wire pulse arc welding. High deposition rates and productivity gains are easily achievable.

Additional cost effective benefits are offered through use of less expensive shielding gases, good wetting characteristics (less grinding), little bead oxidation (less pickling expenses), easy operation and safe penetration (reduces the risk of weld defects and associated repair work costs), and smooth and clean weld finish (less post weld work).

The weld deposit is scaling resistant, and because of the controlled low delta ferrite content high resistant against sigma phase embrittlement.

Typical Composition of All-weld Metal							
wt-%	C 0.06	Si 0.5	Mn 1.1	Cr 19.4	Ni 10.1	FN 3-8	
Mechan	ical Pro	operties	of All-	weld N	letal		
(*) u u/500 °C yield strength R₀ N/mm ² : 390 (≥ 350) 310 lensile strength R _∞ N/mm ² : 585 (≥ 550) 440 elongation A (L₀ = 5d₀) %: 42 (≥ 30) 30 impact work ISO-V KV J + 20 °C: 90 (≥ 47) (*) u untreated, as-welded – shielding gas Ar + 18 % CO ₂							
Operati	Operating Data						
ţ Ţ	re-dry possi shield Argo 100 % weldin torch positio	ring: ible, 150 °(ling gases: n + 15 - 25 6 CO ₂ ng with star position (ar ons; when	C / 24 h % CO2 ndard GM ngel appr. using 100	ø mm 1.2 AW-facili 80 °), sliq % CO2 å	amps A 110 - 210 ties possible, ght weaving is as shielding ga	voltage V 20 - 31 slightly trailing recommended fo as it is necessary	=+

Base Materials

similar alloyed creep resistant steels 1.4948 X6CrNi18-11, 1.4878 X12CrNiTi18-9 AISI 304, 304H, 321H, 347H

Approvals and Certificates

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX CN 18/11 FOX E 308 H GTAW rod: CN 18/11-IG ER 308 H-IG ER 308 H-IG ER 308 H-IG

the voltage by 2 V, gasflow should be 15-18 l/min.

SAW solid wire: EN 756:2004: S 2 Mo BÖHLER AWS A5 23-97 FA2 EMS 2 Mo // BB 24 sub-arc flux: EN 760.1996 SA FB 1 65 DC H5 wire/flux-combination: EN 756:2004 S 46 4 FB S2Mo SAW wire/flux-combination. AWS A5.23-97: F8A4-FA2-A2 low-alloyed, high temperature AWS A5.23M-97: F55A4-EA2-A2

Description

Sub arc wire/flux combination suited for fine-grained constructional steels of increased strength and for 0.5 % Mo alloyed boiler, plate and tube steels. Approved in long-term condition up to + 550 °C service temperature. The metallurgical behaviour of the flux BOHLER BB 24 is neutral. The sub-arc wire/flux combination produces very good low temperature impact properties down to -40 °C. Excellent slag detachability, smooth beads, good wetting and low hydrogen contents (< 5 m/100 g) are further important features. The combination is ideally suited for multi-pass welding of thick plates. For information regarding the sub-arc welding flux BOHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Мо
SAW wire wt-%	0.12	0.15	1.10	0.50
all-weld metal %	0.08	0.25	1.15	0.45

Mechanical Properties of All-weld Metal

(*) yield strength R _e N/mm ² : tensile strength R _m N/mm ² : elongation A (Lo = 5do) %: impact work ISO-V KV J	+ 20 °C: ± 0 °C: - 20 °C: - 40 °C:	u ≥ 470 ≥ 550 ≥ 24 ≥ 140 ≥ 120 ≥ 80 ≥ 47	a ≥ 470 ≥ 550 ≥ 24 ≥ 165	n + a ≥ 280 ≥ 440 ≥ 26 ≥ 125
	40 0.	E 47		

(*) u untreated, as-welded

a stress relieved, 580 - 620 °C/2 h/furnace down to 300 °C/air n + a normalised 920 °C and annealed 620 °C

Operating Data

-	

re-drying of sub-arc flux:	ø mm
300 - 350 °C, 2 h - 10 h	2.0
max. amperage of sub-arc flux: 800 A	2.5
	3.0
	40

Base Materials

high temperature steels and similar alloyed cast steels, ageing resistant and steels resistant to caustic cracking, high temperature constructional steels with comparable yield strength I6Mo3, S275JR, S275J2G3, S355J2G3, P27511-P355T1, P275T2-P355T2, P255G1TH, S255N, P295GH, P310GH, P315N-P420N, P315NH-P420NH BHW 2.5, WB 25; ASTM A335 Gr. P1; A161-94 Gr. T1; A182M Gr. F1; A204M Gr. A, B, C; A250M Gr. T1; A217 Gr. WC1, API, 5L: X52-X65

Approvals and Certificates

TÜV-D (7810.), UDT; **SAW solid wire:** TÜV-D (02603.), KTA 1408 1 (8058.00/8060.01), DB (52.014.06), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:FOX DMO Kb FOX DMO Ti GTAW rod: DMO-IG GMAW solid wire: DMO-IG Gas welding rod: DMO : +

SAW solid wire:	EN 756:2004: AWS A5.23-97:	S 2 Mo EA2	BÖHLER
sub-arc flux: wire/flux-combir	EN 760:1996: ation:	SA FB 1 68 DC H5	EMS 2 Mo // BB 25
	EN 756:2004: AWS A5.23-97: AWS A5.23M-97:	S 46 3 FB S2Mo F8A4-EA2-A2 F55A4-EA2-A2	SAW wire/flux-combination, low-alloyed, high temperature

Description

The sub-arc wire/flux combination is suited for fine-grained constructional steels of increased strength and for 0.5 % Mo alloyed boiler, plate and tube steels. Approved in long-term condition up to +550 °C service temperature. The flux is active and shows some pick-up of silicon and manganese. The sub-arc wire/flux combination produces higher strength values with very good low temperature impact properties down to -20 °C. For information regarding the sub-arc wiedling flux BOHLER BB 25 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Mo
SAW wire wt-%	0.12	0.15	1.1	0.5
all-weld metal %	0.07	0.40	1.5	0.5

Mechanical Properties of All-weld Metal

+ 20 °C: ± 0 °C: - 20 °C:	u 500 600 30 120 100 70	(≥ 460) (≥ 530)
- 40 °C:	40	

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux:	ø mm
300 - 350 °C, 2 h - 10 h	2.0
max. amperage of sub-arc flux: 800 A	2.5
1 0	3.0
	40

Base Materials

high temperature steels and similar alloyed cast steels, ageing resistant and steels resistant to caustic cracking, high temperature constructional steels with comparable yield strength IGM03, S275JR, S275J2G3, S355J2G3, P275T1-P355T1, P275T2-P355T2, P255G1TH, S255N, P295GH, P310GH, P315N-P420N, P315NH-P420NH BHW 2.5, WB 25 ASTM A335 Gr. P1; A161-94 Gr. T1; A182M Gr. F1; A204M Gr. A, B, C; A250M Gr. T1; A217 Gr. WC1

Approvals and Certificates

TÜV-D (5678.), TÜV-A (618), UDT; **SAW solid wire:** TÜV-D (02603.), KTA 1408 1 (8058.00/8060.01), DB (52.014.06), ÜZ (52.014/1), ÖBB, TÜV-A (391), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX DMO Kb
	FOX DMO Ti
GMAW solid wire:	DMO-IG

Gas welding rod: DMO GTAW rod: DMO-IG

SAW solid wire: EN 12070;1999; S CrMo1 AWS A5 23-97 FB2 sub-arc flux: EN 760.1996 SA FB 1 65 DC H5 wire/flux-combination:

AWS A5 23-97 E8P4-EB2-B2 AWS A5 23M-97 E55P4-EB2-B2

SAW wire/flux-combination. low-alloved, high temperature

// BB 24

BÖHLER EMS 2 CrMo

Description

Sub arc wire / flux combination suited for 1 % Cr 0.5 % Mo alloyed boiler, plate and tube steels. Approved in long-term condition up to +570 °C service temperature. Brucato \leq 15 ppm.

The metallurgical behaviour of the flux BÖHLER BB 24 is neutral.

The sub-arc wire/flux combination produces smooth beads, good wetting, excellent slag detachability, and low hydrogen contents (≤ 5 ml/100 g). are further important features. The combination is ideally suited for multi-pass welding of thick plates.

For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

0.000 · · · · · · · · · · · · · · · · ·	С	Si	Mn	Cr	Mo	Р	As	Sb	Sn
SAW wire wt-% all-weld metal %	0.12 0.08	0.15 0.25	0.9 1.0	1.2 1.1	0.50 0.45	≤ 0.012	≤ 0.010	≤ 0.005	≤ 0.005

Mechanical Properties of All-weld Metal

(*)	а	n + a
yield strength R _e N/mm ² :	≥ 460	≥ 330
tensile strength R _m N/mm ² :	≥ 550	≥ 480
elongation A ($L_0 = 5d_0$) %:	≥ 22	30
impact work ISO-V KV J + 20 °C:	≥ 47	120
(*) a annealed, 680 °C/2 h/furnace down t	o 300 °C/air	
n + a normalised 920 °C and annealed	680 °C/2 h	

Operating Data

re-drying of sub-arc flux: 300 - 350 °C, 2 h - 10 h max. amperage of sub-arc flux: 800 A	ø mm 2.5 3.0 4.0	=±
--	---------------------------	----

Preheating, interpass temperature and post weld heat treatment are determined by the base metal.

Base Materials

high temperature steels and similar alloved cast steels, case hardening and nitriding steels of similar chemical composition, similar alloved heat treatable steels with tensile strength up to 780 N/mm², steels resistant to caustic cracking

1.7335 13CrMo4-5, 1.7205 15CrMo5, 1.7225 42CrMo4, 1.7728 16CrMoV4, 1.7218 25CrMo4. 1.7258 24CrMo5, 1.7354 G22CrMo5-4, 1.7357 G17CrMo5-5 ASTM A193 Gr. B7: A335 Gr. P11 a. P12: A217 Gr. WC6

Approvals and Certificates

TÜV-D (7809.), UDT SAW solid wire: TÜV-D (02605.), TÜV-A (393), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX DCMS Kb	GMAW solid wire:	DCMS-IG
GTAW rod:	DCMS-IG	SAW comb.:	EMS 2CrMo / BB25

SAW solid wire: EN 12070:1999: S CrMo1 AWS A5.23-97: EB2 sub-arc flux: EN 760:1996: SA FB 1 68 DC H5 wire/flux-combination: AWS A5.23-97: F8P4-EB2-B2 AWS A5.23M-97: F55P4-EB2-B2

Description

This welding consumable is suited for welding of creep resistant boiler plate, vessel and pipe construction. Approved in long-term condition up to +570 °C service temperature. Brucato ≤ 15 ppm. The flux is active and shows some pick-up of silicon and manganese. For information regarding the sub-arc welding flux BÕHLER BB 25 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Mo	Р	As	Sb	Sn
SAW wire wt-%	0.12	0.15	0.9	1.15	0.5				. 0. 005
all-weld metal %	0.07	0.40	1.35	1.25	0.5	≤ 0.012	≤ 0.010	≤ 0.005	≤ 0.005

Mechanical Properties of All-weld Metal

(*)		а
vield strength R _e N/mm ² :		580
tensile strength Rm N/mm ² :		630
elongation A ($L_0 = 5d_0$) %:		24
impact work ISO-V KV J	+ 20 °C:	120
	- 20 °C:	50

(*) a annealed, 620 °C/1 h/furnace down to 300 °C/air

Operating Data

\rightarrow	

e-drying of sub-arc flux:	ø mi
300 - 350 °C, 2 h - 10 h	2.5
max. amperage of sub-arc flux: 800 A	3.0
	40

Preheating, interpass temperature and post weld heat treatment are determined by the base metal.

t

Base Materials

high temperature steels and similar alloyed cast steels, case hardening and nitriding steels of similar chemical composition, similar alloyed heat treatable steels with tensile strength up to 780 N/mm², steels resistant to caustic cracking

1.7335 13CrMo4-5, 1.7205 15CrMo5, 1.7225 42CrMo4, 1.7728 16CrMoV4, 1.7218 25CrMo4, 1.7258 24CrMo5, 1.7354 G22CrMo5-4, 1.7357 G17CrMo5-5,

ASTM A193 Gr. B7; A335 Gr. P11 a. P12; A217 Gr. WC6

Approvals and Certificates

TÜV-D (5677.), TÜV-A (620), ABS (X), UDT SAW solid wire: TÜV-D (02605.), TÜV-A (393), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX DCMS Kb	GMAW solid wire:	DCMS-IG
	FOX DCMS Ti	Gas welding rod:	DCMS
GTAW rod:	DCMS-IG	SAW comb.:	EMS 2CrMo / BB24

AWS A5 23-97 EB3	
sub-arc flux: EN 760:1996: SA FB 1 65 D	C H5
AWS A5.23-97: F9P2-EB3-B3 AWS A5.23M-97: F55P0-EB3-B3	3

BÖHLER CM 2-UP // BB 24 SAW wire/flux-combination, low-alloved, high temperature

=+

Description

Sub-arc wire/flux combination suited for 2.25 % Cr 1 % Mo alloyed boiler, plate and tube steels and also particularly for cracking plants in the crude oil industry. Approved in long-term condition up to +600 °C service temperature. Brucato \leq 15 ppm.

The deposit is noted for its excellent mechanical properties. Easy slag detachability and smooth bead surface are additional quality features of this combination. For information regarding the sub-arc welding flux BOHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Мо	Р	As	Sb	Sn
SAW wire wt-% all-weld metal %	0.11 0.07	0.10 0.25	0.6 0.8	2.6 2.3	1.00 0.95 :	≤ 0.012≤	0.015 ≤	0.005 ≤	0.001

Mechanical Properties of All-weld Metal

(*)	а
yield strength R ₆ N/mm ² :	≥ 460
tensile strength R _m N/mm ² :	≥ 530
elongation A ($L_0 = 5d_0$) %:	≥ 22
impact work ISO-V KV J	+ 20 °C: ≥ 47
(*) a annealed, 670 - 720 °C/2	h/furnace down to 300 °C/air

Operating Data

re-drying of sub-arc flux:		ø mm
300 - 350 °C, 2 h - 10 h		2.5
max. amperage of sub-arc flux: 80	A 0	3.0
		4.0

Preheating, interpass temperature and post weld heat treatment are determined by the base

Base Materials

metal.

high temperature steels and similar alloyed cast steels, QT-steels similar alloyed up to 980 N/mm² tensile strength, similar alloyed case hardening steels, nitriding steels

1.7380 10CrMo9-10, 1.8075 10CrSiMoV7, 1.7379 G17CrMo9-10

ASTM A335 Gr. P22; A217 Gr. WC 9

Approvals and Certificates

TÜV-D (7812.), UDT SAW solid wire: TÜV-D (02605.), KTA 1408 1 (8060.01), TÜV-A (393), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX CM 2 Kb

GTAW rod: CM 2-IG GMAW solid wire: CM 2-IG

Wire EN 12070:1999: S Z AWS A5.23:1997: EG

S ZCrWV2 EG BÖHLER P 23-UP/BB 430

Flux EN 760:1996: SA FB 1 55 AC

Flux/wire-combination low alloyed, creep resistant

Description

Böhler B 23-UP is a matching filler metal for welding high temperature and creep resistant steels such as HCM2S (P23/T23 acc. to ASTM A213 code case 2199), pipe or tube material. BB 430 is an agglomerated welding flux of the fluoride-basic type with high basicity. (2.9)

Typical	Comp	osition	of So	lid Wire	e and A	All-weld	I Metal	
wt-%	C	Si	Mn	Cr	Mo	V	Ti	B
	0.05	0.3	0.5	2.2	1.0	0.22	0.05	0.003

0.05 0.27 0.9 2.05 1.6 0.22 0.04 0.01

Mechanical Properties of All-weld Metal

(*)	a
yield strength R _e N/mm ² :	≥ 400
tensile strength R _m N/mm ² :	≥ 600
elongation A (L=5d) %:	≥ 15
impact work ISO-V KV J	≥ 100

(*) a annealed 740 °C/2 h

Operating Data

From undamaged steel containers - without redrying Preheat and interpass temp.: 200-300 °C. Heat input \leq 2.0 kJ/mm.

Base Materials

ASTM A213: P23/T23

Approvals and Certificates

TÜV-D (applied)

Same Alloy Filler Metals

SMAW stick electrode: FOX P 23 GTAW rod: P 23-IG

Wire: EN 12070:1999: AWS A5.23:1997	S Z CrMV2 EG
Elux	

EN 760:1996: SA FB 1 55 AC

Flux/wire-combination low alloyed, creep resistant

BÖHLER P 24-UP/BB 430

Description

Böhler P 24-UP is a matching filler metal for welding high temperature and creep resistant steels such as 7CrMoVTiB (P24/T24 acc. to ASTM A213). The chemistry of the wire will be optimized with respect to the creep rupture properties. Böhler B 430 is an agglomerated welding flux of the fluoride-basic type with high basicity. Grain size: EN 760: 3-16 (0.3-1.6 mm).

Typical Composition of Solid Wire and All-weld Metal

wt-%	C	Si	Mn	Cr	Mo	V	Nb	Ti	B
	0.10	0.25	0.55	2.5	1.0	0.24	0.05	0.002	0.002
	0.10	0.25	0.75	2.2	1.0	0.22	0.05	0.002	0.002

Mechanical Properties of All-weld Metal

(*) a annealed 740°C/2 h

Operating Data

Redrying:	ø mm	Spools
300-350 °C, 2-10 h	2.0	K435-70
	2.5	K435-70
	3.0	K435-70

Preheating and interpass temp.: 200-300 °C. Heat input ≤ 2.0 kJ/mm.

Base Materials

7CrMoVTiB10-10, P24 acc. to ASTM A 213 Draft

Approvals and Certificates

TÜV-D (10456.)

Same Alloy Filler Metals

SMAW stick electrode:	FOX P 24
GTAW rod:	P 24-IG

SAW solid wire: EN 12070:1999: S CrMo5 AWS 45.23-97: EB6 sub-arc flux: EN 760:1996: SA FB 1 65 DC H5 wire/flux-combination: AWS 45.23-97: F9PZ-EB6-B6 AWS 45.23M-97: F62PZ-EB6-B6

CM 5-UP // BB 24 SAW wire/flux-combination, high-alloyed, high temperature

BÖHLER

Description

Sub arc wire /flux combination suited for 5 % Cr 0.5 % Mo alloyed steels, particularly for hot hydrogen service. High temperature strength at service temperatures up to +600 °C. The weld deposit exhibits good mechanical properties. Easy slag detachability and smooth bead surface are additional quality features.

For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Мо
SAW wire wt-%	0.08	0.4	0.50	5.8	0.60
all-weld metal %	0.05	0.5	0.75	5.5	0.55

Mechanical Properties of All-weld Metal

(*)	а
vield strength R _e N/mm ² :	≥ 450
tensile strength R _m N/mm ² :	≥ 590
elongation A ($L_0 = 5d_0$) %:	≥ 18
impact work ISO-V KV J + 20 °C:	≥ 47
(*) a annealed 740 °C/4 h/furnace down to) 300 °C/air

Operating Data

-

re-drying of sub-arc flux: **ø mm 300 - 350 °C, 2 h - 10 h** max. amperage of sub-arc flux: **800 A**

=±

Preheating and interpass temperature and post weld heat treatment are determined by the base metal.

Base Materials

similar alloyed high temperature steels and cast steels

1.7362 X12CrMo5, 1.7363 GX12CrMo5

ASTM A213 Gr. T5; A217 Gr. C5; A335 Gr. P5

Approvals and Certificates

UDT SAW solid wire: TÜV-D (02605.), TÜV-A (393), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX CM 5 Kb GTAW rod: CM 5-IG GMAW solid wire: CM 5-IG

SAW solid wire: EN 12070:1999: S CrMo91 AWS A5.23-97: EB9 sub-arc flux: EN 760:1996: SA FB 2 55 DC H5 wire/flux-combination: AWS A5.23-97: F9PZ-EB9-B9 AWS A5 23M-97: F62PZ-FB9-B9

SAW wire/flux-combination, high-alloyed, creep resistant

// BB 910

BÖHLER C 9 MV-UP

Description

Sub-arc wire/flux combination suited for creep resistant 9 % Cr steels, especially for P91 acc. ASTM A335. Approved in long-term condition up to +650 °C service temperature. The wire and flux are precisely balanced to consistently meet the highest technical requirements. For information regarding the sub-arc welding flux BOHLER BB 910 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	0	01	N.A.m	C *	NI:	Ma		Nile
	C	51	IVITI	Cr	INI	IVIO	v	UVI
SAW wire wt-%	0.12	0.25	0.6	9.0	0.7	0.9	0.22	0.06
all-weld metal %	0.11	0.30	0.6	9.0	0.7	0.8	0.20	0.05

Mechanical Properties of All-weld Metal

(*)	а			
vield strength R _a N/mm ² :	610	(≥ :	550	1
tensile strength R _m N/mm ² :	740	(≥ I	620	1
elongation A ($L_0 = 5d_0$) %:	20	(≥	15	1
impact work ISO-V KV J	40	`		
(*) a annealed, 760 °C/2 h/furnace down to	300 °C/air			

Operating Data

re-drying of sub-arc flux:	ø mm		
300 - 350 °C, 2 h - 10 h	2.5	$=\pm$	
max. amperage of sub-arc flux: 800 A	3.0	_	

Preheating and interpass temperature 200-300 °C. After welding the joint should cool down below 80 °C in order to finish the martensitic transformation. Pipe welds with wall thickness up to 45 mm can be cooled down to room temperature. For heavier wall thicknesses or stressed components, unfavourable possible stress condition must be considered. The recommended post weld heat treatment is annealing after welding at 760 °C/min. 2 hrs, max. 10 hrs, heating/ cooling-rates below 550 °C max. 150 °C/hr.

For optimised toughness properties a technology which ensures thin welding layers is recommended.

Base Materials

similar alloyed creep resistant steels

1.4903 X10CrMoVNb9-1

ASTM A199 Gr. T91; A335 Gr. P91; A213/213M Gr. T91

Approvals and Certificates

TÜV-D (09229.), CL (1487), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX C 9 MV GTAW rod: C 9 MV-IG GMAW solid wire: GMAW metal cored wire: C 9 MV–IG C 9 MV-MC

SAW solid wire:	EN 12070:1999:	S Z CrMoWVNb9 0.5 1.5	5	BÖHLER
sub-arc flux:	EN 760:1996:	SA FB 2 55 DC H5	P 92-UP	// BB 910

SAW wire/flux-combination, high-alloyed, creep resistant

Description

Sub-arc wire/flux combination designed for 9 % Cr creep resistant steel, especially for P92/NF616. Approved in long-term condition up to +650 °C service temperature. For information regarding the sub-arc welding flux BÖHLER BB 910 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Mo	Ni	V	W	Nb
SAW wire wt-%	0.10	0.40	0.4	8.6	0.40	0.6	0.2	1.5	0.05
all-weld metal %	0.09	0.45	0.4	8.6	0.35	0.6	0.2	1.5	0.04

Mechanical Properties of All-weld Metal

(*)	а	
yield strength R _e N/mm ² :	660	(≥ 550)
tensile strength R _m N/mm ² :	780	(≥ 620)
elongation A ($L_0 = 5d_0$) %:	20	(≥ 15)
impact work ISO-V KV J	60	. ,
(*) a annealed, 760 °C/2 h/furnace do	own to 300 °C/a	ir

Operating Data

\rightarrow

re-drying of sub-arc flux:	ø mm
300 - 350 °C / 2 h - 10 h	3.0
max, amperage of sub-arc flux; 800 A	

Preheating and interpass temperature 200-300 °C. After welding the joint should cool down below 80 °C in order to finish the martensite transformation. Pipe welds with wall thicknesse up to 45 mm can be cooled down to room temperature For heavier wall thicknesses or stressed components, unfavourable possible stress condition must be considered. The recommended post weld heat treatment is annealing at 760 °C/min. 2 hrs, max. 10 hrs., heating/cooling rates below 550 °C max. 150 °C/hr, above 550 °C max 80 °C/hr.

For optimised toughness properties a technology which ensures thin welding layers is recommended.

Base Materials

similar alloyed creep resistant steels

NF 616

ASTM A335 Gr. P 92 (T92); A213/213M Gr. T92

Approvals and Certificates

TÜV-D (09390.), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX P 92

GTAW rod: P 92-IG

SAW solid wire:

EN 12070:1999: S CrMoWV12 sub-arc flux: EN 760:1996: SA FB 2 65 DC H5 BÖHLER 20 MVW-UP // BB 24

> SAW wire/flux-combination, high-alloyed, creep resistant

Description

Suited for analogous and similar creep resistant steels in turbine and steam boiler construction as well as in the chemical industry. Approved in long-term condition up to +650 °C service temperature. For information regarding the sub-arc welding flux BÖHLER BB 24 see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Мо	Ni	V	W
SAW wire wt-%	0.27	0.2	0.7	11.3	0.90	0.5	0.24	0.50
all-weld metal %	0.16	0.3	0.8	10.3	0.85	0.4	0.22	0.45

Mechanical Properties of All-weld Metal

(*)	а
yield strength R _e N/mm ² :	≥ 550
tensile strength R _m N/mm ² :	≥ 660
elongation A ($L_0 = 5d_0$) %:	≥ 15
impact work ISO-V KV J	≥ 47
(*) a annealed, 760 °C/4 h/furnace down to	300 °C/ai

Operating Data

-	re-drying of sub-arc flux: 300 - 350 °C, 2 h - 10 h max. amperage of sub-arc flux: 8	ø mm 3.0 800 A	=±
-	300 - 350 °C, 2 h - 10 h max. amperage of sub-arc flux: 8	3.0 BOO A	=±

Preheating and interpass temperature 400-450 °C (austenitic welding) or 250-300 °C (martensitic welding). Root passes should principally be welded in the martensitic range. Lower preheat and interpass temperatures are possible, yet must be approved by practical welding tests and process qualification tests.

After welding cooling to 90±10 °C, followed by tempering at 760 °C for three minutes / mm wall thickness at least for 2 hours. Tempering, if specified, at 1050 °C for 1/2 hour/oil and annealing at 760 °C for 2 hours. Further details on the welding technology available on request.

Base Materials

similar alloyed creep resistant steels

1.4935 X20CrMoWV12-1, 1.4922 X20CrMoV12-1, 1.4923 X22CrMoV12-1 1.4913 X19CrMoVNb11-1 (Turbotherm, 20 MVNb), 1.4931 GX22CrMoV12-1

Approvals and Certificates

TÜV-D (07813.), UDT SAW solid wire: TÜV-D (07813.), KTA 1408 1 (8060.01), TÜV-A (393), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX 20 MVW GTAW rod: 20 MVW-IG

SAW solid wire: EN 12072:1999: S 19 9 H AWS A5.9-93: ER19-10H sub-arc flux: EN 760:1996: SA FB 2 DC

SAW wire/flux-combination, high-alloyed, creep resistant

CN 18/11-UP // BB 202

BÖHLER

Description

Sub-arc wire/flux combination for high quality joint weld on high temperature austenitic CrNisteels at service temperature up to +700 °C (+300 °C in the case of wet corrosion). The controlled ferrite content (3-8 FN) ensures hot cracking resistance. The deposit is insusceptible to sigma phase embrittlement. For information regarding the sub-arc welding flux BOHLER BB 202 see our detailed data sheet. Steels to German material no. 1.4550 and 1.4551 which are approved for the high temperature range up to +550 °C, can also be welded.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni	FN
SAW wire wt-%	0.05	0.40	1.6	18.8	9.3	
all-weld metal %	0.05	0.55	1.2	18.4	9.3	3-8

Mechanical Properties of All-weld Metal

(*)		u
yield strength R _e N/mm ² :		≥ 320
tensile strength R _m N/mm ² :		≥ 550
elongation $A(L_0 = 5d_0)$ %:		≥ 35
impact work ISO-V KV J	+ 20 °C:	≥ 80
(*) u untreated, as-welded		

Operating Data

-

re-drying of sub-arc flux: Ø 300 - 350 °C, 2 h - 10 h max. amperage of sub-arc flux: 800 A

ø mm 3.0

=±

Preheating is not required, only in case of wall thickness above 25 mm preheat up to 150 °C. The interpass temperature should not exceed 200 °C.

Base Materials

similar alloyed creep resistant steels

1.4948 X6CrNi18-11, 1.4949 X3CrNiN18-11

AISI 304H, 321H, 347H

Approvals and Certificates

UDT

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode	: FOX E 308 H
	FOX CN 18/1
GTAW rod:	ER 308 H-IG
	CN 18/11-IG

GMAW solid wire: CN 18/11-IG GMAW flux-cored wire: E 308 H-FD E 308 H PW-FD EN 12536:2000: O IV AWS A5.2-92: R 60-G W.Nr.: 1.5425 **BÖHLER DMO**

Gas welding rod, low-alloyed, high temperature

Description

Mo-alloyed gas welding rod recommended for mild steels and 0.5 % Mo alloyed steels. High viscous weld puddle. Easy to operate. Approved in long-term condition up to +500 °C service temperature.

Typica	I Compo	osition o	of Weldir	ng Rod		
wt-%	C 0.12	Si 0.15	Mn 1.0	Mo 0.5		
Mecha	nical Pr	operties	s of All-w	veld Meta	al	
(*) yield stre tensile st elongatio impact w	ength R∝ N/m rength R∞ N n A (L₀ = 5d ork ISO-V I	nm²: I/mm²: ‰: KV J	+ 20 °C:	u 330 (≥ 470 (≥ 24 (≥ 60 (≥	≥ 295) ≥ 440) ≥ 22) ≥ 39)	

(*) u untreated, as-welded

Operating Data

<u>ـــــ</u>	rod n
l_→	

front: O IV

ø mm
2.0
2.5
3.2
4.0

Preheating and post weld heat treatment as required by the base metal.

Base Materials

high temperature steels, same alloyed

16Mo3, P285NH, P295NH, P255G1TH, P295GH

ASTM A335 Gr. P1, A36 Gr. all; A283 Gr. B, C, D; A285 Gr. B; A414 Gr. C; A442 Gr. 60; A515 Gr. 60; A516 Gr. 55, 60; A570 Gr. 33, 36, 40

Approvals and Certificates

TÜV-D (0146.), DB (70.014.03), ÜZ (./.), ÖBB, UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX DMO Kb	GMAW solid wire:	DMO-IG
	FOX DMO Ti	SAW combination:	EMS 2 Mo/BB 24
GTAW rod:	DMO-IG		EMS 2 Mo/BB 25

EN 12536:2000: O V AWS A5.2-92: R 65-G W.Nr.: 1.7346 **BÖHLER DCMS**

Gas welding rod, low-alloyed, high temperature

Description

CrMo-alloyed gas welding rod for high temperature boiler and tube steels equivalent to 13CrMo4-5 (1.25 % Cr 0.5 % Mo). Approved in long-term condition up to +500 $^\circ C$ service temperature. High viscous weld puddle.

Typical Composition of Welding Rod								
	С	Si	Mn	Cr	Мо			
wt-%	0.12	0.15	0.9	1.2	0.5			

Mechanical Properties of All-weld Metal

(*)	а
yield strength R _e N/mm ² :	≥ 315
tensile strength R _m N/mm ² :	≥ 490
elongation $A(L_0 = 5d_0)$ %:	≥ 18
impact work ISO-V KV J + 20 °C:	≥ 47
(*) a annealed, 680 °C, 2 h/furnace down	to 300 °C/air

Operating Data

 rod marking:	ø mm
front: 🔶 O V	2.5
 back: R65-G	3.0

Wall thicknesses over 6 mm should be preheated to 100-200 $^\circ$ C and tempered at 660-700 $^\circ$ C for at least 1/2 hours followed by cooling in still air.

Base Materials

high temperature steels same alloyed, steels resistant to caustic cracking

1.7335 13CrMo4-5, 1.7205 15CrMo5, 1.7354 G22CrMo5-4, 1.7357 G17CrMo5-5, 16CrMoV4, ASTM A335 Gr. P 11 a. P 12; A193 Gr. B7; A217 Gr. WC6

Approvals and Certificates

TÜV-D (1363.), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:

FOX DCMS Kb FOX DCMS Ti DCMS-IG GMAW solid wire: SAW combination: DCMS-IG EMS 2 CrMo/BB 24 EMS 2 CrMo/BB 25

Notes

Notes

Notes

2.6. Filler Metals for Stainless and Corrosion Resistant Steels

Objectives

This section provides detailed product information for filler metals to join corrosion resistant and highly corrosion resistant steels.

The corrosion resistance of these steels, which is based on the passivating effect of chromium due to the formation of dense, adhesive, thin passive films, is brought about by Cr contents above 12 %. Mo increases the passivating effect still further. It is possible to differentiate between ferritic, martensitic and austenitic steels according to the microstructure in the as-used condition.

Due to their special characteristics austenitic CrNi(Mo) steels are used in the most varied branches like the chemical and petrochemical plant engineering, the pulp and paper or textile industry, for offshore engineering, shipbuilding seawater desalination, the food processing industry, etc. They are primarily used for the fabrication of storage tanks, reactors and pressure vessels as well as piping systems.

The choice of filler metal and welding technology should be matched to the metallurgical behaviour of the parent metal and the component's corrosion requirements.

Contents

OVERVIEW	168
SMAW STICK ELECTRODES	174
GTAW RODS	205
GMAW SOLID WIRES	217
GMAW FLUX CORED WIRES	234
SAW WIRE/FLUX-COMBINATIONS	250

Overview – Standard Classifications

Böhler	EN	AWS						
SMAW stick electrodes								
FOX CN 13/4	EN 1600: E 13 4 B 6 2	AWS A5.4-92: E410NiMo-25						
FOX CN 13/4 SUPRA	EN 1600: E 13 4 B 4 2	AWS A5.4-92: E410NiMo-15						
FOX KW 10	EN 1600: E 13 B 2 2	AWS A5.4-92: E410-15(mod.)						
FOX SKWA	EN 1600: E 17 B 2 2	AWS A5.4-92: E430-15						
FOX SKWAM	EN 1600: E Z 17 Mo B 2 2	-						
FOX CN 16/6 M-HD	EN 1600: E Z 16 6 Mo B 6 2 H5	-						
FOX CN 17/4 PH	EN 1600: E Z 17 4 Cu B 4 3 H5	AWS A5.4-92: E630-15(mod.)						
FOX EAS 2	EN 1600: E 19 9 L B 2 2	AWS A5.4-92: E308L-15						
FOX EAS 2-A	EN 1600: E 19 9 L R 3 2	AWS A5.4-92: E308L-17						
FOX EAS 2-VD	EN 1600: E 19 9 L R 1 5	AWS A5.4-92: E308L-17						
FOX SAS 2	EN 1600: E 19 9 Nb B 2 2	AWS A5.4-92: E347-15						
FOX SAS 2-A	EN 1600: E 19 9 Nb R 3 2	AWS A5.4-92: E347-17						
FOX EAS 4 M	EN 1600: E 19 12 3 LB 2 2	AWS A5.4-92: E316L-15						
FOX EAS 4 M-A	EN 1600: E 19 12 3 L R 3 2	AWS A5.4-92: E316L-17						
FOX EAS 4 M-VD	EN 1600: E 19 12 3 L R 1 5	AWS A5.4-92: E316L-17						
FOX EAS 4 M-TS	EN 1600: E 19 12 3 L R 1 2	AWS A5.4-92: E316L-16(mod.)						
FOX SAS 4	EN 1600: E 19 12 3 Nb B 2 2	AWS A5.4-92: E318-15						
FOX SAS 4-A	EN 1600: E 19 12 3 Nb R 3 2	AWS A5.4-92: E318-17						
FOX EAS 2 SI	EN 1600: E Z 19 14 Si B 2 2	-						
FOX E317 L		AWS A5.4-92: E317L-17						
FOX ASN 5	EN 1600: E 18 16 5 N L B 2 2	AWS A5.4-92: E317LN-15(mod.)						
FOX ASN 5-A	EN 1600: E 18 16 5 N L R 3 2	AWS A5.4-92: E317LN-17(mod.)						
FOX AM 400	EN 1600: E Z 22 18 4 L B 2 2	-						
FOX EASIN 25 M	EN 1600; EZ 25 22 2 NL B 2 2	- ANC AF 4.00: FORE 15(mod.)						
FOX CN 20/25 M A	EN 1600: E 20 25 5 CU N L B 2 2	AWS A5.4-92. E385-15(1100.)						
FOX CN 20/25 W-A	EN 1600. E 20 25 5 CU N L R 5 2	AWS A5.4-92. E305-17 (mod.)						
FOX CN 22/9 N	EN 1600: E 22 9 3 L B 3 2	AWS 45 4-92: E2209-17						
FOX CN 25/9CuT	EN 1600: E 25 9 4 N L B 2 2	AWS A5 9-93: E2553-15(mod.)						
GTAW rods								
CN 13/4-IG	EN 12072: W 13 4	AWS A5.9-93: ER410 NiMo(mod.)						
EAS 2-IG	EN 12072: W 19 9 L	AWS A5.9-93: ER308L						
SAS 2-IG	EN 12072: W 19 9 Nb	AWS A5.9-93: ER347						
EAS 4 M-IG	EN 12072: W 19 12 3 L	AWS A5.9-93: ER316L						
SAS 4-IG	EN 12072: W 19 12 3 Nb	AWS A5.9-93: ER318						
EASN 2 Si-IG	EN 12072: W Z 19 13 Si NL	-						
ASN 5-IG	EN 12072: W Z 18 16 5 NL	AWS A5.9-93: ER317LN(mod.)						
AM 400-IG	EN 12072: W Z 22 17 8 4 NL	-						
EASN 25 M-IG	EN 12072: W 25 22 2 NL	-						
CN 20/25 M-IG	EN 12072: W Z 20 25 5 Cu NL	AWS A5.9-93: ER385(mod.)						
CN 22/9 N-IG	EN 12072: W 22 9 3 NL	AWS A5.9-93: ER2209						
CN 25/9 CuT-IG	EN 12072: W 25 9 4 NL	AWS A5.9-93: ER2553(mod.)						

Overview – Typical Chemical Composition

Böhler	C	Si	Mn	Cr	Ni	Мо	Nb	Т	Ν	Cu	Co
SMAW stick electrodes											
FOX CN 13/4	0.035	0.3	0.5	12.2	4.5	0.5					
FOX CN 13/4 SUPRA	0.03	0.3	0.6	12.5	4.5	0.5					
FOX KW 10	0.08	0.7	0.8	13.5							
FOX SKWA	0.08	0.3	0.3	17.0							
FOX SKWAM	0.22	0.4	0.4	17.0		1.3					
FOX CN 16/6 M-HD	0.03	0.3	0.6	15.5	5.8	1.1					
FOX CN 17/4 PH	0.04	0.3	0.6	16.0	4.9	0.4	0.2			3.2	
FOX EAS 2	0.03	0.4	1.3	19.5	10.5						
FOX EAS 2-A	0.03	0.8	0.8	19.8	10.2						
FOX EAS 2-VD	0.02	0.7	0.7	19.5	10.5						
FOX SAS 2	0.03	0.4	1.3	19.8	10.5		+				
FUX SAS 2-A	0.03	0.8	0.8	19.5	11.0	0.7	+				
FUX EAS 4 M	0.03	0.4	1.2	18.8	11.5	2.7					
	0.03	0.0	0.0	10.0	12.0	2.7					
FOX EAS 4 M-VD	0.03	0.7	0.7	10.0	11.5	2.7					
FOX EAS 4 METS	0.03	0.0	1.3	18.0	11.5	2.7					
FOX SAS 4-A	0.03	0.4	0.8	19.0	11.5	2.7	- -				
FOX FAS 2 Si	<0.00	4.5	12	19.0	14.8	2.7					
FOX E317L	0.03	0.8	0.8	19.0	13.0	3.6			+		
FOX ASN 5	<0.04	0.5	2.5	18.5	17.0	4.3			0.15		
FOX ASN 5-A	≤0.035	0.7	1.1	18.0	16.0	4.5			0.13		
FOX AM 400	≤0.04	0.8	7.5	21.8	18.3	3.7			0.20		
FOX EASN 25 M	≤0.035	0.4	5.5	25.0	22.0	2.2			0.14		
FOX CN 20/25 M	≤0.04	0.4	4.0	20.0	25.0	6.5			0.14	1.4	
FOX CN 20/25 M-A	≤0.03	0.7	2.0	20.5	25.0	6.2			0.17	1.6	
FOX CN 22/9 N-B	≤0.03	0.3	1.1	23.0	8.8	3.2			0.16		
FOX CN 22/9 N	≤0.03	0.9	0.8	23.0	9.0	3.2			0.17		
FOX CN 25/9CuT	0.03	0.5	1.1	25.0	9.3	3.7		0.6	0.22	0.7	
GTAW rods											
CN 13/4-IG	0.02	0.7	0.7	12.3	4.7	0.5					
EAS 2-IG	0.02	0.5	1.7	20.0	10.0	0.0					
SAS 2-IG	0.05	0.5	1.8	19.5	9.5		+				
EAS 4 M-IG	0.02	0.5	1.7	18.5	12.3	2.6					
SAS 4-IG	0.04	0.4	1.7	19.5	11.5	2.7	+				
EASN 2 Si-IG	≤0.015	4.6	0.7	19.5	13.4				0.12		
ASN 5-IG	0.02	0.2	5.0	19.0	16.5	4.1			0.16		
AM 400-IG	0.03	0.7	7.5	21.5	17.5	3.6			0.22		
EASN 25 M-IG	0.025	0.2	6.0	25.0	22.5	2.2			0.13		
CN 20/25 M-IG	≤0.02	0.7	4.7	20.0	25.4	6.2			0.12	1.5	
CN 22/9 N-IG	0.02	0.4	1.7	22.5	8.8	3.2			0.15		
CN 25/9 CuT-IG	I 0.02	0.3	0.8	25.5	9.5	3.7		0.6	0.22	0.6	

Overview – Standard Classifications (continued)

Böhler	EN	AWS			
GMAW solid wir	es				
KW 5 Nb-IG	EN 12072: G Z 13 Nb L	AWS A5.9-93:	ER409 Cb		
CAT 430 L Cb-IG	EN 12072: G Z 18 Nb L	AWS A5.9-93:	ER430(mod.)		
CAT 439 L Ti-IG	EN 12072: G Z 18 Ti L	AWS A5.9-93:	ER430(mod.)		
CN 13/4-IG	EN 12072: G 13 4	AWS A5.9-93:	ER410NiMo (mod.)		
KW 10-IG	EN 12072: G Z 13	AWS A5.9-93:	ER410(mod.)		
KWA-IG	EN 12072: G 17	AWS A5.9-93:	ER430(mod.)		
SKWA-IG	EN 12072: G Z 17 Ti	AWS A5.9-93:	ER430(mod.)		
SKWAM-IG	EN 12072: G Z 17 Mo H	-			
EAS 2-IG (Si)	EN 12072: G 19 9 L Si	AWS A5.9-93:	ER308LSi		
SAS 2-IG (Si)	EN 12072: G 19 9 NbSi	AWS A5.9-93:	ER347Si		
EAS 4 M-IG (Si)	EN 12072: G 19 12 3 L Si	AWS A5.9-93:	ER316LSi		
SAS 4-IG (Si)	EN 12072: G 19 12 3 NbSi	AWS A5.9-93:	ER318(mod.)		
ASN 5-IG (Si)	EN 12072: G Z 18 16 5 NL	AWS A5.9-93:	ER317LN(mod.)		
AM 400-IG	EN 12072: G Z 22 17 8 4 NL	-			
CN 20/25 M-IG (Si)	EN 12072: G Z 20 25 5 Cu NL	AWS A5.9-93:	ER385(mod.)		
CN 22/9 N-IG	EN 12072: G 22 9 3 NL	AWS A5.9-93:	ER2209		
CN 25/9 CuT-IG	EN 12072: G 25 9 4 NL	AWS A5.9-93:	ER2553(mod.)		
014014					
GIVIAW TIUX CORE	ed wires				
CN 13/4-MC	EN 12073: T 13 4 MM 2	AWS A5.22-95:	EC410NiMo(mod.)		
CN 13/4-MC (F)	EN 12073: 1 13 4 MM 2	AWS A5.9-93:	EC410NiMo(mod.)		
EAS 2-MC	EN 12073: I 19 9 L MM 1	AWS A5.9-93:	EC308L(mod.)		
EAS 4M-MC	EN 12073: I 19 12 3 L MM 1	AWS A5.22-95:	EC316L(mod.)		
EAS 2-FD	EN 120/3: I 199LRM3	AWS A5.22-95:	E308L10-4		
	I 199LRC3		E308L10-1		
EAS 2 PW-FD	EN 12073: I 199LPM 1	AWS A5.22-95:	E308L11-4		
0.4.0.0.FD			E308L11-1		
SAS 2-FD	EN 12073: T 19 9 ND R M 3	AWS A5.22-95:	E34710-4		
	T 19 9 ND R C 3	AVAIC A.C. 00.05.	E34710-1		
SAS 2 PW-FD	EN 12073: 1 19 9 ND P M 1	AWS A5.22-95:	E34711-4		
5 4 6 4 M 5D	T 19 9 ND P C 1		E34/11-1		
EAS 4 M-FD	EN 12073: 1 19 12 3 L R M 3	AVV5 A5.22-95:	E316L10-4		
	T 19 12 3 L R C 3	ANNO AE 00.05.			
EAS 4 FW-FD	T 10 10 2 L P M 1	AWS A5.22-95.	E310L11-4		
	EN 19079: T 10 19 2 Nb D M 2		ESTOLIT-T		
5A5 4-FD	EN 12073. 1 19 12 3 ND R W 3				
SAS 4 DW ED	EN 19079, T 10 10 2 Nb D M 1				
SAS 4 FW-FD	T 10 10 2 Nb D C 1				
E 217L-ED	EN 12072: TZ 10 12 / L D M 2	AMS A5 22-05-	E217LT0-4		
2 3172-10	T7 10 12 / J P C 2	AWS A5 22-95.	E317LT0-4		
E 3171 PW-ED	EN 12073: TZ 19 13 4 L P M 1	AWS A5 22-95.	E317LT1-4		
LUNCEWID	T7 19 13 4 L P C 1	AWS 45 22-95.	E317 T1-1		
CN 22/9 N-ED	EN 12073: T 22 9 3 I N B M 2	AWS A5 22-95.	E31/E11-1		
011 22/3 11-1 0	T 22 0 2 I N D C 2	ANNO AJ.22-90.	E220910-4		
CN 22/9 PW-FD	EN 12073: T 22 9 3 I N P M 1	AWS 45 22.05	E220910-1		
01122011110	T 22 9 3 LN P C 1	ANNO AJ.22-33.	E2209T1-1		

Overview – Typical Chemical Composition (continued)

Böhler	С	Si	Mn	Cr	Ni	Мо	Nb	Ti	Ν	Cu	Т
GMAW solid with	res										
KW 5 Nb-IG	0.05	0.6	0.6	11.5			+				
CAT 430 L Cb-IG	<0.02	0.5	0.5	18.0			>12xC				
CAT 439 L Ti-IG	0.03	0.8	0.8	18.0				>12xC			
CN 13/4-IG	≤0.02	0.7	0.6	12.3	4.7	0.5					
KW 10-IG	0.08	1.1	0.6	14.5							
SKWA-IG	0.00	0.6	0.0	17.5							
SKWAMJG	0.07	0.0	0.0	17.5		11		Ŧ			
EAS 2-IG (Si)	0.02	0.8	1.7	20.0	10.2						
SAS 2-IG (Si)	0.03	0.9	1.3	19.4	9.7		+				
EAS 4 M-IG (Si)	0.02	0.8	1.7	18.4	11.8	2.8					
SAS 4-IG (Si)	0.035	0.8	1.4	19.0	11.5	2.8	+				
ASN 5-IG (Si)	0.03	0.7	7.0	19.0	17.5	4.3			0.16		
AM 400-IG	0.03	0.7	7.5	21.5	17.5	3.6			0.22		
CN 20/25 M-IG (Si)	0.02	0.7	4.7	20.0	25.4	6.2			0.12	1.5	
CN 22/9 N-IG	0.015	0.4	1.7	22.6	8.8	3.2			0.15		
CN 25/9 CUT-IG	0.02	0.3	0.8	25.3	9.5	3.7			0.22	0.6	0.6
GMAW flux core	ed wire	s									
CN 13/4-MC	0.025	0.7	0.9	12.0	4.6	0.6					
CN 13/4-MC (F)	≤0.03	0.7	0.9	12.2	4.6	0.6					
EAS 2-MC	≤0.03	0.6	1.4	19.8	10.2						
EAS 4M-MC	≤0.03	0.6	1.4	18.8	12.2	2.7					
EAS 2-FD	0.03	0.0	1.5	19.0	10.2						
EAS 2 PW-FD	0.03	0.7	1.5	19.8	10.2						
SAS 2-FD	0.03	0.7	1.4	19.0	10.4		+				
SAS 2 PW-FD	0.03	0.7	1.4	19.0	10.4		+				
EAS 4 M-FD	0.03	0.7	1.5	19.0	12.0	2.7					
EAS 4 PW-FD	0.03	0.7	1.5	19.0	12.0	2.7					
SAS 4-FD	0.03	0.6	1.3	18.8	12.2	2.6	+				
SAS 4 PW-FD	0.03	0.6	1.3	18.8	12.2	2.6	+				
E 317L-FD	≤0.035	0.7	1.3	18.5	13.3	3.4					
E 317L PW-FD	≤0.035	0.7	1.3	18.5	13.3	3.4					
CN 22/9 N-FD	0.03	0.8	0.9	22.7	9.0	3.2			0.13		
CN 22/9 PW-FD	0.03	0.8	0.9	22.7	9.0	3.2			0.13		

Overview – Standard Classifications (continued)

Böhler	EN	AWS	
SAW wire/flux-c	ombinations		
CN 13/4-UP	EN 12072: S 13 4	AWS A5.9-93:	ER410NiMo(mod.)
CN 13/4-UP/BB 203	EN 12072/760: S 13 4 / SA FB 2	AWS:	ER410NiMo(mod.)
SKWAM-UP	EN 12072: S 17 Mo H	AWS A5.9-93:	-
SKWAM-UP/BB 203	EN 12072/760: SA FB 2 DC	AWS:	-
EAS 2-UP	EN 12072: S 19 9 L	AWS A5.9-93:	ER308L
EAS 2-UP/BB 202	EN 12072/760: S 19 9 L / SA FB 2	AWS:	ER308L
SAS 2-UP	EN 12072: S 19 9 Nb	AWS A5.9-93:	ER347
SAS 2-UP/BB 202	EN 12072/760: S 19 9 Nb / SA FB 2	AWS:	ER347
EAS 4 M-UP	EN 12072: S 19 12 3 L	AWS A5.9-93:	ER316L
EAS 4 M-UP/BB 202	EN 12072/760: S 19 12 3L / SA FB 2	AWS:	ER316L
SAS 4-UP	EN 12072: S 19 12 3 Nb	AWS A5.9-93:	ER318
SAS 4-UP/BB 202	EN 12072/760: S 19 12 3Nb/SA FB 2	AWS:	ER318
ASN 5 SY-UP/BB 202	EN 12072: -	AWS A5.9-93:	ER317L
ASN 5 SY-UP/BB 202	EN 12072/760: SA FB 2 DC	AWS:	-
ASN 5-UP	EN 12072: S 18 16 5 NL	AWS A5.9-93:	ER317LN(mod.)
ASN 5-UP/BB 203	EN 12072/760: S 18 16 5 NL / SA FB 2	AWS:	ER317LN(mod.)
CN 22/9 N-UP	EN 12072: S 22 9 3 NL	AWS A5.9-93:	ER2209
CN 22/9 N-UP/BB 202	EN 12072/760: S 22 9 3NL/SA FB 2	AWS:	ER2209

Overview – Typical Chemical Composition (continued)

Böhler	С	Si	Mn	Cr	Ni	Мо	Nb	Ti	Ν	Cu	
SAW wire/flux-co	ombina	ations	S								
CN 13/4-UP	≤0.02	0.70	0.6	12.2	4.8	0.5					
CN 13/4-UP/BB 203	0.025	0.75	0.6	12.1	4.7	0.5					
SKWAM-UP	0.16	0.6	0.7	17.0		1.1					
SKWAM-UP/BB 203	0.15	0.6	0.7	16.5		1.1					
EAS 2-UP	≤0.02	0.45	1.7	20.1	9.8						
EAS 2-UP/BB 202	≤0.02	0.60	1.3	19.8	9.8						
SAS 2-UP	≤0.05	0.50	1.7	19.5	9.5		0.60				
SAS 2-UP/BB 202	0.045	0.65	1.3	19.3	9.5		0.50				
EAS 4 M-UP	≤0.02	0.45	1.7	18.5	12.2	2.8					
EAS 4 M-UP/BB 202	≤0.02	0.60	1.3	18.3	12.2	2.7					
SAS 4-UP	0.03	0.50	1.7	19.6	11.4	2.7	0.55				
SAS 4-UP/BB 202	0.025	0.65	1.3	18.8	11.4	2.7	0.45				
ASN 5 SY-UP	≤0.03	0.5	1.6	19.0	13.5	3.6					
ASN 5 SY-UP/BB 202	≤0.03	0.6	1.2	18.5	13.4	3.5					
ASN 5-UP	≤0.02	0.20	5.0	19.0	16.5	4.0			0.15		
ASN 5-UP/BB 203	≤0.02	0.20	4.5	18.5	16.3	4.0			0.14		
CN 22/9 N-UP	≤0.02	0.40	1.7	23.0	9.0	3.2			0.15		
CN 22/9 N-UP/BB 202	0.015	0.55	1.3	22.5	8.9	3.1			0.14		

EN 1600:1997: E 13 4 B 6 2 AWS A5.4-92: E 410 NiMo-25

BÖHLER FOX CN 13/4

SMAW stick electrode, high-alloyed, stainless

Description

Basic coated low-hydrogen electrode suited for similar soft martensitic and martensitic-ferritic rolled, forged, and cast steels. Mainly used in the construction of hydro turbines, compressors. Resistant to corrosion from water, steam and sea water atmosphere. Thanks to an optimum balance of alloying components the weld deposit yields very good ductility and toughness & cracking resistance despite of its high strength.

Excellent operating characteristics, easy slag removal, and smooth bead appearance. Metal recovery approx. 130 %. Positional weldability is offered up to ø 3.2 mm electrodes.

BÖHLER FOX CN 13/4 as well as the GTAW-rod BÖHLER CN 13/4-IG and the analogous GMAW wire are very popular in the construction of hydro turbines.

Typical Composition of All-weld Metal

	C	Ci	Mn	Cr	Nii	Mo
	0	0	IVIII	CI CI	INI	1010
wt-%	0.035	0.3	0.5	12.2	4.5	0.5

Mechanical Properties of All-weld Metal

	u 890 1090 12 + 20 °C: 32 - 20 °C: - 60 °C:	(≥ 830) (≥ 1000) (≥ 8) (≥ 24)	a 680 (≥ 610) 910 (≥ 830) 17 (≥ 15) 66 (≥ 47) 55 50	q 670 (≥ 560) 850 (≥ 780) 18 (≥ 16) 95 (≥ 60)
--	---	--	---	---

u untreated, as-welded;

a annealed, 600 °C/2 h/air; q: quenched/tempered, 950 °C/0.5 h/air + 600 °C/2 h/air

Operating Data

re-drying if necessary: 300 - 350 °C. min. 2 h	ø mm 2.5	L mm 350	amps A 60 - 90	Γ
electrode identification:	3.2	450	90 - 130	13
FOX CN 13/4 410 NiMo-25 E 13 4 B	4.0	450	120 - 170	L
	5.0	450	160 - 220	

Preheating and interpass temperatures of heavy-wall components 100 - 160 °C. Maximum heat input 15 kJ/cm. Post weld heat treatment at 580 - 620 °C.

Base Materials

1.4317 GX4CrNi13-4, 1.4313 X3CrNiMo13-4, 1.4351 X3CrNi13-4, 1.4414 GX4CrNiMo13-4 ACI Gr. CA 6 NM. S41500

Approvals and Certificates

TÜV-D (3232.), UDT, LTSS, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX CN 13/4 SUPRA GTAW rod: CN 13/4-IG GMAW solid wire: CN 13/4-IG Metal cored wire: SAW combination: CN 13/4-MC CN 13/4-MC (F) CN 13/4-UP/BB 203 EN 1600:1997: E 13 4 B 4 2 AWS A5.4-92: E 410 NiMo-15 BÖHLER FOX CN 13/4 SUPRA

SMAW stick electrode, high-alloyed, stainless

Description

Basic coated core wire alloyed low-hydrogen electrode suited for welding similar soft-martensitic and martensitic-ferritic rolled, forged, and cast steels. Mainly used in the construction of hydro turbines, compressors. Resistant to corrosion from water, steam, and sea water atmosphere. Thanks to an optimum balance of alloying components the weld depositi yields very good ductility and toughness & cracking resistance despite of its high strength.

Excellent slag removability, smooth bead appearance. Out of position weldable except vertical down.

Typical Composition of All-weld Metal											
wt-%	С 0.03	Si 0.3	Mn 0.6	Cr 12.5	Ni 4.5	Mo 0.5					
Mechanical Properties of All-weld Metal											
u a q q <i>i</i> eld strength R₀ N/mm ² : 880 (≥ 830) 680 (≥ 610) 970 (≥ 560) ensile strength R₀ N/mm ² : 1060 (≥ 1000) 930 (≥ 830) 850 (≥ 760) elongation A (L₂ = 5d₂) %: 13 (≥ 8) 18 (≥ 15) 18 (≥ 16) mpact work ISO-V KV J + 20 °C: 35 (≥ 30) 70 (≥ 55) 105 (≥ 70) - 20 °C: - 60 °C: 55 55 105 (≥ 70) - 0 °C: 55 55 105 (≥ 70) - 10 °C: 55 105 (≥ 70) 105 (≥ 70) - 10 °C: 55 55 105 (≥ 70) - 10 °C: 55 105 (≥ 70) 105 (≥ 70)											
Operatin	g Data										
	re-dryi 300 - 3 electro FOX 0 Prehea Maxim	ng if nece: 350 °C, mi ode identifi CN 13/4 SU ating and in um heat in	ssary: n. 2 h cation: JPRA 410N terpass tem put 15 kJ/cn	i Mo-15 E peratures 1. Post we	ø mm 3.2 4.0 13 4 B of heavy-w ld heat trea	L mm 350 350 vall compor atment at 5	amps A 90 - 110 120 - 145 nents 100 - 16 80 - 620 °C.	=+			

Base Materials

1.4317 GX4CrNi13-4, 1.4313 X3CrNiMo13-4, 1.4351 X3CrNi13-4, 1.4414 GX4CrNiMo13-4 ACI Gr. CA 6 NM, S41500

Approvals and Certificates

TÜV-D (9081.), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 13/4
GTAW rod:	CN 13/4-IG
GMAW solid wire:	CN 13/4-IG

Metal cored wire: SAW combination: CN 13/4-MC CN 13/4-MC (F) CN 13/4-UP/BB 203 EN 1600:1997:E 13 B 2 2 AWS A5.4-92: E 410-15 (mod.)

BÖHLER FOX KW 10

SMAW stick electrode, high-alloyed, stainless

Description

Basic coated core wire alloyed low-hydrogen electrode with good operating characteristics in all positions except vertical-down. Mainly used for surfacing on sealing faces of gas, water and steam valves to meet stainless and wear resistant overlays for instance. In the machined condition, at least a two layer build up should remain. Joint welding of similar, stainless and heat resistant chromium steels provides matching colour of weld metal with very good ability to polishing. Retention of hardness up to +450 °C, scaling resistant up to +900 °C. Preheating and interpass temperature 200 - 300 °C, post weld heat treatment at 700 - 750 °C depending on the weld job.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr
wt-%	0.08	0.7	0.8	13.5

Mechanical Properties of All-weld Metal

(*) yield strength R₀ N/mm²:	u	a 530	(≥ 450)
tensile strength R _m N/mm ² :		700	(≥ 640)
elongation A ($L_0 = 5d_0$) %:		17	(≥ 15)
Brinell-hardness HB:	350	210	
(*) u untreated, as-welded			

a annealed, 750 °C/2 h/furnace

The hardness of the deposit ist greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness.

Operating Data

 re-drying if necessary: 120 - 200 °C, min. 2 h	ø mm 2.5	L mm 300	amps A 60 - 80	=+
 electrode identification: FOX KW 10 E 13 B	3.2 4.0	350 350	80 - 100 110 - 130	

Base Materials

surfacings: all weldable backing materials, unalloyed and low-alloyed

joint welds: corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents ≤ 0.20 % (repair welding); heat resistant Cr-steels of similar chemical composition. Be careful with dilution and welding technology.

1.4006 X12Cr13, 1.4021 X20Cr13

AISI 410, 420

Approvals and Certificates

UDT, SEPROZ

Same Alloy Filler Metals

GMAW solid wire: KW 10-IG

EN 1600:1997:E 17 B 2 2 AWS A5.4-92: E 430-15

BÖHLER FOX SKWA

SMAW stick electrode, high-alloyed, stainless

Description

Basic coated core wire alloyed low-hydrogen electrode with good operating characteristics in all positions except vertical-down. Mainly used for surfacing on sealing faces of gas, water and steam valves to meet stainless and wear resistant overlays for instance. In the machined condition, at least a two layer build up should remain. Joint welding of similar, stainless and heat resistant chromium steels provides matching colour of weld metal with very good ability to polishing. Hydrogen content in weld deposit < 5 ml/100 g.

Preheating and interpass temperature 200 - 300 °C, post weld heat treatment at 730 - 800 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr
wt-%	0.08	0.3	0.3	17.0

Mechanical Properties of All-weld Metal

(*)	u	a	(- 040)
yield Strength Re N/mm ⁻ .		370	(≥ 340)
tensile strength R _m N/mm ² :		560	(≥ 530)
elongation $A(L_0 = 5d_0)$ %:		23	(≥ 18)
Brinell-hardness HB:	250	200	
(*) u untreated, as-welded			

a annealed, 750 °C/2 h/furnace

Operating Data

re-drying if necessary: 120 - 200 °C, min. 2 h electrode identification: FOX SKWA 430-15 E 17 B	ø mm 2.5 3.2 4.0	L mm 300 350 350	amps A 60 - 80 80 - 110 110 - 140	=+	
	5.0	450	140 - 180		

The hardness of the deposit ist greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness.

Base Materials

surfacings: all weldable backing materials, unalloyed and low-alloyed.

joint welds: corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents up to 0.20 % (repair welding). Be careful with dilution and welding technology.

1.4510 X3CrTi17

AISI 430Ti, 431

Approvals and Certificates

KTA 1408.1 (8098.00), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX SKWAM

GMAW solid wire:

kwa-ig Skwa-ig Skwam-ig EN 1600:1997: EZ 17 Mo B 2 2

BÖHLER FOX SKWAM

SMAW stick electrode, high-alloyed, stainless

Description

Basic coated core wire alloyed low-hydrogen electrode with good operating characteristics in all positions except vertical-down. Mainly used for surfacing on sealing faces of gas, water and steam valves to meet stainless and wear resistant overlays for instance. In the machined condition, at least a two layer build up should remain.

Joint welding of similar, stainless and heat resistant chromium steels provides matching colour of weld metal with very good ability to polishing.

Hydrogen content in weld deposit <5 ml/100 g. Weld metal retention of hardness up to +500 °C. Scaling resistant up to +900 °C.

Typical	Compo	sition o	of All-we	eld Meta	I			
wt-%	C 0.22	Si 0.4	Mn 0.4	Cr 17.0	Mo 1.3			
Mechan	ical Pro	operties	s of All-v	weld Me	tal			
(*) Brinell-hard (*) u untrea a annea	Iness HB: ated, as-w aled, 700°	elded C/2 h/furr	nace	u 400	a 25 0)		
Operatin	ng Data							
·>	re-drv	ing if nece	essary.		ø mm	L mm	amps A	

ømm	Lmm	amps A	
2.5	300	60 - 80	
3.2	350	80 - 110	
4.0	350	110 - 140	
5.0	450	140 - 180	
	ø mm 2.5 3.2 4.0 5.0	Ø mm L mm 2.5 300 3.2 350 4.0 350 5.0 450	Ø mm L mm amps A 2.5 300 60 - 80 3.2 350 80 - 110 4.0 350 110 - 140 5.0 450 140 - 180

Preheating as required by the base metal, with temperatures between 100 and 200 °C being generally sufficient (for joint welding operations 250 - 400 °C). Annealing at 650 - 750 °C may be carried out to improve the toughness values in the weld metal and in the transition zone of the base metal.

The hardness of the deposit ist greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness.

Base Materials

surfacings: all weldable backing materials, unalloyed and low-alloyed.

joint welds: corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents up to 0.20 % (repair welding). Be careful with dilution and welding technology

Approvals and Certificates

KTA 1408.1 (8043.01), DB (30.014.12-20.014.08), ÜZ (30014), ÖBB, UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX SKWA GMAW solid wire: KWA-IG SKWA-IG SKWAM-IG EN 1600:1997: E Z 16 6 Mo B 6 2 H5

BÖHLER FOX CN 16/6 M-HD

SMAW stick electrode, high-alloyed, corrosion resistant

Description

Basic coated, high efficiency electrode for welding of soft martensitic forged and cast steels. The high chromium content enhances the corrosion resistance in water, steam and sea atmosphere. Main applications are found in turbines, pumps-and combustion building. Popular in hydro turbine engineering.

The electrode shows very good features in regard to arc stability, weld puddle control, slag detachability and seam cleanliness. Suitable for all positions except vertical down (positional welding up to ø 3.2 mm). Metal recovery approx. 135 %. Low hydrogen is a essential and necessary prerequisite of this product.

Typical Composition of All-weld Metal

wt-%	C	Si	Mn	Cr	Ni	Mo
	0.03	0.3	0.6	15.5	5.8	1.1

Mechanical Properties of All-weld Metal

(+)				•	
(^)		u	S1	s2	S
vield strength R _a N/mm ² :		520	650	640	680
tensile strength Rm N/mm ² :		1050	920	920	880
elongation A ($L_0 = 5d_0$) %:		13	15	16	24
hardness Hv HV10:		370	340	330	295
impact work ISO-V KV J	+ 20 °C:	28	42	48	75
(4)					

(*) u untreated, as-welded

s1 annealed, 580 °C/4 h/air

s2 annealed, 590 °C/8 h/furnace down to 300 °C/air

s solution annealed, 1030 °C/1 h/air + 590 °C/8 h/furnace down to 300 °C/air

The hardness of the deposit is greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness. The maximum interpass temperature should not exceed +120 °C.

Operating Data

re-drying if necessary: 300 - 350 °C, min 2 h electrode identification: FOX CN 16/6 M-HD EZ16 6 Mo B	ø mm 2.5 3.2 4.0	L mm 350 450 450	amps A 70 - 95 110 - 140 140 - 180	=+	
	5.0	450	180 - 230		

Base Materials

soft-martensitic forge steels and cast steels, same-alloyed

1.4405 GX5CrNiMo16-5, 1.4418 X4CrNiMo16-5

Approvals and Certificates

UDT, SEPROZ

EN 1600:1997: E Z 17 4 Cu B 4 3 H5 AWS A5.4-92: E630-15 (mod.)

BÖHLER FOX CN 17/4 PH

SMAW stick electrode, high-alloyed, corrosion resistant

Description

Basic coated electrode with strength properties for joint and fabrication welding of analogous precipitation hardening Cr-Ni-Cu-alloyed rolled-, forged- and cast steels.

Popular for components in the paper industry, rotors of compressors, fan blades, press plates in the plastic processing industry and for the aerospace industry.

The electrode shows very good features in regard to arc stability, weld puddle control, slag detachability and seam cleanliness. Lowest hydrogen content in the deposit is a prerequisite (HD < 5 ml/100 g). The electrode is suitable for welding in all positions except vertical down.

The interpass temperature has to be kept very low (max. 80°C). With the use of the proper PWHT (solution annealing + precipitation hardening impact values down to -50 °C are still achievable).

Typical	Compo	sition	of All-w	eld Me	etal					
wt-%	С 0.04	Si 0.3	Mn 0.6	Cr 16.0	N 4.9	i 9	Mo 0.4	Cu 3.2	Nb 0.2	
Mechanical Properties of All-weld Metal										
(*) yield streng tensile stre elongation hardness H impact wor	gth R₀N/m ngth R _m N A (L₀ = 5d IRC: k ISO-V k	m²: /mm²:) %: (V J	+ 20 °C: - 50 °C:	440 800 4 32-39 35-40	a1 940 1030 10 37-40 20	a2 830 1110 8 - 15	a3 630 940 15 29-31 24-30	s1 920 1030 17 60-66	s2 650 890 18 27-29 69-75 55	

(*) u untreated, as-welded

a1 annealed, 540 °C/3 h/air

a2 annealed, 480 °C/1 h/air

a3 annealed, 760 °C/2 h/air + 620 °C/4 h/air

s1 solution annealed, 1040 °C/2 h/air + 580 °C/4 h/air

s2 solution annealed, 1040 °C/0.5 h/air + 760 °C/2 h/air + 620 °C/4 h/air

The hardness of the deposit ist greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness.

Operating Data

Base Materials

precipitation hardening forged steels and cast steels, same-alloyed

1.4540 X4CrNiCuNb16-4, 1.4540 GX4CrNiCuNb16-4, 1.4542 X5CrNiCuNb16-4, 1.4548 X5CrNiCuNb17-4-4

J92180 Gr. CB Cu-1; S17400 Type 630; SAE J467 17-4PH

Approvals and Certificates

UDT, SEPROZ

EN 1600:1997:E 19 9 L B 2 2 AWS A5.4-92: E 308L-15

BÖHLER FOX EAS 2

SMAW stick electrode, high-alloyed,

chemical resistant

Description

Basic coated core wire alloyed stainless steel electrode with low carbon content. Preferably used for 1.4306 / 304L / 304LN steel grades.

Designed to produce high quality weld deposit with reliable toughness values down to -196 °C. 100 % X-ray safety together with very good root pass and positional welding characteristics. Good gap bridging ability, easy weld pool and slag control. Easy slag removal even in narrow preparations result in clean bead surfaces with minimum post weld cleaning. Resistant to intergranular corrosion up to +350 °C.

Ideal electrode for welding on site. Electrodes are packed in hermetically sealed tins and have a moisture resistant coating.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni
wt-%	0.03	0.4	1.3	19.5	10.5

Mechanical Properties of All-weld Metal

(*)		u	
yield strength R _e N/mm ² :		430	(≥ 350)
tensile strength Rm N/mm ² :		580	(≥ 520)
elongation A ($L_0 = 5d_0$) %:		42	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	100	(≥ 90)
	- 196 °C:		(≥ 34)́

(*) u untreated, as-welded

Operating Data

re-drying if necessary:	ø mm	L mm	amps A	=+
–	2.5	300	50 - 80	
electrode identification:	3.2	350	80 - 110	
FOX EAS 2 308L-15 E 19 9 L B	4.0	350	110 - 140	

Base Materials

1.4306 X2CrNi19-11, 1.4301 X5CrNi18-10, 1.4311 X2CrNiN18-10, 1.4312 GX10CrNi18-8, 1.4541 X6CrNiTi18-10, 1.4546 X5CrNiNb18-10, 1.4550 X6CrNiNb18-10

AISI 304, 304L, 304LN, 302, 321, 347; ASTM A157 Gr. C9; A320 Gr. B8C o. D

Approvals and Certificates

TÜV-D (0152.), DB (30.014.10), ÜZ (30.014), ÖBB, TÜV-A (95), CL (1407), Statoil, UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX EAS 2-A	Metal cored wire:	EAS 2-MC
	FOX EAS 2-VD	Flux cored wire:	EAS 2-FD
GTAW rod:	EAS 2-IG	SAW combination:	EAS 2 PW-FD
GMAW solid wire:	EAS 2-IG (Si)		EAS 2-UP/BB 202

EN 1600:1997:E 19 9 L R 3 2 AWS A5.4-92: E 308L-17

BÖHLER FOX EAS 2-A

SMAW stick electrode, high-alloyed,

chemical resistant

Description

Rutile coated core wire alloyed stainless steel electrode. Preferably used for 1.4306 / 304L / 304LN steel grades.

BÖHLER FOX EAS 2-A is noted for its superior welding characteristics and metallurgy. Can be used on AC or DC. Other characteristics include high current carrying capacity, minimum spatter formation, self releasing slag, smooth and clean weld profile, safety against formation of porosity due to moisture resistant coating and packaging into hermetically sealed tins. Resistant to intergranular corrosion up to +350 °C.

Typical Composition of All-weld Metal								
wt-%	С 0.03	Si 0.8	Mn 0.8	Cr 19.8	Ni 10.2			
Mechanic	al Prop	oerties	of All-	weld Me	tal			
(*) yield strength tensile streng elongation A (impact work I (*) u untreate sa solution	R _o N/mm th R _m N/m (L ₀ = 5d ₀) $^{\circ}$ SO-V KV ed, as-wel n anneale	²: m²: %: J ded d and qu	+ 20 °C: • 120 °C: • 196 °C: • enched	u 430 560 40 70	(≥ 350) (≥ 520) (≥ 35) (≥ 47) (≥ 32)	sa (≥ 3	2)	
Operating	j Data							
	re-dryin 120 - 20 electrod FOX EA	g if nece 00 °C, mi le identifi NS 2-A 3	ssary: in. 2 h cation: 08L-17 E	19 9 L R	ø mm 1.5 2.0 2.5 3.2 4.0 5.0	L mm 250 300 250/350 350 350 450	amps A 25 - 40 40 - 60 50 - 90 80 - 120 110 - 160 140 - 200	=+ ∼
Dece Mat	oriolo							

Base Materials

1.4306 X2CrNi19-11, 1.4301 X5CrNi18-10, 1.4311 X2CrNiN18-10, 1.4312 GX10CrNi18-8, 1.4541 X6CrNiTi18-10, 1.4546 X5CrNiNb18-10, 1.4550 X6CrNiNb18-10

AISI 304, 304L, 304LN, 302, 321, 347; ASTM A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (1095.), DB (30.014.15), ÜZ (30.014), ÖBB, TÜV-A (96), ABS (E 308L-17), CL (0942), GL (4306), Statoil, ÜDT, VUZ, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX EAS 2	Metal cored wire:	EAS 2-MC
	FOX EAS 2-VD	Flux cored wire:	EAS 2-FD
GTAW rod:	EAS 2-IG	SAW combination:	EAS 2 PW-FD
GMAW solid wire:	EAS 2-IG (Si)		EAS 2-UP/BB 20

EN 1600:1997:E 19 9 L R 1 5 AWS A5.4-92: E 308L-17

BÖHLER FOX EAS 2-VD

. mm

300

300

SMAW stick electrode, high-alloyed,

chemical resistant

Description

Core wire alloyed rutile-basic coated stainless steel electrode especially designed for verticaldown welding in the sheet metal fabrication.

Highly economical due to fast travel speeds. 50 % time saving is achieved compared to welding in vertical up position with same electrode diameter. The extremely low heat helps to reduce distortion and associated straightening work.

The product is resistant to intergranular corrosion up to service temperatures of +350 °C.

	С	Si	Mn	Cr	Ni
wt-%	0.02	0.7	0.7	19.5	10.5

Mechanical Properties of All-weld Metal

	+ 20 °C: - 120 °C:	u 470 600 36 55	(≥ 350) (≥ 520) (≥ 35) (≥ 47) (≥ 32)
(*) u untracted as wolded	- 120 0.		(2 32)

(*) u untreated, as-welded

Operating Data

Γ.	*L
	- + I
1-	

re-drying if necessary:	ø mm	L
120 - 200 °C, min. 2 h	2.5	
electrode identification:	3.2	
FOX EAS 2-VD 308L-17 E 19 9 L R		

A 5 5	=+
<u> </u>	

amps /

75 - 8

105 - 11

Base Materials

1.4306 X2CrNi19-11, 1.4301 X5CrNi18-10, 1.4311 X2CrNiN18-10, 1.4312 GX10CrNi18-8, 1.4541 X6CrNiTi18-10, 1.4546 X5CrNiNb18-10, 1.4550 X6CrNiNb18-10

AISI 304, 304L, 304LN, 302, 321, 347; ASTM A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX EAS 2	Metal cored wire:	EAS 2-MC
	FOX EAS 2-A	Flux cored wire:	EAS 2-FD
GTAW rod:	EAS 2-IG	SAW combination:	EAS 2 PW-FD
GMAW solid wire:	EAS 2-IG (Si)		EAS 2-UP/BB 202
EN 1600:1997: E 19 9 Nb B 2 2 AWS A5.4-92: E 347-15

BÖHLER FOX SAS 2

SMAW stick electrode, high-alloyed, chemical resistant

Description

Stabilised core wire alloyed stainless steel electrode with basic coating mainly for Ti and Nb stabilised 1.4541 / 321 / 347 CrNi-steel grades. Designed to produce first class weld deposits with reliable CVN toughness values down to -196 °C. 100 % X-ray safety together with very good root pass and positional welding characteristics, good gap bridging ability, easy weld pool and slag control as well as easy slag removal even in narrow preparations resulting in clean bead surfaces and minimum post weld cleaning. An excellent electrode for welding on site and for heavy and rigid components. The product is resistant to intergranular corrosion up to +400 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Nb
wt-%	0.03	0.4	1.3	19.8	10.5	+

Mechanical Properties of All-weld Metal

(*) vield strength B ₈ N/mm ² :		u 470	(> 390)
tensile strength R_m N/mm ² : elongation A (L = 5d) %:		640 36	(≥ 550) (≥ 30)
impact work ISO-V KV J	+ 20 °C: - 196 °C:	110	(≥ 80) (≥ 32)

(*) u untreated, as-welded

Operating Data

re-drying if necessary:	ø mm	L mm	amps A	=+
–	2.5	300	50 - 80	
electrode identification:	3.2	350	80 - 110	
FOX SAS 2 347-15 E 19 9 Nb B	4.0	350	110 - 140	

Base Materials

1.4550 X6CrNiNb18-10, 1.4541 X6CrNiTi18-10, 1.4552 GX5CrNiNb19-11, 1.4301 X5CrNi18-10, 1.4312 GX10CrNi18-8, 1.4546 X5CrNiNb18-10, 1.4311 X2CrNiN18-10, 1.4306 X2CrNi19-11

AISI 347, 321, 302, 304, 304L, 304LN; ASTM A296 Gr. CF 8 C; A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (1282.), DB (30.014.04), ÜZ (30.014), ÖBB, TÜV-A (73), ABS (Cr18/21, Ni8/11, TaNb.1.1), GL (4550), UDT, LTSS, SEPROZ

SMAW stick electrode:	FOX SAS 2-A	GMAW solid wire:	SAS 2-IG (Si)
GTAW rod	SAS 2-IG	Flux cored wire:	SAS 2-FD SAS 2-PW-FD
	0/10/2/10	SAW combination:	SAS 2-UP/BB 202

EN 1600:1997:E 19 9 Nb R 3 2 AWS A5.4-92: E 347-17

BÖHLER FOX SAS 2-A

SMAW stick electrode, high-alloyed,

chemical resistant

Description

Stabilised rutile coated stainless steel electrode. Preferably used for Ti or Nb stabilised 1.4541 / 1.4550 / 321 / 347 CrNi-steel grades.

BÖHLER FOX SAS 2-A is noted for its superior welding characteristics and metallurgy. It can be used on AC or DC. Other advantages include high current carrying capacity, minimum spatter formation, self releasing slag, smooth and clean weld profile, safety against formation of porosity due to moisture resistant coating and packaging into hermetically sealed tins. The fully alloyed core wire ensures the most reliable corresion resistance.

Resistant to intergranular corrosion up to +400 °C.

Typical Composition of All-weld Metal

ypica	i oompo	Shuon			41			
/t-%	C 0.03	Si 0.8	Mn 0.8	Cr 19.5	Ni 10.0	Nb +		
Iconanical Properties of All-weld Metal								
*)								

(^)		u	
yield strength R ₆ N/mm ² :		470	(≥ 390)
tensile strength R _m N/mm ² :		620	(≥ 550)
elongation A ($L_0 = 5d_0$) %:		35	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	70	(≥ 55)
	- 120 °C:		(≥ 32
			,

(*) u untreated, as-welded

Operating Data

 ▶ ▶ 	re-drying if necessary: 120 - 200 °C, min. 2 h electrode identification: FOX SAS 2-A 347-17 E 19 9 Nb R	ø mm 2.0 2.5 3.2 4.0	L mm 300 250/350 350 350	amps A 40 - 60 50 - 90 80 - 120 110 - 160	=+ ℃
		5.0	450	140 - 200	

Base Materials

1.4550 X6CrNiNb18-10, 1.4541 X6CrNiTi18-10, 1.4552 GX5CrNiNb19-11, 1.4301 X5CrNi18-10.

1.4312 GX10CrNi18-8, 1.4546 X5CrNiNb18-10, 1.4311 X2CrNiN18-10, 1.4306 X2CrNi19-11

AISI 347, 321, 302, 304, 304L, 304LN; ASTM A296 Gr. CF 8 C; A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (1105.), DB (30.014.06), ÜZ (30.014), ÖBB, TÜV-A (131), ABS (347-17), CL (0343), GL (4550), UDT, LTSS, VUZ, SEPROZ

SMAW stick electrode:	FOX SAS 2	GMAW solid wire:	SAS 2-IG (Si)
GTAW rod:	SAS 2-IG	Flux cored wire:	SAS 2-FD`
SAW combination:	SAS 2-UP/BB 202		SAS 2 PW-FD

EN 1600:1997:E 19 12 3 L B 2 2 AWS A5.4-92: E 316L-15

BÖHLER FOX EAS 4 M

SMAW stick electrode, high-alloyed, chemical resistant

Description

Basic coated core wire alloyed stainless steel electrode. Preferably used for 1.4435 / 316L steel grades.

BÖHLER FOX EAS 4 M is designed to produce high quality weld deposits with reliable toughness values down to – 196 °C. 100 % X-ray safety together with very good root pass and positional welding characteristics. Good gap bridging ability, easy weld pool and slag control. Easy slag removal even in narrow preparations result in clean bead surfaces with minimum post weld cleaning. Ideal electrode for welding on site. Electrodes are packed in hermetically sealed tins and have a moisture resistant coating. Resistant to intergranular corrosion up to +400 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Мо
wt-%	0.03	0.4	1.2	18.8	11.5	2.7

Mechanical Properties of All-weld Metal

(*) yield strength R _e N/mm ² :		u 460	(≥ 350)
tensile strength Rm N/mm2:		600	(≥ 540)́
elongation $A(L_0 = 5d_0)$ %:		38	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	90	(≥ 80)
	- 120 °C:		(≥ 32)
	- 196 °C:		(≥ 27)

(*) u untreated, as-welded

Operating Data

->	re-drying if necessary:	ømm	L mm	amps A	
->	electrode identification: FOX EAS 4 M 316L-15 E 19 12 3 L B	2.5 3.2 4.0	350 350	80 - 110 110 - 140	

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMoT17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2

S31653; AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (0772.), ÖBB, TÜV-A (99), CL (0786), DNV (316), Statoil, UDT, SEPROZ

SMAW stick electrode:	FOX EAS 4 M-A	GMAW solid wire:	EAS 4 M-IG (Si)
	FOX EAS 4 M-VD	Metal cored wire:	EAS 4 M-MC
	FOX EAS 4 M-TS	Flux cored wire:	EAS 4 M-FD
GTAW rod:	EAS 4 M-IG		EAS 4 PW-FD
		SAW combination:	EAS 4 M-UP/BB 202

EN 1600:1997: E 19 12 3 L R 3 2 AWS A5.4-92: E 316L-17

BÖHLER FOX EAS 4 M-A

SMAW stick electrode, high-alloyed,

chemical resistant

Description

Rutile coated core wire alloyed stainless steel electrode. Preferably used for 1.4435 / 316L steel grades. BÖHLER FOX EAS 4 M-A is an acknowledged world leader, noted for its superior welding characteristics and metallurgy. It can be used on AC or DC. Other advantages include high current capacity, minimum spatter formation, self releasing slag, smooth and clean weld profile, safety against formation of porosity due to moisture resistant coating and packaging into hermetically sealed tins.

The fully alloyed core wire ensures the most reliable corrosion resistance. Resistant to intergranular corrosion up to +400 °C.

Typical Composition of All-weld Metal								
wt-%	С 0.03	Si 0.8	Mn 0.8	Cr 18.8	Ni 11.7	Mo 2.7		
Mechanic	al Pro	perties	of All-w	veld Met	al			
(*) yield strength tensile streng elongation A (impact work I (*) u untreate	R₀ N/mr th R _m N/ (Lo=5do) SO-V K [*] ed, as-we	n²: mm²: %: V J	+ 20 °C: - 120 °C:	u 460 600 36 70	(≥ 35 (≥ 54 (≥ 3 (≥ 3	0) 0) 0) 7) (2)		
Operating	j Data							
	re-dryi 120 - 2 electro FOX E	ng if nece 200 °C, m de identif AS 4 M-A 3	ssary: in. 2 h ication: 316L-17 E 19	9 12 3 L R	ø mm 1.5 2.0 2.5 3.2 4 0	L mm 250 300 250/350 350 350/450	amps A 25 - 40 40 - 60 50 - 90 80 - 120 110 - 160	=+ ∼

5.0

450

140 - 200

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMoT17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2

S31653, AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (0773.), DB (30.014.14), ÜZ (30.014), ÖBB, TÜV-A (33), ABS (E 316L-17), CL (0094), DNV (316L), GL (4571), LR (316Lm), Statoil, UDT, VUZ, SEPROZ

SMAW stick electrode:	FOX EAS 4 M	GMAW solid wire:	EAS 4 M-IG (Si)
	FOX EAS 4 M-VD	Metal cored wire:	EAS 4 M-MC
	FOX EAS 4 M-TS	Flux cored wire:	EAS 4 M-FD
GTAW rod:	EAS 4 M-IG		EAS 4 PW-FD
		SAW combination:	EAS 4 M-UP/BB 202

EN 1600:1997: E 19 12 3 L R 1 5 AWS A5.4-92: E 316L-17

BÖHLER FOX EAS 4 M-VD

SMAW stick electrode, high-alloyed,

chemical resistant

Description

Rutile-basic coated stainless steel electrode. Especially designed with a fast freezing slag for vertical-down welding in sheet metal fabrication.

Highly economical, yielding fast travel speed resulting in low heat input and little distortion respectively associated straightening work. When using same electrode diameter and same wall thickness you can save 50% of welding time compared to vertical up position. No overheating of the base metal and therefore no risk of impaired corrosion resistance compared with the vertical-up welding mode. The product is ideally suited to save time and costs in the sheet metal fabrication.

Resistant to intergranular corrosion up to service temperatures of +400 °C.

Typical	Compo	sition	of All-we	Id Meta	al		
wt-%	С 0.03	Si 0.7	Mn 0.7	Cr 19.0	Ni 12.0	Mo 2.7	
Mechan	nical Pro	opertie	s of All-w	eld Me	etal		
(*) yield streng tensile streng elongation impact wor	gth Re N/m ength Rm N A (Lo=5do) rk ISO-V K	ım²: /mm²: %: (V J	+ 20 °C: - 120 °C:	u 470 600 35 55	(≥ 350 (≥ 540 (≥ 30 (≥ 47 (≥ 32		

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 120 - 200 °C, min. 2 h electrode identification:	ø mm 2.5 3.2	L mm 300 300	amps A 75 - 85 105 - 115	=+
FOX EAS 4 M-VD 316L-17 E19 12 3 LR				

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2

S31653, AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (9089.), CL (1299), DNV (316L), GL (4550), UDT, LTSS, SEPROZ

SMAW stick electrode:	FOX EAS 4 M	GMAW solid wire:	EAS 4 M-IG (Si)
	FOX EAS 4 M-A	Metal cored wire:	EAS 4 M-MC
	FOX EAS 4 M-TS	Flux cored wire:	EAS 4 M-FD
GTAW rod:	EAS 4 M-IG		EAS 4 PW-FD
		SAW combination:	EAS 4 M-UP/BB 202

EN 1600:1997: E 19 12 3 L R 1 2 AWS A5.4-92: E 316L-16 (mod.)

BÖHLER FOX EAS 4 M-TS

SMAW stick electrode, high-alloyed,

chemical resistant

Description

Special type low carbon rutile-basic coated stainless steel electrode particulary designed for site welding of tin walled tubes and sheets. The very stable arc produces an excellent root penetration, bead configuration and gap bridging ability on DC electrode negative even when welding with a low amperage. BOHLER FOX EAS 4 M-TS is a good economical alternative to GTAW welding on difficult accessible on-site welding applications.

High safety against formation of porosity by moisture resistant coating and packaging into hermetically sealed tin.

The product is resistant to intergranular corrosion up to service temperatures of +400 °C.

Typical C	omposi	ition of	All-weld	Metal				
wt-%	C 0.03	Si 0.8	Mn 0.7	Cr 19.0	Ni 11.5	Mo 2.7		
Mechanic	al Prop	erties	of All-we	ld Meta	al			
(*) yield strength tensile strenge elongation A impact work (*) <i>u</i> untreat	n Re N/mm gth Rm N/m (Lo=5d₀) % ISO-V KV ed, as-weld	²: m²: s: J + 	20 °C: 120 °C:	u 510 630 35 60	(≥ 350) (≥ 540) (≥ 30) (≥ 47) (≥ 32)			
Operating	g Data							
	re-drying 120 - 20 electrod FOX EAS	g if necess 10 °C, min e identifica 5 4 M-TS E	sary: . 2 h ation: : 19 12 3 LR		ø mm 2.0 2.5 3.2	L mm 300 350 350	amps A 35 - 60 45 - 70 50 - 110	=+ =- DC minus

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMoT17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2

S31653, AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (5625.), TÜV-A (615), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX EAS 4 M FOX EAS 4 M-A FOX EAS 4 M-A FOX EAS 4 M-VD GTAW rod: EAS 4 M-IG GTAW rod: EAS 4 M-IG FOX EAS 4 M-IG EAS 4 M-IG EAS 4 M-IG EAS 4 M-IG FOX EAS 4 M-IG SAW combination: EAS 4 M-IG SAW combination: EAS 4 M-ID EAS EN 1600-1997 E 19 12 3 Nb B 2 2 AWS A5 4-92 F 318-15

BÖHLER FOX SAS 4

SMAW stick electrode, high-alloved.

chemical resistant

Description

Stabilised core wire alloved stainless steel electrode with basic coating mainly for Ti and Nb stabilised 1.4571 / 1.4580 / 316Ti steel grades.

BÖHLER FOX SAS 4 is designed to produce first class weld deposits with reliable CVN toughness values down to -90°C. 100% X-ray safety together with very good root pass and positional welding characteristics, good gap bridging ability, easy weld pool and slag control as well as easy slag removal even in narrow preparations resulting in clean bead surfaces and minimum post weld cleaning. An excellent electrode for welding on site and for heavy and rigid components.

The product is resistant to intergranular corrosion up to +400 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Мо	Nb	
wt-%	0.03	0.4	1.3	18.8	11.5	2.7	+	

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		490	(≥ 390)
tensile strength Rm N/mm ² :		660	(≥ 600)
elongation A (Lo = 5do) %:		31	(≥ 28)
impact work ISO-V KV J	+ 20 °C:	120	(≥ 100)
	- 90 °C:		(≥ 32)

(*) u untreated, as-welded

Operating Data

re-drying if necessary: – electrode identification: FOX SAS 4 318-15 E 19 12 3 Nb B	ø mm 2.5 3.2 4.0	L mm 300 350 350	amps A 50 - 80 80 - 110 110 - 140	=+
	4.0	000	110 140	

Base Materials

1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4401 X5CrNiMo17-12-2, 1.4581 GX5CrNiMoNb19-11-2. 1.4437 GX6CrNiMo18-12. 1.4583 X10CrNiMoNb18-12. 1.4436 X3CrNiMo17-13-3

AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (0774.), DB (30.014.05), ÜZ (30.014), ÖBB, TÜV-A (132), ABS (Cr17/20, Ni10/13), GL (4571), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX SAS 4-A
GTAW rod:	SAS 4-IG

GMAW solid wire: Flux cored wire:

EN 1600:1997: E 19 12 3 Nb R 3 2 AWS A5.4-92: E 318-17

BÖHLER FOX SAS 4-A

SMAW stick electrode, high-alloyed, chemical resistant

Description

Stabilised rutile coated stainless steel electrode. Preferably used for Ti or Nb stabilised 1.4571 / 1.4580 / 316Ti CrNiMo steel grades.

BÖHLER FOX SAS 4-A is noted for its superior welding characteristics and metallurgy. It can be used on AC or DC. Other characteristics include high current carrying capacity, minimum spatter formation, self releasing slag, smooth and clean weld profile, safety against formation of porosity due to moisture resistant coating and packaging into hermetically sealed tins. The fully alloyed core wire ensures the most reliable corrosion resistance.

Resistant to intergranular corrosion up to +400 °C.

Typical Composition of All-weld Metal								
wt-%	C 0.03	Si 0.8	Mn 0.8	Cr 19.0	Ni 11.5	Mo 2.7	Nb +	
Mechani	cal Pro	operties	s of All-v	veld Met	al			
(*) yield strengt tensile stren elongation A impact work (*) <i>u untrea</i>	h R₀ N/m gth R _m N (Lo = 5do ISO-V K <i>ted, as-w</i>	nm²: //mm²: ٥) %: ՀV J <i>velded</i>	+ 20 °C: - 90 °C:	u 490 640 32 60	(≥ 39 (≥ 55 (≥ 3 (≥ 4 (≥ 3	90) 50) 30) 17) 32)		
Operatin	g Data	1						
	re-dry 120 - electro FOX S	ring if nece 200 °C, m ode identif SAS 4-A 3	essary: iin. 2 h fication: 18-17 E 19	12 3 Nb R	ø mm 2.0 2.5 3.2	L mm 300 250/350 350	amps A 40 - 60 50 - 90 80 - 120	=+ ∼

40

50

Base Materials

1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4401 X5CrNiMo17-12-2, 1.4581 GX5CrNiMoNb19-11-2, 1.4437 GX6CrNiMo18-12, 1.4583 X10CrNiMoNb18-12, 1.4436 X3CrNiMo17-13-3

AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (0777.), DB (30.014.07), ÜZ (30.014), ÖBB, TÜV-A (133), CL (0951), UDT, LTSS, VUZ, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX SAS 4
GTAW rod:	SAS 4-IG

GMAW solid wire: SAS 4-IG (Si) Flux cored wire: SAS 4-FD SAV combination: SAS 4-UP/BB 202

350

450

110 - 160

140 - 200

EN 1600:1997: E Z 19 14 Si B 2 2 ISO 3581: E 17.12 SiB

BÖHLER FOX EAS 2 Si

SMAW stick electrode, high-alloyed,

high corrosion resistant

Description

Special basic coated core wire alloyed electrode for joint welding of the special steel X2CrNISi1815, 1.4361 (BÖHLER A 610), which resists the attack of highly concentrated nitric acid as well as of nitric acid which additionally contains strong deoxidants. Also recommended for weld cladding of analogous type steels. Suitable for use at service temperatures up to +350 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni
wt-%	< 0.025	4.5	1.2	19.0	14.8

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		500	(≥ 390)
tensile strength Rm N/mm ² :		720	(≥ 660)
elongation A (Lo=5do) %:		35	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	75	(≥ 47)
•	- 50 °C:		(≥ 32)́

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 300-350 °C, min. 2 h electrode identification:	ø mm 2.5 3.2	L mm 300 350	amps A 40 - 70 70 - 100	=+	
FOX EAS 2 SI E Z 19 14 SI B					

Electrodes have to be welded with short arc. Amperage has to be adapted to wall thickness respectively welding position, to avoid overheated weld metal. For welding position PA/1G, 1F stringer beads are recommended.

Heat input should be restricted to a necessary minimum, additional cooling is recommend to improve corrosion results. Reduce heat input in position PF/3G to avoid negative influence of corrosion behaviour of root pass and heat affected zone, with limitation of weaving width of max. 2 x core wire diameter. Interpass temperature should not exceed 150°C. Grind out the end craters and grind previous passes. The TIG process, using EASN 2 Si-IG should be given preference for root welding. The weld metal does not require postweld heat treatment. In exceptional cases quench from + 1100 °C in water.

Base Materials

1.4361 X1CrNiSi18-15-4, UNS S30600

Approvals and Certificates

TÜV-D (1482.), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

GTAW rod: EASN 2 Si-IG

Corrosion Resistant Filler Metals - SMAW Stick Electrodes

AWS A5.4-92: E317L-17

BÖHLER FOX E317 L

SMAW stick electrode high-alloyed, high corrosion resistant

Description

Rutile coated core wire alloyed electrode suited for corrosion resistant, CrNiMo(N)-steels. It satisfies the high demands of offshore fabricators, shipyards building chemical tankers as well as the chemical / petrochemical, pulp and paper industries. Suitable for service temperatures from -60 to +300 °C. The weld metal exhibits resistance against pitting corrosion and intergranular corrosion resistance up to 300 °C (ASTM A 262 / Practice E)

Good operating characteristics on AC and DC, minimum spatter formation, self releasing slag with smooth and clean bead surface. BÖHLER FOX E 317 L is recommended for wall thicknesses up to 30 mm. Preheating and post weld heat treatment is not required by the weld deposit. The interpass temperature should be kept below 150 °C.

Typical Composition of All-weld Metal									
wt-%	С 0.03	Si 0.8	Mn 0.8	Cr 19.0	Ni 13.0	Mo 3.6	N +	FN 4-12	
Mechan	Mechanical Properties of All-weld Metal								
(*) yield streng tensile stre elongation impact wor	gth R₀ N/m ngth R๓ N A (L₀=5d₀) k ISO-V K	nm²: /mm²: %: (V J	+20 °C -20 °C -60 °C	a 460 610 35 : 65 : 55 : 47	(≥ 40 (≥ 58 (≥ 30 (≥ 4) (≥ 32	20) 30) 2) 7) <u>2</u>)			
(*) u u	ntreated, a	as-welded							

Operating Data

re-drying if necessary: 120-200°C, min. 2 h electrode identification: FOX E317 L 317L-17	ø mm 2.5 3.2 4.0	L mm 300/350 350 350	amps A 55-85 80-115 110-155	=+ ∼
---	---------------------------	-------------------------------	--------------------------------------	---------

Base Materials

CrNiMo(N)-steels with increased Mo-content like grade AISI 316LN/317LN or corrosion resistant claddings on mild steels 1.4438 X2CrNiMo18-15-4, 1.4429 X2CrNiMoN17-13-3, 1.4434 X2CrNiMoN 18-12-4 AISI 316 LN, 317 L, 317LN

Approvals and Certificates

BV (317L)

GMAW flux cored wire:	E317L-FD
	E 317L PW-FD
SAW combination:	ASN 5 SY-UP/BB 202

EN 1600-1997 AWS A5 4-92

E 18 16 5 N I B 2 2 E 317LN-15 (mod.)

BÖHLER FOX ASN 5

SMAW stick electrode, high-alloved. high corrosion resistant

Description

Basic (with rutile contents) coated core wire alloved electrode for corrosion resistant CrNi steels with increased Mo-contents like 1.4439 / 317L. Suited for difficult corrosion conditions encountered e.g. in the chemical industry, flue gas de-sulphurisation plants, sea water desalinisation plants and particularly in the paper, pulp and textile industries. It is characterised by an increased Mo content (4.5 %) to compensate for segregation in high molybdenum alloved weld metals to meet equivalent corrosion properties as the relevant base metals with 3-4 % Mo guarantee. The weld metal features excellent chemical resistance to stress corrosion cracking as well as high pitting resistance. Intergranular corrosion resistance at operating temperatures up to +300 °C. Excellent cryogenic toughness down to -269 °C. The electrode provides easy slag removal with smooth and clean bead surfaces as well as good positional weldability.

Typical Composition of All-weld Metal

wt-%	C	Si	Mn	Cr	Ni	Mo	N	PRE _N	FN
	≤ 0.04	0.5	2.5	18.5	17.0	4.3	0.15	36.3	≤ 0.5

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		460	(≥ 400)
tensile strength Rm N/mm ² :		660	(≥ 590)
elongation A (Lo = 5do) %:		35	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	100	(≥ 90)
•	- 269 °C:	42	(≥ 32)

(*) u untreated, as-welded

Operating Data

 re-drying if necessary: 250 - 300 °C. min. 2 h	ø mm 2.5	L mm 300	amps A 50 - 80	=+
 electrode identification:	3.2 4 0	350 350	80 - 110 110 - 140	•

Interpass temperature should not exceed + 150 °C. Maximum width of weaving should be limited to twice the core wire diameter of the electrode. The arc should be kept short.

Root pass welding is preferably carried out by the GTAW process, using ASN 5-IG welding wire.

Base Materials

1.4436 X3CrNiMo17-13-3. 1.4439 X2CrNiMoN17-13-5. 1.4429 X2CrNiMoN17-13-3. 1.4438 X2CrNiMo18-15-4, 1.4583 X10CrNiMoNb18-12

AISI 316Cb. 316LN. 317LN. 317L. UNS S31726

Approvals and Certificates

TÜV-D (00016.), TÜV-A (496), DNV (317), GL (4439), UDT, SEPROZ

Same Alloy / Similar Alloy Filler Metals

SMAW stick electrode:	FOX ASN 5-
GTAW rod:	ASN 5-IG
GMAW solid wire:	ASN 5-IG (Si

Flux cored wire: SAW combination: ASN 5-UP/BB 203

E317L-FD* E317L PW-FD*

* for similar alloyed base metals only, not fully austenitic.

EN 1600-1997 AWS A5 4-92

E 18 16 5 N L R 3 2 E 317LN-17 (mod.)

BÖHLER FOX ASN 5-A

SMAW stick electrode, high-alloved.

high corrosion resistant

Description

Rutile coated core wire alloved electrode suited for corrosion resistant. CrNi-steels with increased Mo content like 1.4439 / 317L. Field of application includes chemical industry, flue gas desulphurisation plants, sea water desalinisation, pulp and paper industry as well as textile and cellulose. The weld deposit exhibits excellent resistant to stress corrosion cracking, resistance against pitting corrosion. Intergranular corrosion resistance up to +300 °C service temperature.

It is characterised by an increased Mo content (4.5 %) to compensate for segregation in high molybdenum alloyed weld metals to meet equivalent corrosion properties as the relevant base metals with 3-4 % Mo guarantee. Good operating characteristics on AC and DC, minimum spatter formation, self releasing slag with smooth and clean bead surface.

Typical Composition of All-weld Metal

wt-%	C	Si	Mn	Cr	Ni	Mo	N	PREN	FN
	≤ 0.035	0.7	1.1	18.0	16.0	4.5	0.13	36.0	≤ 0.5

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		460	(≥ 400)
tensile strength Rm N/mm ² :		660	(≥ 590)
elongation A ($L_0 = 5d_0$) %:		32	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	70	(≥ 55)
	- 120 °C:	47	(≥ 32)

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 250 °C, min. 2 h electrode identification: FOX ASN 5-A E 18 16 5 N L R	ø mm 2.5 3.2 4.0	L mm 300 350 350	amps A 65 - 85 90 - 120 110 - 150	=+ ℃]
---	---------------------------	---------------------------	---	---------	---

Maximum width of weaving should be limited to twice the core wire diameter. BÖHLER FOX ASN 5-A is recommended for wall thicknesses up to 15 mm.

Preheating and post weld heat treatment is not required by the weld deposit. The interpass temperature should be kept below +150 °C. Solution annealing temperature +1080 - 1130 °C. guenching in water.

Base Materials

1.4436 X3CrNiMo17-13-3. 1.4439 X2CrNiMoN17-13-5. 1.4429 X2CrNiMoN17-13-3. 1.4438 X2CrNiMo18-15-4, 1.4583 X10CrNiMoNb18-12

AISI 316Cb. 316LN. 317LN. 317L. UNS S31726

Approvals and Certificates

TÜV-D (07118.), UDT

Same Alloy / Similar Alloy Filler Metals

SMAW stick electrode: FOX ASN 5 GTAW rod GMAW solid wire:

ASN 5-IG ASN 5-IG (Si) Flux cored wire: SAW combination:

E317L-FD* E317L PW-FD* ASN 5-UP/BB 203

* for similar alloved base metals only, not fully austenitic.

EN 1600:1997: EZ 22 18 4 L B 2 2

BÖHLER FOX AM 400

SMAW stick electrode, high-alloyed,

high corrosion resistant

Description

Basic coated core wire alloyed electrode for corrosion resistant non-magnetisable CrNiMo steels, preferably used for the steels W.no. 1.3952 and 1.3964 in the special shipbuilding sector. Good weldability in all positions except vertical-down. Fully austenitic weld metal, nonmagnetic, excellent resistance to pitting, crevice corrosion and stress corrosion cracking, excellent subzero toughness, suited for service temperatures up to +350 °C (or up to +400 °C in media that do not induce intergranular corrosion). Further applications are sea water desalinisation plants, centrifuges, bleaching plants and the welding of cryogenic steels.

Typical Composition of All-weld Metal											
wt-%	C ≤ 0.04	Si 0.8	Mn 7.5	Cr 21.8	Ni 18.3	Mo 3.7	N 0.2	PRE _N 37.2			
Mechan	ical Pro	perties	of All-w	eld Me	etal						
Operation	ng Data										
	re-dryi 250 - 3 electro FOX A	ng if nece 300 °C, m de identif M 400 E	ssary: in. 2 h ication: Z 22 18 4 L	в	ø mm 2.5 3.2 4.0	L mm 250 350 350	amps A 50 - 80 80 - 110 110 - 140	=+			

Preheating is not required and the interpass temperatures must not exceed +150 °C.

Base Materials

1.3948 X4CrNiMnMoN19-13-8, 1.3951 X2CrNiMoN22-15, 1.3952 X2CrNiMoN18-14-3, 1.3964 X2CrNiMnMoNNb21-16-5-3, 1.4439 X2CrNiMoN17-13-5

Approvals and Certificates

WIWEB, GL (3954), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

GTAW rod: ANT 40	-00-IG
------------------	--------

GMAW solid wire:

AM 400-IG

Corrosion Resistant Filler Metals - SMAW Stick Electrodes

EN 1600:

EZ 25 22 2 NL B 2 2

BÖHLER FOX EASN 25 M

SMAW stick electrode high-alloyed, chemical resistant

Description

BÖHLER FOX EASN 25 M is a core wire-alloyed basic coated Cr-Ni-Mo electrode. Characterised by a low C-content, a limited Mo-content (for better Huey-test-resistance), a welldefined N-alloying as well as a high Ni-content to assure a fully austenitic structure (ferrite contents < 0.5 %). The corrosion rates in the Huey-test are 0.08 g/m².h (4 mils/year). The stick electrode is suited for urea plant components exposed to extremely severe corrosion at high pressures and temperatures. The weld deposit will exhibit superior resistance to boiling concentrated nitric acid (optimum condition: 60-80 % HNO3) when made to join components of the highest Huey test quality. It is also recommendable for weldments wetted by strong chloride solutions at high temperatures. The chromium and molybdenum percentages create good resistance to pitting from solutions containing chlorine ions. Further applications involve severe corrosive service in such industries as dyeing (leaching and dyeing baths), textiles, paper, leather, chemicals, pharmaceuticals, and rayon. During welding an interpass temperature of 150 °C and a weaving above two times core wire diameter should be avoided. The arc should be kept short. Grind out root pass end craters and use intermediate current settings.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Мо	Ν
wt-%	≤ 0.035	0.4	5.5	25	22	2.2	0.14

Mechanical Properties of All-weld Metal

(*)		u	
vield strength R _e N/mm ² :		405	(> 380)
tensile strength R _m N/mm ² :		615	(580-690)
elongation A (L=5d) %:		35	(> 30)
impact work ISO-V KV J	+20 °C:	110	(> 90)
	-196 °C:		(> 50)

(*) u untreated, as-welded

Operating Data

->	re-drying: 250-300°C, min. 2 h	ø mm 2.5	L mm 300	amps A 55-75	=+
	electrode identification: FOX EASN 25 M EZ 25 22 2 NL B	3.2 4.2	350 350	80-105 90-135	

Base Materials

X2CrNiMoN25-22-2 (1.4466) and in combination with X1CrNiMoN25-25-2 (1.4465), X2CrNiMo18-14-3 (1.4435)

Approvals and Certificates

TÜV-D, TUV-A, UDT, SEPROZ

Same Alloy Filler Metals

GTAW rod: EASN 25M-IG

EN 1600:1997: E 20 25 5 Cu N L B 2 2 AWS A5.4-92: E 385-15 (mod.) BÖHLER FOX CN 20/25 M

SMAW stick electrode, high-alloyed, high corrosion resistant

Description

Basic (with rutile contents) coated core wire alloyed electrode for corrosion resisting high-molybdenum CrNi steels like 1.4539 / N08904. Recommended for highly corrosive environments encountered e.g. in the chemical industry, in flue gas desulphurisation and sea water desalinisation plants, as well as in cooling and power plants using brackish or sea water. Particularly recommended for steels containing up to 5% molybdenum. The above average molybdenum content (6.5 %) is characteristic to BÖHLER FOX CN 20/25 M, thus compensating for segregation in high molybdenum alloyed weld metals.

The fully austenitic weld metal possess a marked resistance towards pitting and crevice corrosion in chloride containing media. Highly resistant against Sulphur-, Phosphorus-, Acetic- and Formic acid, as well as sea and brackish water. Caused from the low C-content of the weld metal, the risk of intergranular corrosion can be avoided. The high Ni-content in comparison to standard CrNi-weld metals leads to high resistance against stress corrosion cracking.

It is advisable to grind out the end craters of root passes. For root pass welding it is expedient to apply the GTAW process using BÖHLER CN 20/25 M-IG.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Мо	Cu	N	PREN
wt-%	≤ 0.04	0.4	4.0	20.0	25.0	6.5	1.4	0.14	≥ 45

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		440	(≥ 350)
tensile strength Rm N/mm ² :		650	(≥ 600)
elongation A (Lo = 5do) %:		35	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	75	(≥ 47)
	- 269 °C:	42	(≥ 32)
(+)			

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 250 - 300 °C, min. 2 h	ø mm 2.5	L mm 300	amps A 60 - 80	=+
electrode identification: FOX CN 20/25 M E 20 25 5 Cu N L B	3.2 4.0	350 350	80 - 100 100 - 130	•

Weaving width max. 2x core wire diameter. Arc should be kept short. End crater grinding is highly recommended. The electrode can be used in all position except vertical down. Preheating and post weld heat treatment are not required for the weld metal. The interpass temperature should not exceed +150°C.

Base Materials

same-alloyed high-Mo Cr-Ni-steels. 1.4539 X1NiCrMoCu25-20-5, 1.4439 X2CrNiMoN17-13-5, 1.4537 X1CrNiMoCuN25-25-5. UNS N08904, S31726

Approvals and Certificates

TÜV-D (4882.), TÜV-A (80), Statoil, UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX CN 20/25 M-A GMAW solid wire: CN 20/25 M-IG (Si) GTAW rod: CN 20/25 M-IG

EN 1600:1997: AWS A5.4-92: E 20 25 5 Cu N L R 3 2 E 385-17 (mod.) BÖHLER FOX CN 20/25 M-A

SMAW stick electrode, high-alloyed, high corrosion resistant

Description

Rutile-basic coated core wire alloyed electrode with extremely high Mo-content. Very high pitting presistant equivalent (REN \ge 45) — pitting potential (%Cr + 3.3 × M0 + 30 × %M). Particularly recommended for steels containing up to 5 % molybdenum. The above average molybdenum content (6.2 %) is characteristic to BOHLER FOX CN 20/25 M-A, thus compensating for segregation in high molybdenum alloyed weld metals. Special applicable in Subplure: and Phosphorus production, pulp and paper industry, flue gas desubplurisation plants, further on for fertilizer production, perported the second paper industry, flue gas desubplurisation plants, further on for fertilizer production, perported with sea or brackish water. The fully austentic weld metal possess a marked resistance towards pitting and crevice corrosion in chloride containing media. Highly resistant against sulphur-, phosphorus-, acetic- and formic acid, as well as sea and brackish water. Cane there water. Set of the weld metal, be sead and brackish publicries, the second set of the weld metal posses are and brackish vater. The fully austencia. Set of the high Ni-content in comparison to standard CrNi-weld metals leads to high resistance against stress corrosion can be avoided.

BÖHLER FOX CN 20/25 M-A possess excellent operating characteristic in all positions, except vertical down and easy handling. The weld metal shows good slag detachability as well as smooth, firme rippled beads with no residuals. This electrode should be preferably used up to wall thicknesses of 14 mm. It is designed for excellent operating characteristics on DC and AC. It is advisable to grind out the end craters of root passes.

Typical Composition of All-weld Metal Si Mn Cr Ni Mo Cu Ν PREN С wt-% 0.03 0.7 2.0 20.5 25.0 6.2 1.6 0.17 > 45 Mechanical Properties of All-weld Metal (*) ... vield strength R₀ N/mm²: 410 (≥ 350) tensile strength Bm N/mm²: 640 (> 600)elongation A (Lo = 5do) %: 34 (≥ 30) impact work ISO-V KV J + 20 °C: 70 (≥ 47) - 196 °C: (> 32) (*) u untreated, as-welded Operating Data re-drying if necessary: ø mm L mm amps A 250-300 °C, min. 2 h 2.5 300 50 - 80 electrode identification: 3.2 350 80 - 110 FOX CN 20/25 M-A E 20 25 5 Cu N L R 4.0 350 100 - 135 Base Materials

same-alloyed high-Mo Cr-Ni-steels 1.4539 X1NiCrMoCu25-20-5, 1.4439 X2CrNiMoN17-13-5, 1.4537 X1CrNiMoCuN25-25-5 UNS N08904, S31726

Approvals and Certificates

TÜV-D (6634.), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 20/25 M
GTAW rod:	CN 20/25 M-IG

GMAW solid wire: CN 20/25 M-IG (Si)

EN 1600:1997: E 22 9 3 N L B 2 2 AWS A5 4-92 E 2209-15

BÖHLER **FOX CN 22/9 N-B**

SMAW stick electrode, high-alloyed, high corrosion resistant

Description

Basic coated core wire alloyed electrode for welding of ferritic-austenitic duplex materials, e.g. 1.4462, UNS S31803.

Besides the high tensile strength, the special advantage of the weld metal of this electrode is its very good toughness behaviour down to -60 °C. Furthermore the high crack resistance of the weld metal and the particularly good resistance to stress corrosion cracking and pitting behaviour are significant features. FOX CN 22/9 N-B is specially designed for the joining of thick-walled sections (e.g. > 20 mm) and rigid constructions as well as for applications where extra low service temperature requirements exist. The Pitting Resistance Equivalent (PREN) shows values of ≥ 35 in accordance with the formula (%Cr + 3.3 % Mo + 16 % N). The pitting resistance according to ASTM G48 / method A shows good results.

The electrode provides user friendly operating characteristics in all positions except vertical down with good slag removability and weld bead appearance. Additionally the filler metals offer high safety against the formation of porosity.

Typical Composition of All-weld Metal									
wt-%	С 0.03	Si 0.3	Mn 1.1	Cr 23.0	Ni 8.8	Mo 3.2	N 0.16	PRE ≥ 35	N
Mechani	cal Pro	pertie	s of Al	l-we	ld Met	al			
Operatin	ig Data								
	re-dryi 250 - 3 electro FOX C	ing if nec 300 °C, n ode identi N 22/9 N-	essary: nin. 2 h ification: B 2209-1	5 E 22	9 3 N L E	ø mm 2.5 3.2 4.0 5.0	L mm 350 350 350 450	amps A 50 - 75 80 - 110 100 - 145 140 - 180	=+
For weiding of	root runs e	ither GTAV	With CN 2	22/9 N-I	G OF SMA	w with FG	JX CN 22/9 N	is applicable.	

Base Materials

same-alloved duplex steels, as well as similar-alloved, ferritic-austenitic steels with higher tensile strength 1.4462 X2CrNiMoN22-5-3, 1.4362 X2CrNiN23-4, 1.4462 X2CrNiMoN22-5-3 together with 1.4583 X10CrNiMoNb18-12, 1.4462 X2CrNiMoN22-5-3 mit P235GH / P265GH, S255N, P295GH, S355N, 16Mo3 UNS S31803, S32205

Approvals and Certificates

TÜV-D (7084.), CL (1475), UDT

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX CN 22/9 N GTAW rod: CN 22/9 N-IG CN 22/9 N-IG GMAW solid wire:

Flux cored wire:

CN 22/9 N-FD CN 22/9 PW-FD SAW combination: CN 22/9 N-UP/BB 202 EN 1600:1997: E 22 9 3 N L R 3 2 AWS A5.4-92: E 2209-17 BÖHLER FOX CN 22/9 N

SMAW stick electrode, high-alloyed, high corrosion resistant

Description

Rutile coated electrode designed for ferritic-austentitc duplex steels, e.g. 1. 4462, UNS 31803. Field of applications are in off-shore engineering and in the chemical industry. Besides offering high mechanical strength and toughness, the weld metal is also noted for excellent resistance to stress corrosion cracking and pitting resistance. BÖHLER FOX CN 22/9 N offers excellent positional weldability, and thus is perfectly suited for pipe welding. Besides the good wetting characteristics, slag removability, resistance to porosity and reliable CVN toughness down to -20 °C it is designed with a fully alloyed core wire providing best corrosion resistance and a very homogeneous micro structure with specified ferrite contents of 30 – 60 FN (WRC) and a Pitting Resistance Equivalent (PREi) of > 35. For wall thicknesses above 20 mm or impact requirements down to -60 °C we recommend our basic coated electrode BÖHLER FOX CN 22/9 N-B.

Typical Co	omposi	tion of	All-weld	d Metal				
wt-%	C 0.03	Si 0.9	Mn 0.8	Cr 23.0	Ni 9.0	Mo 3.2	N 0.17	PRE _N ≥ 35
Mechanica	al Prop	erties o	of All-we	eld Meta	al			
(*) yield strength tensile strengt elongation A (l impact work IS (*) u untreate	R₀ N/mm²: h Rm N/mr Lo = 5do) % SO-V KV ↓ d, as-weld	n²: 5: J + - -	20 °C: 10 °C: 20 °C:	u 650 820 25 55 50	(≥ 54) (≥ 69) (≥ 2) (≥ 4) (≥ 3)	0) 0) 2) 7) 2)		
Operating	Data							
	re-drying 250 - 300 electrode FOX CN	if necess) °C, min identifica 22/9 N 22	ary: . 2 h ation: 09-17 E 22	9 3 N L R	ø mm 2.5 3.2 4.0 5.0	L mm 350 350 350 450	amps A 40 - 75 70 - 120 110 - 160 150 - 200	=± ∼

Preheating and interpass temperature max. +150 °C. In case of solution annealing is carried out max. +250 °C. Heat input in according to wall thickness.

Base Materials

same-alloyed duplex steels, as well as similar-alloyed, ferritic-austenitic steels with higher tensile strength

1.4462 X2CrNiMoN22-5-3, 1.4362 X2CrNiN23-4, 1.4462 X2CrNiMoN22-5-3 mit 1.4583 X10CrNiMoNb18-12, 1.4462 X2CrNiMoN22-5-3 together with P235GH / P265GH, S255N, P295GH, S355N, 16Mo3

UNS S31803, S32205

Approvals and Certificates

TÜV-D (3636.), TÜV-A (260), ABS (E 22 09-17), CL (0797), DNV (Duplex), GL (4462), LR (X), RINA (2209), Statoil, UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

 SMAW stick electrode:
 FOX CN 22/9 N-B
 Flux cored wire:
 CN 22/9 N-FD

 GTAW rod:
 CN 22/9 N-IG
 CN 22/9 N-IG
 CN 22/9 N-FD

 GMAW solid wire:
 CN 22/9 N-IG
 SAW combination:
 CN 22/9 N-IP/BB 202

EN 1600:1997: AWS A5.9-93: E 25 9 4 N L B 2 2 E2553-15(mod) BÖHLER FOX CN 25/9 CuT

SMAW stick electrode high alloyed, highly corrosion resistant

Description

Basic coated electrode, for welding of ferritic-austenitic superduplex steels. By virtue of specific alloy composition the deposit has, in addition to high tensile strength and toughness, also excellent resistance to stress corrosion cracking and pitting corrosion. The operating temperature range is -50 °C up to +250 °C. Well suited for the conditions in the offshore field.

Typic	al Con	nposit	ion of	All-we	eld Met	tal				
wt-%	С 0.03	Si 0.5	Mn 1.1	Cr 25.0	Ni 9.3	Mo 3.7	N 0.22	Cu 0.7	T 0.6	PRE _N ≥40
Mech	Mechanical Properties of All-weld Metal									
(*) yield str tensile s elongati impact v (*) u u	ength Re strength F on A (L₀= work ISO	N/mm²: R _m N/mm 5d₀) %: -V KV J , <i>as wel</i> d	1²: ded	+20 °C: -50 °C:	u 650 850 25 75 50	(≥ 600 (≥ 750 (≥ 22) (≥ 70) (≥ 34)))))			
A	11									

Operating Data

→	re-drying:	ø mm	L mm	amps A	
I	250-300°C, min. 2 h	2.5	300/350	55-80	=+
' →	electrode identification:	3.2	350	80-105	
	FOX CN 25/9 Cu T E 25 9 4 N L B	4.0	350	90-140	

Welding of root pass with "thick layer". Next two passes with thin layers and low heat input to avoid overheating and precipitations

Base Materials

25% Cr-Superduplex steels e.g. 1.4501 X2CrNiMoCuWN 25-7-4 UNS S 32750, UNS S32760, ZERON 100, SAF 25/07, FALC 100

Approvals and Certificates

CL (applied)

GTAW rod:	CN 25/9 CuT-IG
GMAW solid wire:	CN 25/9 CuT-IG

Notes

Notes

EN 12072:1999: W 13 4 AWS A5.9-93: ER410 NiMo (mod.) W.Nr.: 1.4351 (mod.)

BÖHLER CN 13/4-IG

GTAW rod, high-alloyed, stainless

Description

GTAW rod of low-carbon type 13 % Cr 4 % Ni suited for soft-martensitic steels like 1.4313 / CA 6 NM. Designed with precisely tuned alloying composition creating a weld deposit featuring very good ductility, CVN toughness and crack resistance despite its high strength. BOHLER CN 13/4-IG as well as the coated electrode BOHLER FOX CN 13/4 and the analogous GMAW wire are very popular in the construction of hydro turbines.

Typical	Typical Composition of Welding Rod							
wt-%	0.02	Si 0.7	Mn 0.7	Cr 12.3	Ni 4.7	Mo 0.5		
Mechar	nical Pro	operties	of All-v	veld Met	al			
(*) u a (≥ 720) tensile strength R ₀ N/mm ² : 915 (≥ 780) 750 (≥ 830) tensile strength R _m N/mm ² : 1000 (≥ 950) 830 (≥ 800) elongation A (L0=5do) %: 15 (≥ 10) 21 (≥ 18) impact work ISO-V KV J + 20 °C: 85 (≥ 80) 150 (≥ 50) -60 °C: (≥ 22) (*) u untreated, as-welded – shielding gas Argon a annealed, 600 °C/8 h/turnace down to 300 °C/air – shielding gas Argon								
Operating Data								
1	shield rod m	ing gases: arking: front:	100 % Arg ~ W 13 4	gon	ø mm 2.0 2.4	1	=-	

back: - back: - Preheating and interpass temperatures in case of thick-walled sections 100 - 160 °C. Maximum heat input 15 kJ/cm. Tempering at 580 - 620 °C.

Base Materials

1.4317 GX4CrNi13-4, 1.4313 X3CrNiMo13-4, 1.4351 X3CrNi13-4, 1.4414 GX4CrNiMo13-4 ACI Gr. CA6NM

Approvals and Certificates

TÜV-D (4110.), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: EC

FOX CN 13/4 FOX CN 13/4 SUPRA GMAW solid wire: Metal cored wire: CN 13/4-IG CN 13/4-MC CN 13/4-MC (F) CN 13/4-UP/BB 203

SAW combination:

2-205

EN 12072:1999: W 19 9 L AWS A5.9-93: ER308L W.Nr.: 1.4316

BÖHLER EAS 2-IG

GTAW rod, high-alloyed, chemical resistant

Description

GTAW rod of type W 19 9 L / ER308L suitable not only for standard welding jobs but also for cryogenic applications down to -269 °C.

Good welding and wetting characteristics of BÖHLER EAS 2-IG as well as corrosion resistance up to +350 °C is achieved.

Typica	I Compo	sition o	of weid	ing Kod	
	С	Si	Mn	Cr	Ni
wt-%	0.02	0.5	1.7	20.0	10.0

Mechanical Properties of All-weld Metal

(*)		u	
vield strength Re N/mm ² :		450	(≥ 400)
tensile strength Rm N/mm ² :		620	(≥ 570)́
elongation A (Lo = 5do) %:		38	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	150	(≥ 100)
	- 269 °C:	75	(≥ 35)
(*) u untroated as-wolded -	chielding gas	Araon	· · ·

(*) u untreated, as-welded – shielding gas Argon

Operating Data

shielding gases: 100 % Argon	ø mm	
rod marking:	1.6	=-
front: 🕆 W 19 9 L	2.0	
back: ER 308 L	2.4	
	3.0	

Base Materials

1.4306 X2CrNi19-11, 1.4301 X5CrNi18-10, 1.4311 X2CrNiN18-10, 1.4312 GX10CrNi18-8, 1.4541 X6CrNiTi18-10, 1.4546 X5CrNiNb18-10, 1.4550 X6CrNiNb18-10 AISI 304, 304L, 304LN, 302, 321, 347: ASTM A157 Gr. C9: A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (0145.), DB (43.014.08), ÜZ (43.014/1), ÖBB, TÜV-A (97), CL (0655), DNV (308L), GL (4550), UDT, SEPROZ

SMAW stick electrode:	FOX EAS 2	Metal cored wire:	EAS 2-MC
	FOX EAS 2-A	GMAW flux cored wire:	EAS 2-FD
GMAW solid wire:	FOX EAS 2-VD EAS 2-IG (Si)	SAW combination:	EAS 2 PW-FD EAS 2-UP/BB 202

EN 12072:1999: W 19 9 Nb AWS A5.9-93: ER 347 W.Nr.: 1.4551

BÖHLER SAS 2-IG

GTAW rod, high-alloyed, chemical resistant

Description

GTAW rod of type W 19 9 Nb / ER 347 engineered to a very precise analysis to create a weld deposit of high purity, superior hot cracking an corrosion resistance. CVN toughness down to -196 °C, resistant to intergranular corrosion up to +400 °C.

Typica	Typical Composition of Welding Rod							
wt-%	С 0.05	Si 0.5	Mn 1.8	Cr 19.5	Ni 9.5	Nb +		
Mecha	Mechanical Properties of All-weld Metal							
(*) yield stren tensile str elongation impact wo (*) u untr	ngth Re N/m rength Rm N n A (Lo = 5d ork ISO-V K reated, as-w	m²: /mm²: ٥) %: (V J <i>relded – st</i>	+ 20 °C: - 196 °C: iielding gas	u 490 660 35 140 Argon	(≥ 450) (≥ 600) (≥ 30) (≥ 100) (≥ 32)			
Operat	ting Data	1						

shielding gases: 100 % Argon	ø mm	Γ
rod marking:	1.6	
front: 🕂 W 19 9 Nb	2.0	
back: ER 347	2.4	_
	3.0	

Base Materials

1

1.4550 X6CrNiNb18-10, 1.4541 X6CrNiT18-10, 1.4552 GX5CrNiNb19-11, 1.4301 X5CrNi18-10, 1.4312 GX10CrNi18-8, 1.4546 X5CrNiNb18-10, 1.4311 X2CrNiN18-10, 1.4306 X2CrNi19-11

AISI 347, 321, 302, 304, 304L, 304LN; ASTM A296 Gr. CF 8 C; A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (0142.), TÜV-A (77), CL (0261), GL (4550), UDT, LTSS, SEPROZ

SMAW stick electrode:	FOX SAS 2	GMAW solid wire:	SAS 2-IG (Si)
	FOX SAS 2-A	GMAW flux cored wire:	SAS 2-FD
			SAS 2 PW-FD
		SAW combination:	SAS 2-UP/BB 202

EN 12072:1999: W 19 12 3 L AWS A5.9-93: ER316L W.Nr.: 1.4430

BÖHLER EAS 4 M-IG

Mo 2.6

GTAW rod, high-alloyed, chemical resistant

Description

GTAW rod of type W 19 12 3 L / ER316L engineered to a very precise analysis to create a weld deposit of high purity, superior hot cracking an corrosion resistance. CVN toughness down to -196 °C, resistant to intergranular corrosion up to +400 °C.

Typical	Compo	sition o	of Weldi	ing Rod		
wt-%	C 0.02	Si 0.5	Mn 1.7	Cr 18.5	Ni 12.3	

Mechanical Properties of All-weld Metal

(*)		u	
vield strength Re N/mm ² :		470	(≥ 450)
tensile strength Rm N/mm ² :		650	(≥ 580)
elongation A (Lo = 5do) %:		38	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	140	(≥ 100)
•	- 196 °C:		(≥ 32)
(*)	abialding gas	A	()

(*) u untreated, as-welded – shielding gas Argon

Operating Data

shielding gases: 100 % Argon	ø mm	
rod marking:	1.6	=-
front: 🔶 W 19 12 3 L	2.0	
back: ER 316 L	2.4	
	3.0	

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMoT17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo19-11-2

S31653, AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (0149.), DB (43.014.12), ÜZ (43.014/1), ÖBB, TÜV-A (101), CL (0446), DNV (316L), GL (4429), UDT, SEPROZ

SMAW stick electrode:	FOX EAS 4 M	Metal cored wire:	EAS 4 M-MC
	FOX EAS 4 M-A	GMAW flux cored wire:	EAS 4 M-FD
	FOX EAS 4 M-VD		EAS 4 PW-FD
	FOX EAS 4 M-TS	SAW combination:	EAS 4 M-UP/BB 202
GMAW solid wire:	EAS 4 M-IG (Si)		

EN 12072:1999: W 19 12 3 Nb AWS A5.9-93: ER318 W.Nr.: 1.4576

BÖHLER SAS 4-IG

GTAW rod, high-alloyed, chemical resistant

Description

GTAW rod of type W 19 12 3 Nb / ER318 engineered to a very precise analysis to create a weld deposit of high purity, superior hot cracking an corrosion resistance. CVN toughness down to -120 °C, resistant to intergranular corrosion up to +400 °C.

Typical Composition of Welding Rod									
wt-%	С 0.04	Si 0.4	Mn 1.7	Cr 19.5	Ni 11.5	Mo 2.7	Nb +		
Mechar	nical Pro	operties	of All-	veld Me	etal				
Operati	ng Data	I							
Shielding gases: 100 % Argon rod marking: rod marking: front: back: ER 318 ø mm 1.0* * these diameters are delivered with a higher 2.4 Si-content (ca. 0.8 %) 3.0							=-		

Base Materials

1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4401 X5CrNiMo17-12-2, 1.4581 GX5CrNiMoNb19-11-2, 1.4437 GX6CrNiMo18-12, 1.4583 X10CrNiMoNb18-12, 1.4436 X3CrNiMo17-13-3

AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (0236.), KTA 1408 1 (8046.00), DB (43.014.03), ÜZ (43.014/1), ÖBB, TÜV-A (134), CL (0441), GL (4571), UDT, SEPROZ

SMAW stick electrode:	FOX SAS 4 FOX SAS 4-A	GMAW solid wire: GMAW flux cored wire:	SAS 4-IG (Si) SAS 4-FD
			SAS 4 PW-FD
		SAW combination:	SAS 4-UP /BB 202

EN 12072:1999: W Z 19 13 Si NL W.-Nr.: 1.4361

BÖHLER EASN 2 Si-IG

GTAW rod, high-alloyed, highly corrosion resistant

Description

GTAW rod designed for joint welding of the special stainless steel grade X2CrNiSi18-15, matno. 1.4361 (BÖHLER A 610), which is resistant to the attack of highly concentrated nitric acid and of nitric acid additionally containing strong deoxidants. Also suited for cladding applications on analogous materials.

Operating temperatures up to +350 °C.

Typical Composition of Welding Rod									
wt-%	C ≤ 0.015	Si 4.6	Mn 0.7	Cr 19.5	Ni 13.4	N 0.12			
Mechanical Properties of All-weld Metal									
(*) U yield strength Re N/mm ² : 520 (\geq 440) tensile strength Rm N/mm ² : 750 (\geq 700) elongation A (Lo = 5do) %: 35 (\geq 25) impact work ISO-V KV J + 20 °C: 100 (\geq 40) - 50 °C: (\geq 32) (*) u untreated, as-welded – shielding gas Argon									
Operat	Operating Data								
t t	shieldi rod ma	ng gases: arking:	100 % Arg	gon	øn 1	nm 6			

t.	
<u>ا</u> _	-

elding gases: 100 % Argon	ømm	
marking:	1.6	=-
front: 👕 W Z 19 13 Si NL	2.0	
back: 1.4361	2.4	
not require nost weld heat treatment	In exceptional cases quenching	from

The deposit does not require post weld heat treatment. In exceptional cases quenching from a temperature of +1100 °C in water is recommended. Keep heat input as low as possible. Interpass temperature should not to exceed +150 °C. If possible, water cooling to improve heat dissipation is recommended.

Base Materials

1.4361 X1CrNiSi18-15-4, UNS S30600

Approvals and Certificates

TÜV-D (1483.), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX EAS 2 Si

EN 12072:1999: W Z 18 16 5 NL AWS A5.9-93: ER317LN (mod.) W.Nr.: 1.4453

BÖHLER ASN 5-IG

GTAW rod, high-alloyed, highly corrosion resistant

Description

GTAW rod for 3-4 % molybdenum alloyed CrNi-steels like 1.4438 / 317L.

The weld metal shows a stable austeinitic microstructure with good pitting resistance (PREN >35) and crevice corrosion resistance as well as excellent CVN toughness behaviour down to -269 °C. Resistant to intergranular corrosion up to +400 °C.

BÖHLER ASN 5-IG has an increased Mo content (4.1 %) to compensate for segregation when welding high molybdenum alloyed steels, thus producing equivalent corrosion resistance to the relevant base metals offering a 3-4 % Mo guarantee.

Typical Composition of Welding Rod									
wt-%	C ≤ 0.02	Si 0.2	Mn 5.0	Cr 19.0	Ni 16.5	Mo 4.1	N 0.16	PRE _N 38.0	FN ≤ 0.5
Mechan	ical Pro	perties	of All-	weld N	letal				
(*) yield streng tensile stre elongation impact wor (*) u untre	gth R₀ N/m ngth Rm N A (Lo = 5dd k ISO-V K ated, as-w	m²: /mm²:)) %: .V J <i>elded – sl</i>	+ 20 °C: - 269 °C: nielding ga	u 440 650 35 120 75 as Argon		(≥ 400) (≥ 600) (≥ 30) (≥ 70) (≥ 32)			
Operati	ng Data								

ø mm 1.6 2.0 2.4	=-
	ø mm 1.6 2.0 2.4

Base Materials

1.4436 X3CrNiMo17-13-3, 1.4439 X2CrNiMoN17-13-5, 1.4429 X2CrNiMoN17-13-3, 1.4438 X2CrNiMo18-15-4, 1.4583 X10CrNiMoNb18-12

AISI 316Cb, 316LN, 317LN, 317L; UNS S31726

Approvals and Certificates

TÜV-D (00017.), TÜV-A (463), DNV (X), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX ASN 5	GMAW flux cored wire:	E 317L-FD*
GMAW solid wire:	ASN 5-IG (Si)	SAW combination:	ASN 5-UP/BB 203

* for similar alloyed base metals only, not fully austenitic.

EN 12072:1999: W Z 22 17 8 4 NL W.Nr.: 1.3954

BÖHLER AM 400-IG

GTAW rod, high-alloyed, highly corrosion resistant

Description

This N-alloyed, fully austenitic and nonmagnetic special GTAW rod is distinguished by its especially high resistance to pitting, crevice corrosion and stress corrosion cracking. Excellent cryogenic toughness. Suitable for service temperatures up to +350 °C, and up to +400 °C in media that do not induce

Šuitable for service temperatures up to +350 °C, and up to +400 °C in media that do not induce intergranular corrosion. Used for sea water desalinisation plants, centrifuges, bleaching plants and in special shipbuilding.

Typical Composition of Welding Rod									
wt-%	C 0.02	Si 0.7	Mn 7.5	Cr 22.2	Ni 18.1	Mo 3.6	N 0.22	PRE _N 36.9	
Mecha	Mechanical Properties of All-weld Metal								
(*) yield stri tensile s elongati impact v (*) u un	ength Re N/m strength Rm N on A (Lo = 5d vork ISO-V P streated, as-w	nm²: I/mm²: 0) %: (V J - velded – shi	+ 20 °C: 196 °C: ielding gas	u 480 700 35 170 Argon	(≥ 450) (≥ 680) (≥ 30) (≥ 70) (≥ 32)				
Opera	ting Data	1							
→	shield	ling gases.	100 % Ar	aon	ø mr	n			

shielding gases: 100 % Argon
rod marking:
front: W Z 22 17 8 4 NL
back: 1.3954

Preheating of the base metal is not required. The interpass temperature should not exceed +150 °C.

20

Base Materials

1.3948 X4CrNiMnMoN19-13-8, 1.3951 X2CrNiMoN22-15, 1.3952 X2CrNiMoN18-14-3, 1.3964 X2CrNiMnMoNNb21-16-5-3, 1.4439 X2CrNiMoN17-13-5

Approvals and Certificates

WIWEB, GL (3954), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX AM 400

GMAW solid wire: AM 400-IG

Corrosion Resistant Filler Metals - GTAW Rods

EN 12072:1999: W 25 22 2 NL

BÖHLER EASN 25 M-IG

GTAW rod high-alloyed, chemical resistant

Description

GTAW rod for joining and surfacing applications on matching/similar steels. For weld cladding on high temperature steels and for fabrication joints on claddings. Characterised by a low Ccontent, a limited Mo-content (for better Huey-test-resistance), a well-defined N-alloying as well as a high Ni-content to assure a fully austenitic structure (ferrite contents < 0.5 %). The corrosion rates in the Huey-test are max. 0.25 g/m².h (10.89 mils/year). it is suited for urea plant components exposed to extremely severe corrosion at high pressures and temperatures. The weld deposit will exhibit superior resistance to boiling concentrated nitric acid (optimum condition: 60-80 % HNO3) when made to join components of the highest Huey test quality. It is also recommendable for weldments wetted by strong chloride solutions at high temperatures. The chromium and molybdenum percentages create good resistance to pitting from solutions containing chlorine ions. Purther applications involve severe corrosion up to +350 °C. During welding rayon. Resistant to intercrystalline corrosion and wet corrosion up to +350 °C. During welding an interpass temperature of 150 °C should be avoided.

Typical Composition of Welding Rod										
wt-%	C 0.025	Si 0.2	Mn 6.0	Cr 25	Ni 22.5	Mo 2.2	N 0.13			
Mechanical Properties of All-weld Metal										
Shielding gases: Ø mm 100% Argon 1.6 rod marking: 2.0 front: W 25 22 2 NL back: 1.465										

Base Materials

X2CrNiMoN25-22-2 (1.4466) and in Combination with X1CrNiMoN25-25-2 (1.4465), X2CrNiMo18-14-3 (1.4435)

Approvals and Certificates

TÜV-D (applied)

Same Alloy Filler Metals

SMAW stick electrode: FOX EASN 25M

EN 12072:1999: W Z 20 25 5 Cu NL AWS A5.9-93: ER385 (mod.) W.Nr.: 1.4519 (mod.)

BÖHLER CN 20/25 M-IG

GTAW rod, high-alloyed, highly corrosion resistant

Description

Special GTAW rod for corrosion resistant 4-5% Mo-alloyed CrNi-steels like 1.4539 / 904L. Very high pitting resistant equivalent (PREN \geq 45) – pitting potential (%Cr + 3.3 x %Mo + 30 x %N). Due to the high Mo content (6.2 %) in comparison to W-No. 1.4539 respectively UNS N08904, the high segregation rate of high Mo-alloyed CrNi-weld metal can be compensated.

The fully austenitic weld metal possess a marked resistance towards pitting and crevice corrosion in chloride containing media. Highly resistant against sulphur-, phosphorus-, acetic- and formic acid, as well as seaand brackish water. Caused from the low C-content of the weld metal, the risk of intergranular corrosion can be avoided. The high Ni-content in comparison to standard CrNI-weld metals leads to high resistance against stress corrosion cracking.

Special applicable in sulphur- and phosphorus production, pulp and paper industry, flue gas desulphurisation plants, further on for fertilizer production, petrochemical industry, fatty-, acetic- and formic acid production, sea water sludge fittings and pickling plants which are proceeded with sea or brackish water.

Typical Composition of Welding Rod

wt-%	⊂C	Si	Mn	Cr	Ni	Mo	Cu	N	PRE _N	
	≤ 0.02	0.7	4.7	20.0	25.4	6.2	1.5	0.12	≥ 45.0	
Mechanical Properties of All-weld Metal										

(*)		u	
yield strength Re N/mm ² :		440	(≥ 350)
tensile strength Rm N/mm ² :		670	(≥ 600)
elongation A (L ₀ = 5d ₀) %:		42	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	115	(≥ 80)
	- 269 °C:	72	(≥ 32)
(*) u untroated as wolded	chielding gas	Argon	(-)

(*) u untreated, as-welded – shielding gas Argon

Operating Data

shielding gases: 100 % Argon rod marking: front: + W Z 20 25 5 Cu NL back: -	ø mm 1.6 2.0 2.4	=-
---	---------------------------	----

Preheating and post weld heat treatment is not required by the weld deposit. Interpass temperature should not exceed +150 °C.

Base Materials

same-alloyed high-Mo Cr-Ni-steels 1.4539 X1NiCrMoCu25-20-5, 1.4439 X2CrNiMoN17-13-5, 1.4537 X1CrNiMoCuN25-25-5 UNS N08904. S31726

Approvals and Certificates

TÜV-D (4881.), TÜV-A (390), Statoil, UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 20/25 M FOX CN 20/25 M-A GMAW solid wire: CN 20/25 M-IG (Si)

EN 12072:1999: W 22 9 3 NL AWS A5.9-93: ER2209 W.Nr.: 1.4462 (mod.)

BÖHLER CN 22/9 N-IG

GTAW rod, high-alloyed, highly corrosion resistant

Description

GTAW rod of type W 22 9 3 NL / ER2209 designed for welding ferritic-austenitic duplex steels like 1.4462 / UNS 31803. The deposit possess, in addition to high tensile strength and toughness, also excellent resistance to stress corrosion cracking and pitting (Huey-test ASTM A 262-79 practice C). The operating temperature range is -60 °C up to +250 °C. To ensure particularly good weld metal properties care must be taken to archive controlled dilution and thorough back purging. In case of severe corrosion reguirement, small amounts of N2 can be added to the shielding respectively purging gas.

BÖHLER CN 22/9 N-IG is characterised by a precisely alloyed composition which includes an extremely low oxygen content. It offers very high quality standards for ease of operation and good mechanical properties.

Typical	Compos	sition o	f Weldin	ig Roo	b						
wt-%	C ≤ 0.015	Si 0.4	Mn 1.7	Cr 22.5	Ni 8.8	Mo 3.2	N 0.15	PRE _N ≥ 35			
Mechanical Properties of All-weld Metal											
(*) yield stren tensile stre elongation impact wo (*) <i>u untre</i>	gth R₀ N/mr ength Rm N/ i A (Lo = 5do rk ISO-V K' eated, as-we	m²: mm²:) %: V J elded – sh	+ 20 °C: - 60 °C: ielding gas	u 600 800 33 150 Argon	(≥ 560) (≥ 720) (≥ 25) (≥ 100) (≥ 32)						
Operati	ing Data										
ĺ	shieldi rod ma	ng gases: arkina:	100 % Arg Ar + 1-2 %	on N2	ø mn 1.6 2.0	ı		=-			

Preheat and post weld heat treatment is generally not required. Interpass temperature should not exceed +150 °C.

2.4

3.2

front: + W 22 9 3 NL

back: ER 2209

Base Materials

same-alloyed duplex steels, as well as similar-alloyed, ferritic-austenitic steels with higher tensile strength

1.4462 X2CřŇiMoN22-5-3, 1.4362 X2CrNiN23-4, 1.4462 X2CrNiMoN22-5-3 with 1.4583 X10CrNiMoNb18-12, 1.4462 X2CrNiMoN22-5-3 with P235GH/ P265GH, S255N, P295GH, S355N, 16Mo3 UNS S31803, S32205

Approvals and Certificates

TÜV-D (4484.), TÜV-A (423), DNV (X{1}), Statoil, UDT, CL (0776), GL (4462), ABS (ER 2209), LR (X), Statoil, UDT

SMAW stick electrode:	FOX CN 22/9 N-B	GMAW flux cored wire:	CN 22/9 N-FD
	FOX CN 22/9 N		CN 22/9 PW-FD
GMAW solid wire:	CN 22/9 N-IG	SAW combination:	CN 22/9 N-UP/BB 202

EN 12072:1999: AWS A5.9-93: W 25 9 4 NL ER2553(mod)

BÖHLER CN 25/9 CuT-IG

GTAW-rod high alloyed, highly corrosion resistant

Description

GTAW-rod highly suitable for welding ferritic-austenitic superduplex steels. By virtue of specific alloy composition the deposit has, in addition to high tensile strength and toughness, also excellent resistance to stress corrosion cracking and pitting corrosion. The operating temperature range is -50 °C up to 220 °C. Well suited for the conditions in the offshore field. For applications requiring low Hydrogen, we offer the product BÖHLER CN 25/9 CuT-IG-LH with Hydrogen Content guaranteed less than 3 ppm.

Typical Composition of Welding Rod											
wt-%	C 0.02	Si 0.3	Mn 0.8	Cr 25.5	Ni 9.5	Mo 3.7	N 0.22	Cu 0.6	т 0.6	PRE _N ≥ 40	
Mechanical Properties of All-weld Metal											
(*) U yield strength R _o N/mm ² : \geq 700 tensile strength R _o N/mm ² : \geq 850 elongation A (L=5do) %: \geq 25 impact work ISO-V Av J +20 °C: \geq 120 -40 °C: \geq 100 (*) u untreated, as welded – shielding gas Argon											
Opera	ting D	ata									
shielding gas: Argon + 2-3 % N ₂ 2.0 Argon cd marking: front: - W 25 9 4 NL back: Welding of root pass with "thick layer". Next two passes with thin layers and low heat input to avoid overheating and precipitations										=	

Base Materials

25 % Cr-Superduplex steels e.g. 1.4501 X2CrNiMoCuWN 25-7-4 UNS S 32750, S 32760 ZERON 100, SAF 25/07, FALC 100

Approvals and Certificates

CL (applied)

Stick electrode:	FOX CN 25/9 CuT
GMAW solid wire:	CN 25/9 CuT-IG

EN 12072:1999: AWS A5.9-93: G Z 13 Nb L ER409Cb

BÖHLER KW 5 Nb-IG

GMAW solid wire high-alloyed, stainless

Description

Special GMAW welding wire for catalytic converters as well as exhaust silencers, mufflers, manifolds, and manifold elbows of analogous or similar materials. Also used for repair welding and surfacing of sealing faces of gas, water, and steam turbines with service temperatures of up to +450 °C. Resists scaling up to +900 °C. Machinability depends largely on the degree of base metal dilution. Outstanding feeding, very good welding and flow characteristics.

Typical Composition of Solid Wire									
wt-%	b	С 0.05	Si 0.6	Mn 0.6	Cr 11.5	Nb +			
Mechanical Properties of All-weld Metal									
(*) Brine	əll-h	ardness HB:			u 150		a 130		
(*) u untreated, as-welded – shielding gas Ar +8-10 % CO: a annealed, 750 °C/2h – shielding gas Ar +8-10 % CO:									

Operating Data

Ţ,

Shielding gas: Argon +8-10 % CO₂ ø mm 1.0

=+

Base Materials

analogous or similar alloyed steels 1.4512 X2CrTi12, 1.4006 X10Cr13, 1.4024 X15Cr13, 1.4021 X20Cr13 AISI 409, 410, 420

Approvals and Certificates

SEPROZ, UDT

Same Alloy Filler Metals

_

EN 12072:1999: G AWS A5.9-93: E

G Z 18 Nb L ER430 (mod) BÖHLER CAT 430 L Cb-IG

> GMAW solid wire high alloyed, stainless

Description

Special GMAW welding wire for catalytic converters as well as exhaust silencers, mufflers, manifolds, and manifold elbows of analogous or similar materials. Resists scaling up to +900 °C. Outstanding feeding characteristics. Very good welding and flow characteristics.

Typical	Compo	sition o	of Solid	Wire		
wt-%	C <0.02	Si 0.5	Mn 0.5	Cr 18.0	Nb >12xC	

Mechanical Properties of All-weld Metal

(*) u a Brinell-hardness HB: **150 130**

(*) u untreated, as welded – shielding gas Ar +8-10 % CO₂ a annealed, 760 °C/2h – shielding gas Ar +8-10 % CO₂

Operating Data

t<u>_</u>↓

Shielding gas: Argon +5-10 % CO² Argon +1-3 % O²

ø mm 1.0

=+

Base Materials

1.4511 X3CrNb17, 1.4016 X6Cr17, AISI 430

Approvals and Certificates

2-218

EN 12072:1999: AWS A5.9-93:

G Z 18 Ti L ER430(mod) BÖHLER CAT 439 L Ti-IG

GMAW solid wire, high alloyed, stainless

Description

Special GMAW welding wire for catalytic converters as well as exhaust silencers, mufflers, manifolds, and manifold elbows of analogous or similar materials. Resists scaling up to 900 °C. Outstanding feeding characteristics. Very good welding and flow characteristics

Тур	Typical Composition of Solid Wire										
wt-%	b	0.03	Si 0.8	Mn 0.8	Cr 18.0	⊺i >12xC					
Mechanical Properties of All-weld Metal											
(*) yield tensi elon impa Brine	*) u a 'ield strength R= N/mm ² : ensile strength R= N/mm ² : elongation A (L=5ds) %: mpact work ISO-V KV J rinell-hardness HB 150 130										
(*)	(*) u untreated, as welded – shielding gas Ar +8-10 % CO ₂ a annealed, 800 °C/1h – shielding gas Ar +8-10 % CO ₂										
On		ting Data									

perating Data

Shielding gas: Argon +5-10 % CO2 Argon +1-3 % O2

ø mm 10

Base Materials

1.4510, X3CrTi17, 1.4016 X6Cr17, 1.4502, X8CrTi18 AISI 439

Approvals and Certificates
EN 12072-1999- G 13 4 AWS A5.9-93: ER410 NiMo (mod.)

BÖHLER CN 13/4-IG

GMAW solid wire high-alloyed, stainless

Description

GMAW wire of low-carbon type 13% Cr 4% Ni suited for soft-martensitic steels like 1.4313 / CA 6 NM. Designed with precisely tuned alloying composition creating a weld deposit featuring very good ductility. CVN toughness and crack resistance despite its high strength. BÖHLER CN 13/4-IG and the analogous GTAW rod as well as the coated stick electrode BOHLER FOX CN 13/4 are very popular in the construction of hydro turbines.

Typical Composition of Solid Wire							
wt-%	C ≤ 0.02	Si 0.7	Mn 0.6	Cr 12.3	Ni 4.7	Mo 0.5	
Mechan	Mechanical Properties of All-weld Metal						
(*) yield streng tensile stre elongation impact wor	gth Re N/mm ngth R _m N/n A (Lo = 5do) k ISO-V KV	n ² : nm ² : %: / J + 20 °C - 20 °C	1	950 1210 12 36	(≥ 750) (≥ 950) (≥ 10) (≥ 30)	a 760 890 17 80	(≥ 680) (≥ 800) (≥ 15) (≥ 50) (≥ 47)

(*) u untreated, as-welded - shielding gas Argon + 8 - 10 % CO2

a annealed. 580 °C/8 h furnace down to 300 °C/air – shielding gas Argon + 8 - 10 % CO2

Operating Data

shielding gases:	ø mm	
Argon ∓ 8 – 10 % CO₂	1.2	

Preheating and interpass temperatures in case of thick-walled sections 100 - 160 °C. Maximum heat input 15 kJ/cm. Tempering at 580 - 620 °C.

Base Materials

1.4317 GX4CrNi13-4, 1.4313 X3CrNiMo13-4, 1.4351 X3CrNi13-4, 1.4414 GX4CrNiMo13-4 ACI Gr. CA 6 NM

Approvals and Certificates

UDT. SEPROZ

Same Alloy Filler Metals

SAW combination:

CN 13/4-UP/BB 203

=+

EN 12072:1999: AWS A5.9-93: W.Nr.: G Z 13 ER410 (mod.) 1.4009 BÖHLER KW 10-IG

GMAW solid wire high-alloyed, stainless

Description

GMAW wire of type W Z 13 / ER 410 predominantly used for surfacings of sealing faces of valves for gas, water, and steam piping systems at service temperatures up to +450 °C. The machinability of the weld metal depends largely upon the kind of base metal and degree of dilution. Joint welding of similar 13 % chromium steels shows matching colour of the weld metal and very good ability to polishing. Good feeding, welding and wetting characteristics. For joint welding preheating to +200 - 300 °C is recommended. Tempering at +700 - 750 °C to increase toughness.

Typical Composition of Solid Wire						
wt-%	C 0.06	Si 0.7	Mn 0.6	Cr 13.6		

Mechanical Properties of All-weld Metal

(*)	u	а
vield strength Re N/mm ² :		(≥ 450)
tensile strength Rm N/ mm ² :		(≥ 650)
elongation A ($L_0 = 5d_0$) %:		(≥ 15)
impact work ISO-V KV J + 20 °C:		-
Brinell-hardness HB:	320	200
(*) u untreated, as-welded - shielding ga	as Ar + 8 - 10 %	CO_2
a appealed 720 °C/2 h shielding a	00 Ar , 0 100	(CO.

a annealed, 720 °C/2 h - shielding gas Ar + 8 - 10 % CO2

The hardness of the deposit is greatly influenced by the degree of dilution with the base metal (depending on the relevant weiding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness. Gas mixtures containing CO₂ result in higher deposit hardness then CO₂-free gas mixtures.

Operating Data

t_↓	shielding gases: Argon + 8 - 10 % CO ₂ (Argon + 3 % O ₂ or max. 5 % CO ₂ (shielding gas depends on the applicat	ø mm 1.2 1.6	=+
-----	---	--------------------	----

Base Materials

surfacings: all weldable backing materials, unalloyed and low-alloyed joint welds: corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents $\leq 0.20\%$ (repair welding); heat resistant Cr-steels of similar chemical composition. Be careful with dilution and welding technology.

1.4006 X12Cr13, 1.4021 X20Cr13

AISI 410, 420

Approvals and Certificates

SEPROZ, UDT

SMAW stick electrode:	FOX KW 10
GTAW rod:	KW 10-IG

Corrosion Resistant Filler Metals - GMAW Solid Wires

EN 12072:1999: AWS A5.9-93: W.Nr.: G 17 ER430 (mod.) 1.4015 BÖHLER KWA-IG

GMAW solid wire high-alloyed, stainless

Description

GMAW wire of type G 17 / ER430 suitable for surfacing of sealing faces of gas, water and steam valves and fittings. Service temperatures up to +450 °C. Scaling resistant up to +950 °C. Also in sulphur containing combustion gas at high temperature. BOHLER KWA-IG wire is also suited for joint welding of stainless ferritic steels containing 12-17% chromium, and by the request of colour matching weld deposit/base metal. For thick-walled components it is recommendable to use BOHLER A 7-IG wire for the filler passes in order to improve the ductility behaviour of the joint weld, KWA-IG wire for the cover pass especially in case of sulphur containing combustion gases. Excellent feeding, welding and wetting behaviour of the wire and weld metal are important economical features. For joint welding preheating up to +200 - 300 °C is recommended. Annealing at +730 - 800 °C improves the toughness of the weld deposit.

Typical Composition of Solid Wire

wt-%	С 0.06	Si 0.6	Mn 0.6	Cr 17.5			
Mechar	nical Pro	operties	of All-v	weld Meta	al		
(*) yield stren tensile stre elongation impact work Brinell-har (*) <i>u untre</i> .	gth Re N/m ength R _m N A (L₀ = 5d < ISO-V KV dness HB: ated, as-w	nm²: l/mm²: lo) %: J + 20 °C elded – ba	u 180-23 se materia	u - 1. Lay 0 350-450 I mild steel –	er u - 2. Layer u 280-350 <i>shielding gas Ar</i>	u - 3. Layer a (≥ 34 (≥ 54 (≥ 2 230-260 15 + 8 - 10 % CO ₂	0) 0) 0)

a annealed, 800 °C/1 h - shielding gas Ar + 8 - 10 % CO2

The hardness of the deposit is greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness. Gas mixtures containing CO₂ result in higher deposit hardness then CO₂-result an subtures.

Operating Data

shielding gases: **Argon + 8 - 10 % CO**₂ (**Argon + 3 % O**₂ or max. 5 % CO₂ (shielding gas depends on the application)

ø mm

12

Base Materials

surfacings: all weldable backing materials, unalloyed and low-alloyed. joint welds: corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents up to 0.20 % (repair welding). Be careful with dilution and welding technology. 1.4510 X3CrTi17 AISI 430 T; AISI 431

Approvals and Certificates

SEPROZ, UDT

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX SKWA FOX SKWAM GMAW solid wire:

SKWA-IG SKWAM-IG EN 12072:1999: AWS A5.9-93: W.Nr.: G Z 17 Ti ER430 (mod.) 1.4502 BÖHLER SKWA-IG

GMAW solid wire high-alloyed, stainless

Description

GMAW wire of type G Z 17 Ti / ER430 for build up on sealing faces of gas, water and steam valves and fittings made from unalloyed or low-alloyed steels. Service temperatures up to + 500 °C. The wire exhibits good feeding properties with excellent welding and wetting characteristics. Scaling resistant up to +900 °C. SKWA-IG wire is also suited for joint welding of stainless ferritic steels containing 13-18 % chromium steels, furthermore for applications where colour match of the base and weld metal is required.

Preheat to 250 - 450 °C for joint welding. Annealing at 650 - 750 °C improves the toughness of the weld deposit.

Typical Composition of Solid Wire								
wt-%	С 0.07	Si 0.8	Mn 0.6	Cr 17.5	Ti +			
Mechanical Properties of All-weld Metal								

(*)	u	u - 1. Layer	u - 2. Layer	u - 3. Layer	а
yield strength Re N/mm ² :					(≥ 300)
tensile strength Rm N/mm ² :					(≥ 500)
elongation A ($L_0 = 5d_0$) %:					(≥ 20)
impact work ISO-V KV J + 20 °C					`_´
Brinell-hardness HB:	150-170	300-400	200-300	170-220	130
(*) u untreated, as-welded - base	metal mild	l steel – shie	lding gas Ar	+ 8 - 10 % C	O2
a appealed 750 °C/2 h chiele	ling and Ar	1 8 10 % /			

a annealed, 750 °C/2 h - shielding gas Ar + 8 - 10 % CO₂

The hardness of the deposit is greatly influenced by the degree of dilution with the base metal (depending on the relevant weiding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness. Gas mixtures containing CO₂ result in higher deposit hardness then CO₂-refe gas mixtures.

Operating Data

shielding gases: Argon + 8 - 10 % CO2 (Argon + 3 % O2 or max, 5 % CO2	ø mm 1.0 1.2	=+
(shielding gas depends on the application)	1.6	

Base Materials

surfacings: all weldable backing materials, unalloyed and low-alloyed. joint welds: corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents up to 0.20% (repair welding). Be careful with dilution and welding technology.

1.4510 X3CrTi17

AISI 430Ti, 431

Approvals and Certificates

DB (20.014.11), ÖBB, UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX SKWA FOX SKWAM GMAW solid wire:

KWA-IG SKWAM-IG EN 12072:1999: W.Nr.: G Z 17 Mo H 1.4115 BÖHLER SKWAM-IG

GMAW solid wire high-alloyed, stainless

Description

GMAW solid wire of type 17 % Cr 1 % Mo for surfacing on sealing faces of gas, water and steam valves and fittings made from unalloyed or low-alloy steels, for service temperatures up to +450 °C. Excellent anti-friction properties. The weld deposit is still machinable. Scaling resistant up to +900 °C. SKWAM-IG wire is also suited for joint welding of stainless ferritic steels containing 13-18 % chromium, above all for applications where uniform colour of the base metal and weld seam is required. For thick-walled components it is recommendable to use BÖHLER A 7-IG wire for the filler passes in order to improve the ductility behaviour of the joint weld, SWAM-IG wire for the cover pass. Preheating to 250 - 450 °C for joint welding operations. Annealing at 650 - 750 °C improves the toughness of the weld deposit.

Typical Composition of Solid Wire

	C	Si	Mn	Cr	Mo
wt-%	0.20	0.7	0.7	17.0	1.1

Mechanical Properties of All-weld Metal

(*)	u	u - 1. Laver	u - 2. Laver	u - 3. Laver	а
vield strength Re N/mm ² :		,	,		(≥ 500)
tensile strength Rm N/mm ² :					(≥ 700)́
elongation A ($L_0 = 5d_0$) %:					(≥ 15)́
impact work ISO-V KV J + 20 °C					
Brinell-hardness HB:	appr. 350	400-500	380-450	330-400	200
(*) u untreated, as-welded - base	e metal milo	l steel – shie	lding gas Ar -	+ 8 – 10 % (CO2
a annealed, 720 °C/2 h – shie	lding gas A	r + 8 – 10 %	CO ₂		
THE		4 111 11			

The hardness of the deposit is greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness. Gas mixtures containing CO₂ result in higher deposit hardness then CO₂-refe gas mixtures.

Operating Data

 shielding gases:
 Ø mm

 Argon + 8 - 10 % CO2
 1.2

 (Argon + 3 % O2 or max. 5 % CO2
 1.6

 (shielding gas depends on the application)
 1.6

=+

Base Materials

surfacings: all weldable backing materials, unalloyed and low-alloyed. joint welds: corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents up to 0.20 % (repair welding). Be careful with dilution and welding technology.

Approvals and Certificates

KTA 1408 1 (8044.00), DB (20.014.19), ÖBB, UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode: FOX SKWA FOX SKWAM GMAW solid wire:

KWA-IG SKWA-IG EN 12072:1999: G 19 9 L Si AWS A5.9-93: ER308 L Si W.Nr.: 1.4316

BÖHLER EAS 2-IG (Si)

GMAW solid wire high-alloyed, chemical resistant

Description

GMAW wire of type G 19 9 L Si / ER308LSi designed for first class welding, wetting and feeding characteristics and excellent weld metal CVN values down to -196 °C. Resistance to intergranular corrosion up to +350 °C.

Typical Composition of Solid Wire								
C Si Mn Cr Ni wt-% 0.02 0.8 1.7 20.0 10.2								
Mechanical Properties of All-weld Metal								
(*) u yield strength Re N/mm²: 420 (≥ 350)								

vield strength Re N/mm ² :		420	(≥	350))
tensile strength Rm N/mm2:		630	(≥	570)	1
elongation $A(L_0 = 5d_0)$ %:		38	(≥	35)	1
impact work ISO-V KV J	+ 20 °C:	110	(≥	75)	1
	- 196 °C:		(≥	32)	1
(*) u untropted op unded	abialding gas	A 0 E0/	COL		

(*) u untreated, as-welded – shielding gas Ar + 2.5% CO2

Operating Data

<u>ا خم</u>	
1.1	

shielding gases: Argon + max. 2.5 % CO ₂	ømm 0.8 1.0 1.2	=+
--	--------------------------	----

Base Materials

1.4306 X2CrNi19-11, 1.4301 X5CrNi18-10, 1.4311 X2CrNiN18-10, 1.4312 GX10CrNi18-8, 1.4541 X6CrNiTi18-10, 1.4546 X5CrNiNb18-10, 1.4550 X6CrNiNb18-10

AISI 304, 304L, 304LN, 302, 321, 347; ASTM A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (3159.), DB (43.014.09), ÜZ (43.014/1), ÖBB, TÜV-A (98), CL (0579), DNV (308L), GL (4550S), UDT, SEPROZ

SMAW stick electrode:	FOX EAS 2	Metal cored wire:	EAS 2-MC
	FOX EAS 2-A	GMAW flux cored wire:	EAS 2-FD
GTAW rod:	FOX EAS 2-VD EAS 2-IG	SAW combination:	EAS 2 PW-FD EAS 2-UP /BB 202

EN 12072:1999: G 19 9 NbSi AWS A5.9-93: ER347 Si W.Nr.: 1.4551

BÖHLER SAS 2-IG (Si)

GMAW solid wire high-alloyed, chemical resistant

Description

GMAW wire of type G 19 9 Nb Si / ER347Si designed for first class welding, wetting and feeding characteristics as well as reliable corrosion resistance up to +400 °C. Low temperature service down to -196 °C.

Typical Composition of Solid Wire								
wt-%	С 0.03	Si 0.9	Mn 1.3	Cr 19.4	Ni 9.7	Nb +		
Mechar	nical Pro	operties	s of All-w	eld Me	etal			
(*) yield strem tensile stre elongation impact wo (*) u untre	(*) U yield strength R _e N/mm ² : 460 (≥ 400) tensile strength R _m N/mm ² : 630 (≥ 570) elongation A (Lo = 5do) %: 33 (≥ 30) impact work ISO-V KV J + 20 °C: 110 (≥ 65) - 196 °C: (≥ 32) (*) U uttrated as worlded, shifting as Arrap. 4 25 °C (Co)							

Operating Data

shielding gases: Argon + max. 2.5 % CO ₂	ø mm 0.8 1.0	=+
	1.2	

Base Materials

1.4550 X6CrNiNb18-10, 1.4541 X6CrNiT18-10, 1.4552 GX5CrNiNb19-11, 1.4301 X5CrNi18-10, 1.4312 GX10CrNi18-8, 1.4546 X5CrNiNb18-10, 1.4311 X2CrNiN18-10, 1.4306 X2CrNi19-11

AISI 347, 321, 302, 304, 304L, 304LN; ASTM A296 Gr. CF 8 C; A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (0025.), TÜV-A (78), GL (4550S), UDT, LTSS, SEPROZ

SMAW stick electrode:	FOX SAS 2	GTAW rod:	SAS 2-IG
	FOX SAS 2-A	GMAW flux cored wire:	SAS 2-FD
			SAS 2 PW-FD
		SAW combination:	SAS 2-UP/BB 202

EN 12072:1999: G 19 12 3 L Si AWS A5.9-93: ER316 L Si W.-Nr.: 1.4430 BÖHLER EAS 4 M-IG (Si)

GMAW solid wire, high-alloyed, chemical resistant

Description

GMAW wire of type G 19 12 3 L Si / ER316LSi designed for first class welding, wetting and feeding characteristics as well as reliable corrosion resistance up to +400 °C. Low temperature service down to -196 °C.

Typical Composition of Solid Wire						
wt-%	C 0.02	Si 0.8	Mn 1.7	Cr 18.4	Ni 12.4	Mo 2.8
Mechani	cal Prop	erties o	of All-w	eld Meta	al	
(*) yield strengt tensile streng elongation A impact work (*) <i>u</i> untreas	h R₀ N/mm gth R _m N/m (L₀ = 5d₀) ISO-V KV ted, as-wel	2: m²: %: J + ded – shie	20 °C: 196°C: Iding gas A	u 450 630 38 120 Argon + 2.5	(≥ 380) (≥ 560) (≥ 35) (≥ 70) (≥ 32) $5\% CO_2$	

Operating Data

ļ	shielding gases: Argon + max. 2.5 % CO ₂	ø mm 0.8 1.0	=+
		1.2	

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4455 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2

UNS S31653; AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (3233.), DB (43.014.11), ÜZ (43.014/1), ÖBB, TÜV-A (100), CL (0408), DNV (316L), GL (4429S), Statoil, UDT, SEPROZ

SMAW stick electrode:	FOX EAS 4 M FOX EAS 4 M-A FOX EAS 4 M-VD	Metal cored wire: GMAW flux cored wire:	EAS 4 M-MC EAS 4 M-FD EAS 4 PW-FD		
GTAW rod:	FOX EAS 4 M-TS EAS 4 M-IG	SAW combination:	EAS 4 M-UP/BB 202		

EN 12072:1999: AWS A5.9-93: W.Nr.: G 19 12 3 NbSi ER318 (mod.) 1.4576 BÖHLER SAS 4-IG (Si)

GMAW solid wire high-alloyed, chemical resistant

Description

GMAW wire of type G 19 12 3 Nb Si / ER318Si designed for first class welding, wetting and feeding characteristics as well as reliable corrosion resistance up to +400 °C. Low temperature service down to -120 °C.

Typical Composition of Solid Wire									
wt-%	C 0.035	Si 0.8	Mn 1.4	Cr 19.0	Ni 11.5	Mo 2.8	Nb +		
Mechanical Properties of All-weld Metal									
(*) yield stre tensile st elongatio impact w (*) u unt	(*) u (≥ 390) tensile strength R _e N/mm ² : 490 (≥ 390) tensile strength R _m N/mm ² : 670 (≥ 600) elongation A (L ₀ = 5d ₀) %: 33 (≥ 30) impact work ISO-V KV J + 20 °C: 100 (≥ 70) - 120 °C: (≥ 32) (*) u untreated, as-welded – shielding gas Argon + 2.5 % CO ₂								
Operating Data									

11	
	<u>*</u>

-		
shielding gases: Argon + max. 2.5 % CO ₂	ø mm 0.8 1.0	=+
	1.2	

Base Materials

1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4401 X5CrNiMo17-12-2, 1.4581 GX5CrNiMoNb19-11-2, 1.4437 GX6CrNiMo18-12, 1.4583 X10CrNiMoNb18-12, 1.4436 X3CrNiMo17-13-3

AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (3492.), TÜV-A (135), DB (43.014.04), ÜZ (43.014/1), ÖBB, UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX SAS 4 FOX SAS 4-A GTAW rod: SAS 4-I GMAW flux cored wire: SAS 4-I SAS 4-I SAW combination: SAS 4-I

SAS 4-IG SAS 4-FD SAS 4 PW-FD SAS 4-UP/BB 202 EN 12072:1999: G Z 18 16 5 NL AWS A5.9-93: ER317 LN (mod.) W.Nr.: 1.4453 (mod.)

BÖHLER ASN 5-IG (Si)

GMAW solid wire high-alloyed, highly corrosion resistant

1.2

Description

GMAW wire for 3-4 % Mo alloyed CrNi-steels like 1.4438 / 317L.

The weld metal shows a stable austenitic microstructure with good pitting resistance (PREN > 35) and crevice corrosion resistance as well as excellent CVN toughness behaviour down to -196 °C. BÖHLER ASN 5-IG (Si) has an increased Mo content (4.3 %) to compensate for segregation when welding high molybdenum alloyed steels, thus producing equivalent corrosion resistance to the relevant base metals offering a 3-4 % Mo guarantee. Resistance to intergranular corrosion or to +400 °C.

Typical Composition of Solid Wire										
wt-%	С 0.03	Si 0.7	Mn 7.0	Cr 19.0	Ni 17.5	Mo 4.3	N 0.16	PRE _N 37.1	FN ≤ 0.5	
Mechanical Properties of All-weld Metal										
(*) yield stren tensile stre elongation impact wor (*) u untre	gth Re N/n ength Rm N A (Lo = 5c rk ISO-V 1 eated, as-v	nm²: J/mm²: Io) %: KV J <i>velded</i> –	+ 20 °(- 196 °(shielding	u 430 650 35 C: 110 C: gas Argon	+ 20 %	(≥ 400) (≥ 600) (≥ 30) (≥ 70) (≥ 32) He + 0.5 %	% CO2			
Operating Data										
t	shiel	ding gase	s: 30 % He	+ max 2 °	6 C O2		ø mm			

Base Materials

1.4436 X3CrNiMo17-13-3, 1.4439 X2CrNiMoN17-13-5, 1.4429 X2CrNiMoN17-13-3, 1.4438 X2CrNiMo18-15-4, 1.4583 X10CrNiMoNb18-12 AISI 316Cb, 316 LN, 317LN, 317L, UNS S31726

Approvals and Certificates

TÜV-D (04139.), DNV (X), GL (4439S), UDT

Same Alloy/Similar Alloy Filler Metals

Argon + 20 % He + 0.5 % CO2

SMAW stick electrode:	FOX ASN 5	GMAW flux cored wire:	E317L-FD*
	FOX ASN 5-A		E317L PW-FD*
GTAW rod:	ASN 5-IG	SAW combination:	ASN 5-UP /BB 203

* for similar alloyed base metals only, not fully austenitic.

EN 12072:1999: G Z 22 17 8 4 NL W.Nr.: 1.3954

BÖHLER AM 400-IG

GMAW solid wire high-alloyed, highly corrosion resistant

Description

This N-alloyed, fully austenitic and nonmagnetic material is distinguished by its especially high resistance to pitting, crevice corrosion and stress corrosion cracking. Excellent cryogenic toughness. Suited for temperatures up to +350 °C, and up to +400 °C in media that do not induce intergranular corrosion.

Field of application in sea water desalinisation plants, centrifuges, bleaching plants and in special shipbuilding.

Typical Composition of Solid Wire										
wt-%	0.02	Si 0.7	Mn 7.5	Cr 22.2	Ni 18.1	Mo 3.6	N 0.22	PREN 37		
Mechar	Mechanical Properties of All-weld Metal									
(*) yield stren tensile stre elongation impact wo (*) u untre	gth Re N/m ength Rm N A (Lo = 5d rk ISO-V k eated, as-w	nm²: l/mm²: ٥) %: ՀV J <i>velded – sl</i>	+ 20 °C: - 196 °C: hielding gas	u 440 680 35 120 Ar + 20 %	(≥ 430) (≥ 600) (≥ 30) (≥ 70) (≥ 32) % He + 0.5 %	CO2				
· · ·										

Operating Data

shielding gases: Argon + 20 - 30 % He + max. 2 % CO ₂ Argon + 20 % He + 0.5 % CO ₂	ø mm 1.0 1.2	=+	
--	---------------------------	----	--

Preheating of the base metal is not required. The interpass temperature must be limited to a maximum of +150 °C. For GMAW welding, shielding gases such as Ar + 8 % O_2 + 2.5 % CO_2 or Ar + 3 % O_2 , Ar + 8 % O_2 are especially suited.

Base Materials

1.3948 X4CrNiMnMoN19-13-8, 1.3951 X2CrNiMoN22-15, 1.3952 X2CrNiMoN18-14-3, 1.3964 X2CrNiMnMoNNb21-16-5-3, 1.4439 X2CrNiMoN17-13-5

Approvals and Certificates

WIWEB, GL (3954S), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX AM 400

GTAW rod: AM 400-IG

EN 12072:1999: G Z 20 25 5 Cu NL AWS A5.9-93: ER385 (mod.) W.Nr.: 1.4519 (mod.) BÖHLER CN 20/25 M-IG (Si)

GMAW solid wire high-alloyed, highly corrosion resistant

Description

GMAW wire for corrosion resistant 4-5 % Mo alloyed CrNi-steels like 1.4539 / 904L. Very high pitting resistant equivalent (PREN \geq 45) – pitting potential (%Cr + 3.3 x %Mo + 30 x %N). Due to the high Mo content (6.2 %) in comparison to W.-No. 1.4539 respectively UNS N08904, the high segregation rate of high Mo-alloyed CrNiweld metal can be compensated. The fully austenitic weld metal possess a marked resistance towards pitting and crevice corrosion in chloride containing media. Highly resistant against subplure, phosphorus-, acetic- and formic acid, as well as sea- and brackish water. Caused from the low C-content of the weld metal, the risk of intergranular corrosion can be avoided. The high Ni-content in comparison to standard CrNi-weld metals leads to high resistance against stress corrosion cracking.

Special applicable in sulphur- and phosphorus production, pulp and paper industry, flue gas desulphurisation plants, further on for fertilizer production, petrochemical industry, fatty-, acetic- and formic acid production, sea water sludge fittings and pickling plants which are proceeded with sea or brackish water. The GMAW wire exhibits good feeding, welding and wetting characteristics.

Typical Composition of Solid Wire

wt-%	0.02	Si 0.7	Mn 4.7	Cr 20.0	Ni 25.4	Mo 6.2	Cu 1.5	N 0.12	PRE _N ≥ 45.0
Machanical Proportion of All-wold Motal									

Mechanical Properties of All-weld Metal

(*) yield strength Re N/mm²: tensile strength Bm N/mm²:	410 650	(≥ 350)
elongation A (L ₀ = 5d ₀) %: impact work ISO-V KV J $+ 20$ °C	39 2: 100	(≥ 30) (≥ 70)
(*) u untreated, as-welded – shielding): gas Ar + 20 % H	(≥ 32) le + 0.5 % CO₂

Operating Data

1	→ I
I	1
11-	'

shielding gases: Argon + 20 - 30 % He + max. 2 % CO₂ Argon + 20 % He + 0.5 % CO₂ ø mm 0.8 1.0 1 2

Preheating and post weld heat treatment is not required by the deposit. Interpass temperature should not exceed +150 °C.

Base Materials

same-alloyed CrNi-steels with high Mo-content

1.4539 X1NiCrMoCu25-20-5, 1.4439 X2CrNiMoN17-13-5, 1.4537 X1CrNiMoCuN25-25-5 UNS N08904, S31726

Approvals and Certificates

TÜV-D (4897.), TÜV-A (476), Statoil, UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 20/25 M FOX CN 20/25 M-A GTAW rod: CN 20/25 M-IG

EN 12072:1999: G 22 9 3 NL AWS A5.9-93: ER2209 W.Nr.: 1.4462 (mod.)

BÖHLER CN 22/9 N-IG

GMAW solid wire high-alloyed, highly corrosion resistant

Description

GMAW wire particularly suitable for welding of ferritic-austenitic duplex steels. By virtue of specific alloy composition which includes an extremely low oxygen content the deposit has, in addition to high tensile strength and toughness, also excellent resistance to stress corrosion cracking and pitting (PREx>35). In order to ensure good deposit properties, care must be taken to achieve controlled dilution and thorough back purging. Ferrite content 30 - 60 FN (WRC). Suited for temperatures down to -40 °C and up to +250 °C. The wire exhibits good feeding, welding and welting characteristics of the wire. The preferred gas for MIG welding is Argon + 20 % Helium + 2 % CO2.

Typica	l Compo	sition o	of Solid	Wire				
wt-%	C 0.015	Si 0.4	Mn 1.7	Cr 22.5	Ni 8.8	Mo 3.2	N 0.15	PRE _N ≥ 35
Mecha	nical Pro	perties	of All-v	veld Me	tal			
(*) yield strer tensile str elongation impact wo (*) u untr	ngth Re N/m ength Rm N ∩ A (Lo = 5dd ork ISO-V K reated, as-w	m²: /mm²:)) %: .V J elded – sł	+ 20 °C: - 40 °C: nielding gas	u 660 830 28 85 85	(≥ 600 (≥ 720 (≥ 25 (≥ 70 (≥ 32 5 He + 2 %)))) 5))) CO₂		
Operat	ing Data							

►	shielding gases:	ø mm	
- 11	Argon + 20 - 30 % He + max. 2 % CO2	1.0	=+
→'	Argon + 20 - 30 % He + max. 1 % O2	1.2	

Preheating and post weld heat treatment is not required be the weld deposit. Interpass temperature should not exceed +150 °C.

Base Materials

same-alloyed duplex steels, as well as similar-alloyed, ferritic-austenitic steels with higher tensile strength

1.4462 X2CrNiMoN22-5-3, 1.4362 X2CrNiN23-4, 1.4462 X2CrNiMoN22-5-3 together with 1.4583 X10CrNiMoNb18-12, 1.4462 X2CrNiMoN22-5-3 together with P235GH / P265GH, S255N, P295GH, S355N, 16Mo3

UNS S31803, S32205

Approvals and Certificates

TÜV-D (4483.), TÜV-A (424), CL (0311), DNV (X), GL (4462S), Statoil, UDT, SEPROZ

SMAW stick electrode:	FOX CN 22/9 N-B	GMAW flux cored wire:	CN 22/9 N-FD
	FOX CN 22/9 N		CN 22/9 PW-FD
GTAW rod:	CN 22/9 N-IG	SAW combination:	CN 22/9 N-UP/BB 202

EN 12072:1999: AWS A5.9-93: G 25 9 4 NL ER2553(mod)

BÖHLER CN 25/9 CuT-IG

GMAW solid wire high alloyed, highly corrosion resistant

Description

GMAW wire highly suitable for welding ferritic-austenitic superduplex steels. By virtue of specific alloy composition the deposit has, in addition to high tensile strength and toughness, also excellent resistance to stress corrosion cracking and pitting corrosion. The operating temperature is -50 °C up to +250 °C. Well suited for the conditions in the offshore field.

For applications requiring low Hydrogen, we offer the product BÖHLER CN 25/9 CuT-IG-LH with Hydrogen Content guaranteed less than 3 ppm.

Typical Composition of Solid Wire										
wt-%	C 0.02	Si 0.3	Mn 0.8	Cr 25.3	Ni 9.5	Mo 3.7	N 0.22	Cu 0.6	⊤ 0.6	PRE _N ≥ 40
Mecha	nical F	Proper	ties o	f All-w	eld Me	tal				
(*) yield stre tensile st elongatic impact w	ngth R₀ N rength R₅ n A (L₀=5 ork ISO-\	I/mm²: □ N/mm²: d₀) %: / Av J	+2 -5	20 °C: 50 °C:	u ≥ 700 ≥ 850 ≥ 25 ≥ 120 ≥ 100					
(*) untro	eated, as	welded -	- shieldii	ng gas Ai	rgon + He	+ 0,5 %	5 CO2			

Operating Data

shielding gas:	ø mm	
Argon + 20-30 % He + 0.5-2 % CO2	1.0	=+
Argon + 20-30 % He + max. 1 % O ₂	1.2	•

Base Materials

25 % Cr-Superduplex steels e.g. 1.4501 X2CrNiMoCuWN 25-7-4 UNS S 32750, S 32760 ZERON 100, SAF 25/07, FALC 100

Approvals and Certificates

Stick electrode:	FOX CN 25/9 CuT
GTAW rod:	CN 25/9 CuT-IG

EN 12073:1999: T 13 4 MM 2 AWS A5.9-93: EC410NiMo(mod.)

BÖHLER CN 13/4-MC

Metal cored wire, high alloyed, stainless

Description

Metal cored wire for the fabrication and repair welding of hydro turbine components made of soft martensitic 13 % Cr 4 % Ni alloyed steels and cast steels.

BÖHLER CN 13/4-MC offers favourable spray arc or pulsarc characteristics, minimum spatter formation, flat and smooth bead profiles, excellent wetting behaviour and safe penetration. It is easy to operate in all welding opsitions.

Additionally, precise alloy adjustment ensure very good impact test results of the heat treated weld metal. The hydrogen content is extra low (maximum 4 ml/100 g acc. to AWS A 4.3-93). Significant gains in productivity can be realized by higher deposition rates and reduced post weld grinding when compared to GMAW using solid wires.

Typical Composition of All-weld Metal

	0	0:	Max	C *	N.C.	Ma
	C	51	IVITI	Cr	INI	IVIO
wt-%	≤ 0.025	0.7	0.9	12.0	4.6	0.6

Mechanical Properties of All-weld Metal

(*) yield strength R _e N/mm ² : tensile strength R _m N/mm ² : elongation A (L ₀ = 5d ₀) %:		u 800 990 12	(≥ 750) (≥ 950) (≥ 10)	a 760 900 16	(≥ 680) (≥ 800) (≥ 15)
impact work ISO-V KV J	+20 °C:	40	(≥ 10) (≥ 30)	65	(≥ 13) (≥ 50) (> 47)

(*) u untreated, as-welded – shielding gas Ar + 2.5 % CO2

a annealed, 580 °C/8 h/furnace down to 300 °C/Air – shielding gas Ar + 2,5 % CO2

Operating Data

	Shielding gas: Argon + 2.5 % CO ₂	ø mm 1.2 1.6	amps A 130 - 370 250 - 550	voltage V 16 - 38 22 - 40
*	Welding with conventional or pulsed power sources (slightly trailing torch position, angel	appr. 80	°).	=+

Recommended stick out 18 - 20 mm and length of arc 3 - 5 mm. Recommended preheating and interpass temperatures in case of heavy wall thicknesses are 100 - 160 °C. Maximum heat input 15 kJ/cm. Tempering at 580 - 620 °C.

Base Materials

1.4317 GX4CrNi13-4, 1.4313 X3CrNiMo13-4, 1.4351 X3CrNiMo 13-4, ACI Grade CA 6 NM, 1.4414 GX4CrNiMo13-4

Approvals and Certificates

SEPROZ

SMAW stick electrode:	FOX CN 13/4	GMAW solid wire:	CN 13/4-IG
	FOX CN 13/4 SUPRA	Metal cored wire:	CN 13/4-MC (F)
GTAW rod:	CN 13/4-IG	SAW combination:	CN 13/4-UP/BB 203

EN 12073:2000: T 13 4 MM 2 AWS A5.9-93: EC410NiMo(mod.)

BÖHLER CN 13/4-MC (F)

Metal cored wire, high alloyed, stainless

Description

Metal cored wire for welding of hydro turbine components made of soft martensitic 13 % Cr 4 % Ni alloyed cast steels.

BÖHLER CN 13/4-MC (F) offers favourable spray arc or pulsarc characteristics, minimum spatter formation, flat and smooth bead profiles, excellent wetting behaviour and safe penetration. It is easy to operate in all welding positions.

The hydrogen content is low (maximum 5 ml/100 g acc. to AWS A 4.3-93).

Significant gains in productivity can be realized by higher deposition rates and reduced post weld grinding when compared to GMAW using solid wires.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Mo
wt-%	≤ 0.03	0.7	0.9	12.2	4.6	0.6

Mechanical Properties of All-weld Metal

(*) yield strength Re N/mm ² : tensile strength Rm N/mm ² : elongation A (Lo = 5do) %: Impact strength ISO-V KV J	+20 °C: -20 °C:	a 700 880 16 55 45	(≥ 680) (≥ 800) (≥ 15)
	-20 0.	40	

(*) a annealed/tempered, 580 °C/8 h/furnace to 300 °C/air - shielding gas Argon + 2,5 % CO2

Operating Data

Shielding gas: Argon + 2.5 % CO ₂	ø mm 1.2 1.6	amps A 130 - 370 250 - 550	voltage 16 - 38 22 - 40	V
Welding with conventional or pulsed power so trailing torch position, angel appr. 80 °). Recor 18-20 mm and length of arc 3-5 mm. Recorm interpass temperatures in case of heavy wall Maximum heat input 15 kJ/cm. Tempering at 5 weldability of metal cored wires is similar to sc	nurces (p mmended hended thicknes 580-620 blid wire	oreferably slig ed stick out preheating al ses are 100- °C. Positiona s.	ghtly nd 160 °C. al	=+

Base Materials

1.4317 GX4CrNi13-4, 1.4313 X3CrNiMo13-4, 1.4351 X3CrNiMo 13-4, ACI Grade CA6NM, 1.4414 GX4CrNiMo13-4

Approvals and Certificates

Same Alloy Filler Metals

 SMAW stick electrode:
 FOX CN 13/4 FOX CN 13/4 SUPRA
 GMAW solid wire:
 CN 13/4-IG

 GTAW rod:
 CN 13/4-IG
 SAW combination:
 CN 13/4-UP/BB 203
 EN 12073:2000: T 19 9 L MM 1 AWS A5.9-93: EC308L **BÖHLER EAS 2-MC**

Metal cored wire, high-alloyed, chemical resistant

Description

Böhler EAS 2-MC is an austenitic CrNI-metal cored wire for GMAW applicable for same or similar alloyed, stabilized or non stabilized, corrosion resistant CrNI-steels. Suitable for service temperatures from -196 °C to +350 °C. This product achieves high productivity and is easy to operate. It provides excellent welding characteristics, smooth almost spatter free weld finish. The wider arc, in comparison to solid wire, will reduce the risk of lack of fusion and is less sensitive against misalignment of edges and different gap widths.

	С	Si	Mn	Cr	Ni
wt-%	≤ 0.03	0.6	1.4	19.8	10.2

Mechanical Properties of All-weld Metal

(*) yield strength R₀ N/mm²: tensile strength Rm N/mm²: elongation A (L₀ = 5d₀) %: impact work ISO-V KV J	+ 20 °C:	u 380 540 37 80 40	(≥ 350) (≥ 520) (≥ 35) (≥ 47) (> 32)
	- 196 °C:	40	(≥ 32)

(*) u untreated, as-welded - shielding gas Ar + 2.5 % CO2

Operating Data

Shielding gas:	ø mm	amps A	voltage V
Argon + 2.5 % CO ₂	1.2	60 - 280	13 - 30

Welding with conventional or pulsed power sources (preferably slightly leading torch position, angel appr. 80 °). Recommended stick out 15-20 mm and length of arc 3-5 mm. Positional weldability of metal cored wires is similar to solid wires (puls arc welding is recommended).

=+	
----	--

Base Materials

1.4306 X2CrNi19-11, AISI 304 L, 1.4301 X5CrNi18-10, AISI 304,1.4308 GX6CrNi18-9,

1.4311 X2CrNiN18-10, ASTM A320 Gr. B8C or D, AISI 304 LN,

1.4312 GX10CrNi18-8, ASTM A157 Gr. C9, AISI 302, 1.4541 X6CrNiTi18-10, AISI 321,

1.4546 X5CrNiNb18-10, AISI 321, 1.4550 X6CrNiNb18-10, AISI 347, 1.4552 GX5CrNiNb18-9

Approvals and Certificates

TÜV-D (09987.00)

Same Alloy Filler Metals

SMAW stick electrode: FOX EAS 2

FOX EAS 2 FOX EAS 2-A FOX EAS 2-VD FOX

GTAW-rod: GMAW solid wire: GMAW flux cored wire:

EAS 2-IG EAS 2-IG (Si) EAS 2 PW-FD EAS 2-FD EAS 2-UP/BB 202

SAW combination:

EN 12073:2000: T 19 12 3 L MM1 AWS A5.9-93: EC316L

BÖHLER EAS 4 M-MC

Metal cored wire high-alloyed, chemical resistant

Description

Böhler EAS 4 M-MC is an austenitic CrNiMo-metal cored wire for GMAW applicable for same or similar alloyed, stabilized or non stabilized, corrosion resistant CrNiMo-steels. Suitable for service temperatures from -196 °C to +400 °C. This product achieves high productivity and is easy to operate. It provides excellent welding characteristics, smooth almost spatter free weld finish. The wider arc, in comparison to solid wire, will reduce the risk of lack of fusion and is less sensitive against misalignment of edges and different gap widths.

Typical Composition of All-weld Metal								
wt-%	C ≤ 0.03	Si 0.6	Mn 1.4	Cr 18.8	Ni 12.2	Mo 2.7		
Mechanical Properties of All-weld Metal								
(*) yield strengtensile streng	gth R₀ N/mr ength R๓ N/r A (L₀ = 5d₀) rk ISO-V K\	n²: mm²: (%: / J	+20 °C: -196 °C:	u 410 560 34 75	(≥ 350) (≥ 520) (≥ 30) (≥ 47) (≥ 32)			

(*) u untreated, as-welded – shielding gas Ar + 2.5 % CO₂

Operating Data

Shielding gas:	ømm	amps A	voltage V
Argon + 2.5 % CO2	1.2	60 - 280	13 - 30

Welding with conventional or pulsed power sources (preferably slightly leading torch position, angel appr. 80 °). Recommended stick out 15-20 mm and length of arc 3-5 mm. Positional weldability of metal cored wires is similar to solid wires (puls arc welding is recommended).

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMo117-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2 UNS S31653, AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (09988.00)

•			
SMAW stick electrode:	FOX EAS 4 M FOX EAS 4 M-A	GTAW rod: GMAW flux cored wire:	EAS 4 M-IG EAS 4 M-FD
	FOX EAS 4 M-VD		EAS 4 PW-FD
	FOX EAS 4 M-TS	SAW combination:	EAS 4 M-UP/BB 202

Corrosion Resistant Filler Metals - GMAW Flux-cored Wires

EN 12073:1999: T 19 9 L R M 3 T 19 9 L R C 3 AWS A5.22-95: E308LT0-4 E308LT0-1 EN 12073:1999: T 19 9 L P M (C) 1 (for ø 0.9 mm) AWS A5.22-95: E308LT1-4/-1 (for ø 0.9 mm)

BÖHLER EAS 2-FD

GMAW flux cored wire, high-alloyed, chemical resistant

Description

Rutile strip alloyed flux cored welding wire of type T 19 9 L R / E308LT0 for GMAW of stainless steels like 1.4306 / 304L.

This product achieves high productivity and is easy to operate providing excellent operating characteristics, self releasing slag, almost no spatter formation and temper discoloration, smooth weld finish and safe penetration.

Increased travel speeds as well as little demand for cleaning and pickling provide considerable savings in time and money. Suitable for service temperatures from -196 °C to +350 °C.

BÖHLER EAS 2-FD ø 0.9 mm is well suitable for welding of sheet metal from 1.5 mm and ø 1.2 mm can be used for wall thicknesses from 3 mm upwards.

Wire ø 0.9 mm is designed for positional welding, wire ø 1.2 mm and 1.6 mm are recommended mainly for downhand and horizontal welding positions as well as in position PC/2G and slightly vertical down.

Typical Composition of All-weld Metal

wt-%	0.03	Si 0.7	Mn 1.5	Cr 19.8	Ni 10.2

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		380	(≥ 350)
tensile strength Rm N/mm ² :		560	(≥ 520)
elongation A (Lo = 5do) %:		40	(≥ 35)
impact work ISO-V KV J	+20 °C:	60	(≥ 47)
	-196 °C:	35	(≥ 32)́

(*) u untreated, as-welded - shielding gas Ar + 18 % CO2

Operating Data

0.9	tI	re-drying: possible, 150 °C/24 h shielding gases:	ø mm 0.9	amps A 100 - 160	voltage V 21 - 30
Ø	 †	Argon + 15 - 25 % CO2	1.2	125 - 280	20 - 34
Ø1.6 Ø1.2		100 % CO ² welding with standard GMAW-facilities poss position (angel appr. 80 °), when using 100 is necessary to increase the voltage by 2 V;	1.6 ible, slight % CO2 as the gas fl	200 - 350 ly trailing tor shielding ga ow should b	25 - 35 rch as it e 15 - 18 l/min

Base Materials

1.4306 X2CrNi19-11, 1.4301 X5CrNi18-10, 1.4311 X2CrNiN18-10, 1.4312 GX10CrNi18-8, 1.4541 X6CrNiITi18-10, 1.4546 X5CrNiNb18-10, 1.4550 X6CrNiNb18-10 AISI 304, 304L, 304LN, 302, 321, 347; ASTM A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (5348.), DB (43.014.14), ÜZ (43.014/2), ÖBB, TÜV-A (514), CL (1093), CWB (E308LT0-1(4)), GL (4550 (C1, M21)), UDT, SEPROZ

SMAW stick electrode:	FOX EAS 2	GMAW solid wire:	EAS 2-IG (Si)
	FOX EAS 2-A	Metal cored wire:	EAS 2-MC
GTAW rod:	FOX EAS 2-VD	GMAW flux cored wire:	EAS 2 PW-FD
	EAS 2-IG	SAW combination:	EAS 2-UP/BB 202

EN 12073:1999: AWS A5.22-95: T 19 9 L P M 1 T 19 9 L P C 1 E308LT1-4 E308LT1-1

BÖHLER EAS 2 PW-FD

GMAW flux cored wire, high-alloyed, chemical resistant

Description

Rutile strip alloyed flux cored welding wire with fast freezing slag providing excellent positional operating characteristics and fast travel speeds. It is easy to use and operates with a powerful penetrating spray arc transfer, minimum spatter formation and self releasing slag. This flux cored welding wire offers many economical and quality advantages over solid wire pulse arc welding. High deposition rates and productivity gains are easily achievable. Additional cost effective benefits are offered through use of less expensive shielding gases (Argon + 15 - 25 % CO₂ or 100 % CO₂), good wetting characteristics (less grinding), little temper discoloration & bead oxidation (less pickling expenses), easy operation and sale penetration (reduces the risk of weld defects and associated repair work costs), and smooth and clean weld finish (less post weld work). Due to its characteristics why for positional welding and service temperatures between -196 °C to - +350 °C. For downhand & horizontal welding positions (1G, 1F, 2F) our flux cored wite BOHLER EAS 2-FD should be preferred.

Typical Composition of All-weld Metal

wt-% 0.03 0.7 1.5 19.8 10.2		C Si	Mn	Cr	Ni
-----------------------------	--	------	----	----	----

Mechanical Properties of All-weld Metal

(*)		u		
yield strength R _e N/mm ² :		380	(≥	350)
tensile strength R _m N/mm ² :		560	(≥	520)
elongation A ($L_0 = 5d_0$) %:		40	(≥	35)
impact work ISO-V KV J	+20 °C:	70	(≥	47)
	-196 °C:	45	(≥	32)
(*) u untroated as wolded	chielding goo Ar .	10 0/	co	

(*) u untreated, as-welded – shielding gas Ar + 18 % CO2

Operating Data

re-drying: possible, 150 °C / 24 h shielding gases: Argon + 15 - 25 % CO ₂	ø mm 1.2 1.6	amps A 100 - 220 175 - 260	voltage V 20 - 31 21 -29	=+
--	---------------------------	---	--------------------------------	----

Welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80°), slight weaving is recommended for positional welding; when using 100 % CO₂ as shielding gas it is necessary to increase the voltage by 2 V; the gas flow should be 15 - 18 l/min

Base Materials

1.4306 X2CrNi19-11, 1.4301 X5CrNi18-10, 1.4311 X2CrNiN18-10, 1.4312 GX10CrNi18-8, 1.4541 X6CrNi1Ti18-10, 1.4546 X5CrNiNb18-10, 1.4550 X6CrNiNb18-10, AISI 304, 304L, 304LN, 302, 321, 347; ASTM A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (09117.), DB (43.014.23), ÜZ (43.014/02), ÖBB, CL (1255), CWB (E308LT1-1(4)), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX EAS 2 FOX EAS 2-A	GMAW solid wire: Metal cored wire:	
GTAW rod:	FOX EAS 2-VD EAS 2-IG	GMAW flux cored wire: SAW combination:	

EAS 2-IG (Si) EAS 2-MC EAS 2-FD EAS 2-UP/BB202

2-239

EN 12073:1999:

AWS A5.22-95:

T 19 9 Nb R M 3 T 19 9 Nb R C 3 E347T0-4 E347T0-1 BÖHLER SAS 2-FD

GMAW flux cored wire, high-alloyed, chemical resistant

Description

wt

Rutile strip alloyed flux cored welding wire of type T 19 9 Nb R / E347LT0 for GMAW of stainless steels like 1.4546 / 347.

BOHLER SAS 2-FD is designed for single and multi-pass welding mainly in the flat and horizontal position, horizontal/vertical position as well as the slightly vertical-down position (1 o'clock).

This product achieves high productivity and is easy to operate providing excellent operating characteristics, self releasing slag, almost no spatter formation and temper discoloration, smooth weld finish and safe penetration.

Increased travel speeds as well as little demand for cleaning and pickling provide considerable savings in time and money. Suitable for service temperatures from -196 °C to +400 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Nb
-%	0.03	0.7	1.4	19.0	10.4	+

Mechanical Properties of All-weld Metal

(*)		u		
yield strength R _e N/mm ² :		420	(≥ 380)	1
tensile strength R _m N/mm ² :		600	(≥ 560)	1
elongation A ($L_0 = 5d_0$) %:		35	(≥ 30)́	1
impact work ISO-V KV J	+20 °C:	75	(≥ 47)́	1
•	-120 °C:	45	(≥ 32)́	1
	-196 °C:		(≥ 32)́	1

(*) u untreated, as-welded – shielding gas Ar + 18 % CO2

Operating Data

Ø12	re-drying: possible, 150 °C / 24 h shielding gases: Argon + 15 - 25 % CO ₂	ø mm 1.2 1.6	amps A 125 - 280 200 - 350	voltage V 20 - 34 25 - 35	=+
Ø 1.6	100 % CO ₂ welding with standard GMAW-faciliti (angel appr. 80 °), when using 100 ° increase the voltage by 2 V: the gas	es possib % CO2 as	le slightly traili shielding gas uld be 15 - 18	ng torch positior it is necessary t I/min	1 O

Base Materials

1.4550 X6CrNiNb18-10, 1.4541 X6CrNiTi18-10, 1.4552 GX5CrNiNb19-11, 1.4301 X5CrNi18-10, 1.4312 GX10CrNi18-8, 1.4546 X5CrNiNb18-10, 1.4311 X2CrNiN18-10, 1.4306 X2CrNi19-11

AISI 347, 321, 302, 304, 304L, 304LN; ASTM A296 Gr. CF 8 C; A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (09740.), SEPROZ

SMAW stick electrode:	FOX SAS 2	GMAW solid wire:	SAS 2-IG (Si)
GTAW rod:	FOX SAS 2-A	GMAW flux cored wire:	SAS 2 PW-FD
	SAS 2-IG	SAW combination:	SAS 2-UP/BB 202

EN 12073:1999:

AWS A5.22-95:

T 19 9 Nb P M 1 T 19 9 Nb P C 1 E347T1-4 E347T1-1

GMAW flux cored wire, high-alloyed, chemical resistant

Description

Rutile strip alloyed flux cored welding wire with fast freezing slag providing excellent positional operating characteristics and fast travel speeds. It is easy to use and operates with a powerful penetrating spray arc transfer, minimum spatter formation and self releasing slag.

This flux cored welding wire offers many economical and quality advantages over solid wire pulse arc welding. High deposition rates and productivity gains are easily achievable. Additional cost effective benefits are offered through use of less expensive shielding gases, good wetting characteristics (less grinding). Ititle temper discoloration & bead oxidation (less pickling expenses), easy operation and safe penetration (reduces the risk of weld defects and associated repair work costs), and smooth and clean weld finish (less post weld work).

Due to its characteristics mainly for positional welding and service temperatures between -120 °C to +400 °C. For downhand and horizontal welding positions (1G, 1F, 2F) our flux cored wire BOHLER SAS 2FD should be preferred.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Nb
wt-%	0.03	0.7	1.4	19.0	10.4	+

Mechanical Properties of All-weld Metal

(*)		u		
yield strength R _e N/mm ² :		420	(≥ :	380)
tensile strength Rm N/mm ² :		600	(≥ :	560)
elongation $A(L_0 = 5d_0)$ %:		35	(≥	30)
impact work ISO-V KV J	+ 20 °C:	75	(≥	47)
	- 120 °C:	38	(≥	35)
(*) u untreated, as-welded -	shielding gas Ar +	18 %	CO₂`	,

Operating Data

re-drying: **possible, 150 °C / 24 h** shielding gases: **Argon + 15 - 25 % CO**₂ **100 % CO**₂ ø mm amps A 1.2 100 - 220

voltage V 20 - 31

welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), slight weaving is recommended for positional welding; when using 100 % CO2 as shielding gas it is necessary to increase the voltage by 2 V; the gas flow should be 15 - 18 l/min

Base Materials

1.4550 X6CrNiNb18-10, 1.4541 X6CrNiTi18-10, 1.4552 GX5CrNiNb19-11, 1.4301 X5CrNi18-10, 1.4312 GX10CrNi18-8, 1.4546 X5CrNiNb18-10, 1.4311 X2CrNiN18-10, 1.4306 X2CrNi19-11

AISI 347, 321, 302, 304, 304L, 304LN; ASTM A296 Gr. CF 8 C; A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (10059.), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX SAS 2	GMAW solid wire:	S
	FOX SAS 2-A	GMAW flux cored wire:	S
GTAW rod:	SAS 2-IG	SAW combination:	S

SAS 2-IG (Si) SAS 2-FD SAS 2-UP/BB 202 Corrosion Resistant Filler Metals - GMAW Flux-cored Wires

EN 12073:1999: T 19 12 3 L R M 3 T 19 12 3 L R C 3 AWS A5.22-95: E316LT0-4 EN 12073:1999: T 19 12 3 L P M (C) 1 (for \u00ed 0.9 mm) BÖHLER EAS 4 M-FD GMAW flux cored wire, high-alloyed, chemical resistant (for \u00ed 0.9 mm)

Description

Rutile flux cored welding wire of type T 19 12 3 L R / E316LT0 for GMAW of stainless steels like 1.4435 / 316L. This product achieves high productivity and is easy to operate providing excellent operating characteristics, self releasing stag, almost no spatter formation and temper discoloration, smooth weld finish and safe penetration. Increased travel speeds as well as little demand for cleaning and pickling provide considerable savings in time and money.

Suitable for service temperatures of -120 °C to +400 °C. Resists integranular corrosion up to +400 °C. BOHLER EAS 4 M-FD σ 0.9 mm is well suitable for welding of sheet metal from 1.5 to 3 mm (out of position > 5 mm) and σ 1.2 mm can be used for well thicknesses from 3 mm and up. Wire σ 0.9 mm is designed for positional welding, wire σ 1.2 mm and 1.6 mm are recommended mainly for downhand and horizontal welding positions, horizontal/vertical position as well as the slightly vertical-down position 1 of clock).

Туріса	I Compo	sition o	of All-we	Id Meta	l			
wt-%	0.03	Si 0.7	Mn 1.5	Cr 19.0	Ni 12.0	Mo 2.7		
Mecha	nical Pro	operties	of All-v	veld Met	tal			
*) U field strength R ₀ N/mm ² : 400 (≥ 350) ensile strength R _m N/mm ² : 560 (≥ 520) Joingation A (L ₀ = 5dd) %: 238 (≥ 30) mpact work ISO-V KV J + 20 °C: 55 (≥ 47) - 120 °C: 35 (≥ 32) *) u untreated, as-welded – shielding gas Ar + 18 % CO ₂								
Operating Data								
	re-drying: p shielding g Argon + 15 100 % CO2 welding wit position (ar is necessar	h standarc ngel appr. 1	50 °C/24 h O2 I GMAW-fa 30 °), when ase the volt	cilities poss using 100 age by 2 V	ø mm 0.9 1.2 1.6 sible, slight % CO ₂ as	amps A 100 - 160 125 - 280 200 - 350 ly trailing tor shielding ga ow should b	voltage V 21 - 30 20 - 34 25 - 35 ch as it e 15 - 18 l/min	:+

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMo117-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2 UNS S31653; AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (5349.), DB (43.014.15), ÜZ (43.014/2), ÖBB, TÜV-A (515), CL (1131), CWB (E316LT0-1(4)), LR (DX, BF, 316LS), GL (4571 (C1, M21)), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX EAS 4 M GMAW solid wire: FOX EAS 4 M-A Metal cored wire: FOX EAS 4 M-VD GMAW flux cored wire: FOX EAS 4 M-VT SAW combination: GTAW rod: EAS 4 M-IG

EAS 4 M-IG (Si) EAS 4 M-MC EAS 4 PW-FD EAS 4 M-UP/BB 202

2-242

EN 12073:1999: AWS A5.22-95: T 19 12 3 L P M 1 T 19 12 3 L P C 1 E316LT1-4 E316LT1-1

BÖHLER EAS 4 PW-FD

GMAW flux cored wire, high-alloyed, chemical resistant

Description

BOHLER EAS 4 PW-FD is a rutile flux cored welding wire with fast freezing slag providing excellent positional operating characteristics and fast travel speeds. It is easy to use and operates with a powerful penetrating spray arc transfer, minimum spatter formation and self releasing slag.

This flux cored welding wire offers many economical and quality advantages over solid wire pulse arc welding. High deposition rates and productivity gains are easily achievable. Additional cost effective benefits are offered through use of less expensive shielding gases (Argon + 15-25 % CO₂ or 100 % CO₂), good wetting characteristics (less grinding), little temper discoloration & bead oxidation (less pickling expenses), easy operation and safe penetration (reduces the risk of weld defects and associated repair work costs), and smooth and clean weld finish (less post weld work). Due to its characteristics mainly for positional welding and service temperatures between -120 °C to -400 °C. Resists intergranular corrosion up to +400 °C. For downhand & horizontal welding positions (16, 17, E7) our flux cored wire BOHLER EAS 4 M-FD should be preferred.

Typical Composition of All-weld Metal

wt-%	С 0.03	Si 0.7	Mn 1.5	Cr 19.0	Ni 12.0	Mo 2.7	
		-			-		

Mechanical Properties of All-weld Metal

(*)		u		
vield strength R _e N/mm ² :		400	(≥ 3	350)
tensile strength Rm N/mm2:		560	(≥ :	520)
elongation $A(L_0 = 5d_0)$ %:		38	(≥	30)
impact work ISO-V KV J	+ 20 °C:	65	(≥	47)
	- 120 °C:	45	(≥	32)
(*) u untropted op wolded	chickding goo Ar .	10 0/	\sim	

(*) u untreated, as-welded – shielding gas Ar + 18 % CO2

Operating Data

re-drying: possible, 150 °C / 24 h shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 1.2 1.6	amps A 100 - 220 175 - 260	voltage V 20 - 31 21 - 29	=+
---	--------------------	---	---------------------------------	----

welding with standard GMAW-facilities possible, slightly trailing torch position (ange lappr. 80 °), slight weaving is recommended for positional welding; when using 100 % CO2 as shielding gas it is necessary to increase the voltage by 2 V; the gas flow should be 15 - 18 l/min

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMoT17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2 UNS S31653; AISI 316L, 316T, 316Cb

Approvals and Certificates

TÜV-D (09118.), DB (43.014.24), ÜZ (43.014/02), ÖBB, CL (1461), LR (DXVu.O, BF, 316LS), CWB (E316LT1-1(4)), UDT, SEPROZ

SMAW stick electrode: GTAW rod:	FOX EAS 4 M FOX EAS 4 M-A FOX EAS 4 M-VD FOX EAS 4 M-TS EAS 4 M-IG	GMAW solid wire: Metal cored wire: GMAW flux cored wire: SAW combination:	EAS 4 M-IG (Si) EAS 4 M-MC EAS 4 M-FD EAS 4 M-UP/BB 202
------------------------------------	--	--	--

EN 12073:1999:

T 19 12 3 Nb R M 3 T 19 12 3 Nb R C 3 BÖHLER SAS 4-FD GMAW flux cored wire.

high-alloyed, chemical resistant

Description

Rutile, strip alloyed, flux cored welding wire for GMAW of austenitic CrNiMo (Ti/Cb) alloyed steels preferably used in the horizontal and downhand position as well as the slightly vertical down position (1 o'clock). This product provides high productivity and is easy to operate achieving excellent welding characteristics, self releasing slag, almost no spatter formation and temper discoloration, smooth weld finish and safe penetration. Increased travel speeds as well as little demand for cieaning and pickling provide considerable savings in time and money. Suitable for service temperatures down to -120 °C. Resists to intergranular corrosion up to +400 °C. For positional welding (PF, PG, PE) our flux cored wire BÖHLER SAS 4 PW-FD should be preferred.

Typical Composition of All-weld Metal

wt-%	C 0.03	Si 0.6	Mn 1.3	Cr 18.8	Ni 12.2	Mo 2.6	Nb +

Mechanical Properties of All-weld Metal

(*)		u			
yield strength R _e N/mm ² :		430	(≥	390)	
tensile strength Rm N/mm ² :		570	(≥	550)	
elongation $A(L_0 = 5d_0)$ %:		35	(≥	30)	
impact work ISO-V KV J	+ 20 °C:	65	(≥	47)	
	- 120 °C:	35	(≥	32)	
(*) u untreated as-welded -	shielding gas Ar +	18 % CO	ר _¢ `		

Operating Data

Ø1:2	re-drying: possible, 150 °C / 24 h shielding gases: Argon + 15 - 25 % CO ₂	ø mm 1.2 1.6	amps A 125 - 280 200 - 350	voltage V 20 - 34 25 - 35	=+	
Ø 1.6	100 % CO ₂ Welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), when using 100 % CO ₂ as shielding gas it is necessary to increase the voltage by 2 V: the gas flow should be 15 - 18 //min					

Base Materials

1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4437 GX6CrNiMo18-12, 1.4409 GX2CrNiMo 19-11-2, 1.4581 GX5CrNiMoNb 19-11-2, UNS S31653, AISI 316, 316L, 316Ti, 316Cb

Approvals and Certificates

SMAW stick electrode:	FOX SAS 4	GMAW solid wire:	SAS 4 -IG (Si)
	FOX SAS 4 -A	GMAW flux cored wire:	SAS 4 PW-FD
GTAW rod:	SAS 4 -IG	SAW combination:	SAS 4 -UP/BB 202

EN 12073:1999:

T 19 12 3 Nb P M 1 T 19 12 3 Nb P C 1 BÖHLER SAS 4 PW-FD

GMAW flux cored wire, high-alloyed, chemical resistant

Description

Rutile, strip alloyed, flux cored welding wire with fast freezing slag providing excellent positional welding characteristics and fast travel speeds. It is easy to use and operates with a powerful penetrating spray arc transfer, minimum spatter formation and self releasing slag.

BÖHLER SAS 4 PW-FD offers many economical and 'quality' advantages over solid wire pulse arc welding. High deposition rates and productivity gains are easily achievable. Additional cost effective benefits are offered through use of less expensive shielding gases, good wetting characteristics (less grinding), little temper discoloration and bead oxidation (less pickling expenses), easy operation and safe penetration (reduces the risk of weld defects and associated repair work costs), and smooth and clean weld finish (less post weld work). Due to its characteristics mainly for positional welding and service temperatures between -120 °C to +400 °C. For downhand and horizontal welding positions (PA, PB, PC) our flux cored wire SAS 4-FD should be preferred.

Typical Composition of All-weld Metal

Mocha	nical Pr	onortio		wold Me	atal			
wt-%	С 0.03	Si 0.6	Mn 1.3	Cr 18.8	Ni 12.2	Mo 2.6	Nb +	

Mechanical Properties of All-weld Metal

(*)		u			
yield strength R _e N/mm ² :		430	(≥	390)	i
tensile strength R _m N/mm ² :		570	(≥	550)	i.
elongation A ($L_0 = 5d_0$) %:		35	(≥	30)	i
impact work ISO-V KV J	+ 20 °C:	65	(≥	47)	i
	- 120 °C:	40	(≥	32)	i.
(*) u untroated as wolded	chiolding and	r, 18 % CC	<u>،</u>		

(*) u untreated, as-welded – shielding gas Ar + 18 % CO

Operating Data

T I	
' ⊸ '	

re-drying: ømm amps A voltage V possible, 150 °C / 24 h 1.2 100 - 220 20 - 31 shielding gases: Argon + 15 - 25 % CO₂ 100 % CO₂

Welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), slight weaving is recommended for positional welding; when using 100 % CO2 as shielding gas it is necessary to increase the voltage by 2 V; the gas flow should be 15 - 18 l/min

Base Materials

1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4495 X2CrNiMo18-14-3, 1.4495 X3CrNiMo17-13-3, 1.4497 GX6CrNiMo18-12, 1.4409 GX2CrNiMo 19-11-2, 1.4581 GX5CrNiMoNb 19-11-2, UNS S31653, AISI 316, 316L, 316Ti, 316Cb

Approvals and Certificates

Same Alloy Filler Metals

SMAW stick electrode:	FOX SAS 4 FOX SAS 4 -A	GMAW solid wire: GMAW flux cored wire:
GTAW rod:	SAS 4 -IG	SAW combination:

SAS 4 -IG (Si) SAS 4-FD SAS 4 -UP/BB 202 EN 12073:1999: TZ 19 13 4 L R M 3 T7 19 13 4 | B C 3 AWS A5.22-95: E317LT0-4 E317LT0-1

BÖHLER E 317 L-FD

GMAW flux cored wire, high-alloved. chemical resistant

Description

This product achieves high productivity and is easy to operate providing excellent welding characteristics, self releasing slag, almost no spatter formation and temper discoloration, smooth weld finish and safe penetration. Increased travel speeds as well as little demand for cleaning and pickling provide considerably savings in time and money. It is designed for welding of corrosion resistant CrNiMo-steels in the flat and horizontal position, horizontal/vertical position as well as the slightly vertical-down position (1 o'clock). It satisfies the high demands of offshore fabricators, shipyards building chemical tankers as well as the chemical / petrochemical, pulp and paper industries. Suitable for service temperatures from -60 to +300 °C. The weld metal exhibits resistance against pitting corrosion and intergranular corrosion resistance (ASTM A 262 / Practise E) up to +300 °C. For corrosion resistant single claddings the wire should be used under mixture das (Argon + 15 - 25 % CO2)

Typica	al Compo	sition o	of All-we	eld Meta	al		
wt-%	C ≤ 0.035	Si 0.7	Mn 1.3	Cr 18.5	Ni 13.3	Mo 3.4	FN 3-8
Mechanical Properties of All-weld Metal							

(*) yield strength Re N/mm ² : tensile strength Rm N/mm ² :		u 420 570	(:	≥ 3 ≥ 5	350) 550)	
elongation A (Lo = 5do) %:		32	(a	≥ `	25)	
impact work ISO-V KV J	+ 20 °C:	50	(1	≥	47)	
	- 60 °C:	45	(1	≥	32)	
(*) u untropted as wolded	obiolding goo	Argon	10 0/ 0	n	~ `	

*) u untreated, as-weided – snielding gas Argon + 18 % UO2

Operating Data

re-drying: possible, 150 °C/24 h shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 1.2	amps A 125 - 280	voltage V 20 - 34	=+	
--	--------------------	----------------------------	----------------------	----	--

Welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), when using 100 % CO2 as shielding gas it is necessary to increase the voltage by 2 V. The gas flow should be 15 - 18 l/min

Base Materials

CrNiMo-steels with higher Mo-content like grade AISI 317L or corrosion resistant claddings on mild steels

1.4435 X2CrNiMo18-14-3. 1.4429 X2CrNiMoN17-13-3. 1.4438 X 2 CrNiMo 18-15-4

AISI 316L, 316 LN, 317LN, 317L

Approvals and Certificates

UDT

Same Alloy/Similar Alloy Filler Metals

-
FOX E 317 L
FOX ASN 5
FOX ASN 5-A
ASN 5-IG

GMAW solid wire: GMAW flux cored wire: E 317 L PW-FD SAW combination:

ASN 5-IG (Si) ASN 5-SY5UP/BB 203 EN 12073:1999: TZ 19 13 4 L P M 1 TZ 19 13 4 L P C 1 AWS A5.22-95: E317LT1-4 E317LT1-1

BÖHLER E 317 L PW-FD

GMAW flux cored wire, high-alloyed, chemical resistant

Description

E 317L PW-FD is a rutile flux cored welding wire with fast freezing slag providing excellent positional operating characteristics and fast travel speeds. It is easy to use and operates with a powerful penetrating spray arc transfer, minimum spatter formation and self releasing slag. It is designed for welding of corrosion resistant CrNiMo-steels and satisfies the high demands of offshore fabricators, shipyards building chemical tankers as well as the chemical/petrochemical, pulp and paper industries.

Suitable for service temperatures from -60 °C to +300 °C.

The weld metal exhibits resistance against pitting corrosion and intergranular corrosion resistance (ASTM A 262 / Practise E) up to 300 °C. For corrosion resistant single claddings the wire should be used under mixture gas (Argon + 15-25% CO₂)

Typical Composition of All-weld Metal

wt-%	C ≤ 0.035	Si 0.7	Mn 1.3	Cr 18.5	Ni 13.3	Mo 3.4	FN 5-10

Mechanical Properties of All-weld Metal

(*)		u			
yield strength Re N/mm ² :		380	(≥	2 350)
tensile strength Rm N/mm ² :		560	(≥	2 550	j)
elongation $A(L_0 = 5d_0)$ %:		39	(≥	25	j)
impact work ISO-V KV J	+ 20 °C:	58	(≥	2 47)
	- 60 °C:	50	(≥	: 32)
(*) u untropted op wolded	obiolding goo	Argon	10 0/ 0	0	

(*) u untreated, as-welded – shielding gas Argon + 18 % CO2

Operating Data

t <u></u> ↓	re-drying: possible , 150 °C/24 h shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 1.2	amps A 100 - 220	voltage V 20 - 31	=+	

Preheating and post weld heat treatment is not required by the weld deposit. The interpass temperature should be kept below 150 °C. Welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80°), when using 100 % CO₂ as shielding gas it is necessary to increase the voltage by 2 V. The gas flow should be 15-18 l/min.

Base Materials

CrNiMo-steels with increased Mo-content, or corrosion resistant claddings on mild steels.

1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4429 X2CrNiMoN17-11-2,

AISI 316L, 316 LN, 317 L, 317LN

Approvals and Certificates

BV (317 L), LR (DXVuO, BF, 317L)

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX E 317 L	GMAW solid wire:	ASN 5-IG (Si)
	FOX ASN 5	GMAW flux cored wire:	E 317 L-FD
	FOX ASN 5-A	SAW combination:	ASN 5SY-UP/BB 203
GTAW rod:	ASN 5-IG		

EN 12073:1999: T 22 9 3 NL R M 3 T 22 9 3 NL R C 3 AWS A5.22-95: E2209T0-4

E2209T0-1

BÖHLER CN 22/9 N-FD

GMAW flux cored wire, high-alloyed, highly corrosion resistant

Description

BÖHLER CN 22/9 N-FD is a rutile DUPLEX-steel flux-cored wire for GMAW of 1.4482 / S31803 steel grades. Besides its high productivity and all the other general benefits of flux cored wire welding it offers good wetting characteristics, easy slag release, very little temper discoloration & bead oxidation, smooth and clean weld finish. These specific advantages help to save additional costs especially when GMAW the Duplex steels.

The structure of the all-weld metal is austenitic-ferritic (FN 35-50). The pitting corrosion resistance factor PREN is higher than 35. The weld deposit is corrosion resistant acc. to ASTM A262-93a, practice E, C, B and ASTM G48/method A (24h) up to 22 °C (as welded, pickled), 30 °C (solution treated, pickled). The broad field of welding parameters for BOHLER CN 22/9 N-FD permits universal application in a very wide range of wall thicknesses using the spray-arc transfer together with fast travel speeds which help to control the maximum heat inputs easily.

BÖHLER CN 22/9 N-FD provides outstanding welding results in the flat and horizontal position, horizontal/vertical position as well as the slightly vertical-down position (1 o'clock). Service temperatures between -40 °C and +250 °C are usable.

Typical Composition of All-weld Metal

	C	Si	Mn	Cr	Ni	Мо	N	PREN	FN
wt-%	0.03	0.8	0.9	22.7	9.0	3.2	0.13	≥ 35	30-50

Mechanical Properties of All-weld Metal

(*)		u	
vield strength Re N/mm ² :		600	(≥ 450)
tensile strength Rm N/mm ² :		800	(≥ 690)
elongation A (Lo = 5do) %:		27	(≥ 20)
impact work ISO-V KV J	+ 20 °C:	60	(≥ 47)
•	- 40 °C:	45	(≥ 32)́

(*) u untreated, as-welded – shielding gas Ar + 18 % CO2

Operating Data

►
1
·

re-drying: **possible**, 150 °C/24 h shielding gases: Argon + 15 - 25 % CO₂ 100 % CO₂

ø mm amps A voltage V 1.2 125 - 280 22 - 36

— 1
$-\tau$

Welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80°), when using 100 % CO₂ as shielding gas it is necessary to increase the voltage by 2 V; the gas flow should be 15-18 l/min.

Base Materials

same and similar alloyed duplex steels, as well as dissimilar joints or weld claddings 1.4462 X2CrNiMoN22-5-3, 1.4362 X2CrNiN23-4, 1.4462 X2CrNiMoN22-5-3 with 1.4583 X10CrNiMoNb18-12, 1.4462 X2CrNiMoN22-5-3 with P235GH / P265GH, S255N, P295GH, S460N, 16Mo3 UNS S31803, S32205

Approvals and Certificates

TÜV-D (7133.), ABS (E 2209 T0-4), CL (1113), CWB (E2209T0-4), DNV (Duplex (M21)), GL (4462S (M21,C1)), LR (X (M21)), RINA (2209S), UDT, SEPROZ

SMAW stick electrode:	FOX CN 22/9 N-B	GMAW solid wire:	CN 22/9 N-IG
	FOX CN 22/9 N	GMAW flux cored wire:	CN 22/9 PW-FD
GTAW rod:	CN 22/9 N-IG	SAW combination:	CN 22/9 N-UP/BB 202

EN 12073:1999: T 22 9 3 NL P M 1 T 22 9 3 NL P C 1 AWS A5.22-95: E2209T1-4 E2209T1-1

BÖHLER CN 22/9 PW-FD

GMAW flux cored wire, high-alloyed, highly corrosion resistant

Description

BOHLER CN 22/9 PW-FD is a rutile Duplex steel all-positional flux cored wire for GMAW the steel grades 1.4462 / S31803. It is suited for joint welding of similar alloyed austentic-ferritic duplex steels as well as for dissimilar joints and weld cladding. The weld metal is resistant against intergranular corrosion (wet corrosion up to +250 °C). It features a good resistance against pitting (CPT ASTM G48/method A (24 h) up to 25 °C) and stress corrosion cracking in chloride-containing fluids i.e. sea water.

BÖHLER CN 22/9 PW-FD is an ideal completion of our high class range of Duplex Filler Metals. It is designed to satisfy the high demands of offshore fabricators, shipyards building chemical tankers as well as the chemical/petrochemical, pulp and paper industries. Service temperatures between -40 °C and +250 °C are usable. Good wetting characteristics (less grinding), easy slag release, very little temper discoloration & bead oxidation (less pickling expenses), and smooth and clean weld finish help to save additional costs especially when multi-pass welding Duplex stainless steels.

Typical Composition of All-weld Metal

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FN 30-50

Mechanical Properties of All-weld Metal

(*) yield strength Re N/mm²: tensile strength Rm N/mm²: elongation A (Lo = 5do) %: impact work ISO-V KV I	+ 20 °C∙	600 800 27 80	(≥ 480) (≥ 690) (≥ 25)
Impact work 130-V RV J	- 20 °C	65	(2 47)
	- 40 °Č:	55	
	- 46 °C:	45	(≥ 32)
(*) u untreated, as-welded -	 shielding gas . 	Ar + 18 %	CO2

Operating Data

	•				
ţ_,	re-drying: possible, 150 °C/24 h shielding gases: Argon + 15 - 25 % CO ₂ 100 % CO ₂	ø mm 1.2	amps A 100 - 220	voltage V 20 - 31	=+

welding with standard GMAW-facilities possible slightly trailing torch position (angel appr. 80°), slight weaving is recommended for all welding positions; when using 100 % CO2 as shielding gas it is necessary to increase the voltage by 2 V; the gas flow should be 15 - 18 l/min

Base Materials

same and similar alloyed duplex steels, as well as dissimilar joints or weld claddings 1.4462 X2CrNiMoN22-5-3, 1.4362 X2CrNiN23-4, 1.4462 X2CrNiMoN22-5-3 with 1.4583 X10CrNiMoNb18-12, 1.462 X2CrNiMoN22-5-3 with P235GH / P265GH, S255N, P295GH, S460N, 16Mo3, UNS S31803, S32205

Approvals and Certificates

TÜV-D (7666.), ABS (E 22 09 T1-4(1)), CL (1268), CWB (E2209T1-1(4)), DNV (X(M21;C1)), GL (4462S (M21)), LR (X(M21,C1)), RINA (2209 S), UDT

SMAW stick electrode:	FOX CN 22/9 N-B	GMAW solid wire:	CN 22/9 N-IG
GTAW rod:	CN 22/9 N-IG	SAW combination:	CN 22/9 N-UP/BB 202

SAW solid wire: EN 12072-1999-AWS A5 9-93 sub-arc flux: EN 760.1996 SA FB 2 DC

S 13 4 ER410NiMo(mod.)

BÖHLER CN 13/4-UP // BB 203

SAW wire/flux-combination. high-alloved, stainless

Description

Sub-arc wire/flux combination for welding similar soft-martensitic steels like 1.4313 / CA 6 NM. BÖHLER CN 13/4-UP // BB 203 vields a weld deposit featuring very good ductility and CVN toughness as well as high crack resistance.

BÖHLER BB 203 is a fluoride-basic, applomerated flux providing good operating characteristics, smooth beads and a low hydrogen weld metal ($HD \leq 5 \text{ ml}/100 \text{ g}$). For information regarding this sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni	Мо
SAW solid wire %	≤ 0.020	0.7	0.6	12.2	4.8	0.5
all-weld metal %	0.025	0.6	0.6	12.1	4.7	0.5

Mechanical Properties of All-weld Metal

(*)		а
yield strength Re N/mm ² :		≥ 600
tensile strength Rm N/mm ² :		≥ 800
elongation A (Lo = 5do) %:		≥ 15
impact work ISO-V KV J	+ 20 °C:	≥ 50
(*) a annealed 600 °C/2 h		

Operating Data

re-drving of sub-arc flux: 300 - 350 °C, 2 h – 10 h max. amperage: 800 A

ø mm 3.0

Preheat and interpass temperatures in case of thick-walled sections +100 - 160 °C. Maximum heat input 15 kJ/cm. Tempering at +580 - 620 °C.

Base Materials

1.4317 GX4CrNi13-4, 1.4313 X3CrNiMo13-4, 1.4351 X3CrNi13-4, 1.4414 GX4CrNiMo13-4 ACI Gr. CA 6 NM

Approvals and Certificates

UDT. SEPROZ SAW solid wire: SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 13/4 GTAW rod:

FOX CN 13/4 SUPRA CN 13/4-IG

GMAW solid wire: Metal cored wire:

CN 13/4-IG CN 13/4-MC CN 13/4-MC (F) SAW solid wire: EN 12072:1999 S 17 Mo H W.No.: 1.4115

BÖHLER SKWAM-UP // BB 203

Sub-arc flux: EN 760: SA FB 2 DC

SAW wire/flux-combination high-alloyed, stainless

Description

SAW wire/flux combination of type 17 % Cr 1 % Mo for surfacing on sealing faces of gas, water and steam valves and fittings made from unalloyed or low-alloy steels, for service temperatures up to +450 °C. Excellent anti-friction properties. The weld deposit is still machinable. Scaling resistant up to +900 °C. BÖHLER BB 203 produces well contoured and smooth welding beads. It offers an especially low flux consumption. Beside a good slag detachability the flux features good fillet weld capabilities. For information regarding this sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

SAW wire wt-%	C	Si	Mn	Cr	Mo
	0.16	0.6	0.7	17.0	1.1
all-weld metal %	0.15	0.6	0.7	16.5	1.1

Mechanical Properties of All-weld Metal

(*) Brinell-hardness HB:

320-420

(*) u untreated, as-welded

Operating Data

-

re-drying of sub-arc flux: 300-350 °C / 2-10 h max. amperage of sub-arc flux: 800 A

ø mm 3.2

=±

Base Materials

surfacings: all weldable backing materials, unalloyed, low-alloyed and stainless steel.

Approvals and Certificates

TÜV-D (90949.50 for service temperatures up to +350 °C)

SMAW stick electrode:	FOX SKWAM
GMAW solid wire:	SKWAM-IG

SAW solid wire: EN 12072:1999: S 19 9 L AWS A5.9-93: ER308L sub-arc flux:

EN 760:1996: SA FB 2 DC

SAW wire/flux-combination, high-alloyed, chemical resistant

EAS 2-UP // BB 202

BÖHLER

Description

SAW-wire/flux combination for multi-pass welding of stainless steel grades like 1.4306 / 304L. Smooth beads, easy slag removal without any slag residues and good welding characteristics even for fillet welds are very much appreciated by users.

Suited for service temperatures from -196 °C to +350 °C.

BÖHLER BB 202 is a fluoride-basic agglomerated flux providing a low flux consumption and a low hydrogen weld metal. For information regarding this sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni
SAW solid wire %	0.02	0.45	1.7	20.1	10.8
all-weld metal %	0.02	0.60	1.3	19.8	10.8

Mechanical Properties of All-weld Metal

(*) yield strength R ₀ N/mm ² : tensile strength R _m N/mm ² : elongation A (L ₀ = 5d ₀) %: impact work ISO-V KV J	+ 20 °C: - 50 °C: - 100 °C:	∟23 ≥3 ≥2 ≥2 ≥2	1 50 50 35 80 60 50
	- 196 °C:	≥	35

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: 300 – 350 °C, 2 h – 10 h max. amperage: 800 A	ø mm 3.0	=±
--	--------------------	----

Base Materials

1.4306 X2CrNi19-11, 1.4301 X5CrNi18-10, 1.4311 X2CrNiN18-10, 1.4312 GX10CrNi18-8, 1.4541 X6CrNiTi18-10, 1.4546 X5CrNiNb18-10, 1.4550 X6CrNiNb18-10

AISI 304, 304L, 304LN, 302, 321, 347; ASTM A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (7509.), UDT, TÜV-D (9170. together with BB 203), SAW solid wire: TÜV-D (2604.), KTA 1408 1 (942025.01), DB (52014.11), ÜZ (52014/2), TÜV-A (392), SEPROZ

SMAW stick electrode:	FOX EAS 2	GMAW solid wire:	EAS 2-IG (Si)
	FOX EAS 2-A	Metal cored wire:	EAS 2-MC
GTAW rod:	FOX EAS 2-VD EAS 2-IG	GMAW flux cored wire:	EAS 2-FD EAS 2 PW-FD

SAW solid wire: EN 12072:1999: S 19 9 Nb AWS A5.9-93: ER347 sub-arc flux: EN 760:1996: SA FB 2 DC BÖHLER SAS 2-UP // BB 202

> SAW wire/flux-combination, high-alloyed, chemical resistant

Description

SAW wire/flux-combination for multi-pass welding of stainless steel grades like 1.4541 / 347. Smooth beads, easy slag removal without any slag residues and good welding characteristics even for fillet welds are very much appreciated by users.

Suited for service temperatures from -196 °C to -4400 °C. BÖHLER BB 202 is a fluoride-basic agglomerated flux providing a low flux consumption and a low hydrogen weld metal. For information regarding this sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni	Nb
SAW solid wire %	≤ 0.050	0.50	1.7	19.5	9.5	0.60
all-weld metal %	≤ 0.045	0.65	1.3	19.3	9.5	0.50

Mechanical Properties of All-weld Metal

(*)		u
yield strength Re N/mm ² :		≥ 420
tensile strength Rm N/mm ² :		≥ 600
elongation A (Lo = 5do) %:		≥ 30
impact work ISO-V KV J	+ 20 °C:	≥ 90
	- 50 °C:	≥ 70
	- 100 °C:	≥ 50
	- 196 °C:	≥ 35

(*) u untreated, as-welded

Operating Data

•	re-drying of sub-arc flux: 300 – 350 °C, 2 h – 10 h max. amperage: 800 A	ø mm 3.0	=±
---	--	--------------------	----

Base Materials

-

1.4550 X6CrNiNb18-10, 1.4541 X6CrNiTi18-10, 1.4552 GX5CrNiNb19-11,

1.4301 X5CrNi18-10,

1.4312 GX10CrNi18-8, 1.4546 X5CrNiNb18-10, 1.4311 X2CrNiN18-10, 1.4306 X2CrNi19-11

AISI 347, 321, 302, 304, 304L, 304LN; ASTM A296 Gr. CF 8 C; A157 Gr. C9; A320 Gr. B8C or D

Approvals and Certificates

TÜV-D (7510,), TÜV-A (428), UDT, TÜV-D (9172, together with BB 203), SAW solid wire: TÜV-D (2604.), KTA 1408 1 (942025.01), DB (52.014.02), ÜZ (52.014/2), ÖBB, TÜV-A (392), SEPROZ

SMAW stick electrode:	FOX SAS 2	GMAW solid wire:	SAS 2-IG (Si)
GTAW rod:	FOX SAS 2-A SAS 2-IG	GMAW flux cored wire:	SAS 2-FD SAS 2 PW-FD
GIAW IOU.	343 2-10		3A3 2 F W-I

SAW solid wire: EN 12072:1999: S 19 12 3 L AWS A5.9-93: ER316L sub-arc flux:

EN 760:1996: SA FB 2 DC

SAW wire/flux-combination, high-alloyed, chemical resistant

EAS 4 M-UP // BB 202

BÖHLER

Description

SAW wire/flux-combination for multi-pass welding of stainless steel grades like 1.4435 / 316L. Smooth beads, easy slag removal without any slag residues and good welding characteristics even for fillet welds are very much appreciated by users.

Suited for service temperatures from -120 °C to +400 °C.

BÖHLER BB 202 is a fluoride-basic agglomerated flux providing a low flux consumption and a low hydrogen weld metal. For information regarding this sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni	Мо
SAW solid wire %	0.02	0.45	1.7	18.5	12.2	2.8
all-weld metal %	0.02	0.60	1.3	18.3	12.2	2.7

Mechanical Properties of All-weld Metal

(*)			u
yield strength Re N/mm ² :		≥ 3	350
tensile strength Rm N/mm2:		≥ 5	560
elongation $A(L_0 = 5d_0)$ %:		≥	35
impact work ISO-V KV J	+ 20 °C:	≥	80
	- 50 °C:	≥	60
	- 100 °C:	≥	50
(*) u untroated as wolded	-120 °C:	≥	32

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: 300 – 350 °C, 2 h – 10 h max. amperage: 800 A	ø mm 3.0	=±
--	-------------	----

Base Materials

1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4571 X6CrNiMoT17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12, 1.4409 GX2CrNiMo 19-11-2

UNS S31653; AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (7508.), UDT, TÜV-D (9175 together with BB 203), SAW solid wire: TÜV-D (2604.), KTA 1408 1 (942025.01), DB (52.014.13), ÜZ (52.014/2), ÖBB, TÜV-A (392), SEPROZ

SMAW stick electrode:	FOX EAS 4 M FOX EAS 4 M-A FOX EAS 4 M-VD FOX EAS 4 M-VD	GMAW solid wire: Welding cored wire: GMAW flux cored wire:	EAS 4 M-IG (Si) EAS 4 M-MC EAS 4 M-FD EAS 4 PW-FD
GTAW rod:	EAS 4 M-IG		

SAW solid wire:	
EN 12072:1999:	S 19 12 3 Nb
AWS A5.9-93:	ER318
sub-arc flux:	
EN 760:1996:	SA FB 2 DC
EN 760:1996:	SA FB 2 DC

BÖHLER SAS 4-UP // BB 202

SAW wire/flux-combination, high-alloyed, chemical resistant

Description

SAW wire/flux-combination for multi-pass welding of stainless steel grades like 1.4571 / 3161T. Smooth beads, easy slag removal without any slag residues and good welding characteristics even for fillet welds are very much appreciated by users.

Suited for service temperatures from 120 °C to 400 °C. BOHLER BB 202 is a fluoride-basic agglomerated flux providing a low flux consumption and a low hydrogen weld metal. For information recarding the sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni	Мо	Nb
SAW solid wire %	0.030	0.50	1.7	19.6	11.4	2.7	0.55
all-weld metal %	0.025	0.65	1.3	18.8	11.4	2.7	0.45

Mechanical Properties of All-weld Metal

(*)		u
yield strength Re N/mm ² :		≥ 430
tensile strength Rm N/mm2:		≥ 600
elongation A (Lo = 5do) %:		≥ 30
impact work ISO-V KV J	+ 20 °C:	≥ 80
	- 50 °C:	≥ 70
	- 120 °C:	≥ 32

(*) u untreated, as-welded

Operating Data

-	
\rightarrow	

re-drying of sub-arc flux: 300 - 350 °C, 2 h - 10 h max. amperage: 800 A ø mm 3.0

Base Materials

1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4401 X5CrNiMo17-12-2, 1.4581 GX5CrNiMoNb19-11-2, 1.4437 GX6CrNiMo18-12, 1.4583 X10CrNiMoNb18-12, 1.4436 X3CrNiMo17-13-3

AISI 316L, 316Ti, 316Cb

Approvals and Certificates

TÜV-D (7511.), TÜV-A (429), UDT, TÜV-D (9171. with BB 203), SAW solid wire: TÜV-D (2604.), KTA 1408 1 (942025.01), DB (52.014.12), ÜZ (52.014/2), ÖBB, TÜV-A (392), SEPROZ

SMAW stick electrode:	FOX SAS 4	GMAW solid wire:	SAS 4-IG (Si)
GTAW rod:	SAS 4-IG	CIVIAW IIUX COIEU WIE.	SAS 4 PW-FD
SAW solid wire: AWS A5.9-93: ER317L

BÖHLER ASN 5 SY-UP // BB 202

Sub-arc flux: EN 760: SA FB 2 DC

SAW wire/flux-combination high-alloyed, highly corrosion resistant

Description

Sub-arc wire/flux combination for CrNiMo steels. It satisfies the high demands of offshore fabricators, shipyards building chemical tankers as well as the chemical/petrochemical, pulp and paper industries. Suitable for service temperatures from -60 °C to +300 °C. The weld metal exhibits resistance against pitting corrosion and intergranular corrosion resistance (ASTM A 262 / Practice E) up to 300 °C. BÖHLER BB 203 SY is a fluoride-basic agglomerated flux providing a low flux consumption. Preheating and post weld heat treatment is not required by the weld deposit. The interpass temperature should be kept below 150 °C.

Typical	Composition	of Solid	Wire and	All-weld	Metal
---------	-------------	----------	----------	----------	-------

	С	Si	Mn	Cr	Ni	Мо	FN
SAW wire wt-%	≤0.03	0.50	1.6	19.0	13.5	3.6	
all-weld metal %	<0.03	0.60	1.2	18.5	13.4	3.5	4-12

Mechanical Properties of All-weld Metal

		u	
vield strength R _e N/mm ² :		410	(≥ 350)
tensile strength R _m N/mm ² :		590	(≥ 550)
elongation A (L=5d) %:		29	(≥ 25) ́
impact work ISO-V KV J	+20 °C:	58	(≥ 47)
•	-60 °C:	50	(≥ 32)́

u untreated, as welded

Operating Data

re-drying of sub-arc flux: 300-350 °C / min. 2, max. 10 h max. amperage of sub-arc flux: 800 A	ø mm 3.0 4.0	=±
---	--------------------	----

Base Materials

CrNiMo-steels with increased Mo-content like grade, resp. for corrosion resistant claddings on mild steels 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-13-3, 1.4429 X2CrNiMoN17-11-2. AISI 316L 316 LN. 317 L. 317LN

Approvals and Certificates

BV (317 L), LR (D, BF 317L)

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX E 317 L
GMAW flux cored wire:	E 317 L PW-FD
	E317 L-FD

SAW solid wire: EN 12072:1999: S 18 16 5 NL AWS A5.9-93: ER317LN (mod.) sub-arc flux: EN 760:1996: SA FB 2 DC

ASN 5-UP // BB 203 SAW wire/flux-combination.

BÖHLER

SAW wire/flux-combination, high-alloyed, highly corrosion resistant

Description

Sub-arc wire/flux combination for CrNiMo steels containing 3-4 % Mo e.g. 1.4438 / 317L. The weld metal shows a stable austenitic microstructure with good pitting resistance (PREN > 33) and crevice corrosion resistance as well as an excellent toughness behaviour down to -196 °C. BÖHLER BB 203 is a fluoride-basic agglomerated flux providing good operating characteristics, smooth beads and a low-hydrogen weld metal. For information regarding the sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

SAW solid wire %	C	Si	Mn	Cr	Ni	Mo	N	PREN
	0.02	0.2	5.0	19.0	16.5	4.0	0.15	34.6
all-weld metal %	0.02	0.2	4.5	18.5	16.3	4.0	0.14	33.9

Mechanical Properties of All-weld Metal

(*)		u
yield strength Re N/mm ² :		≥ 420
tensile strength Rm N/mm2:		≥ 630
elongation A (Lo = 5do) %:		≥ 35
impact work ISO-V KV J	+ 20 °C:	≥ 120
	- 50 °C:	≥ 100
	- 100 °C:	≥ 80
	- 196 °C:	≥ 40

(*) u untreated, as-welded

Operating Data

max. amperade. OUD A	•	re-drying of sub-arc flux: 300 – 350 °C, 2 h – 10 h max. amperage: 800 A	ø mm 3.0	=±
-----------------------------	---	--	-------------	----

Base Materials

1.4436 X3CrNiMo17-13-3, 1.4439 X2CrNiMoN17-13-5, 1.4429 X2CrNiMoN17-13-3, 1.4438 X2CrNiMo18-15-4, 1.4583 X10CrNiMoNb18-12

AISI 316Cb, 316L, 317LN, 317L; UNS S31726

Approvals and Certificates

UDT

Same Alloy / Similar Alloys Filler Metals

SMAW stick electrode:	FOX ASN 5	GMAW solid wire:	ASN 5-IG (Si)
	FOX ASN 5-A	GMAW flux cored wire:	E 317L-FD*
GTAW rod:	ASN 5-IG		E 317L PW-FD*

* for similar alloyed base metals only, not fully austenitic.

Corrosion Resistant Filler Metals - SAW Wire/Flux Combinations

SAW solid wire: EN 12072:1999:

AWS A5.9-93: ER2209 sub-arc flux: EN 7601996: SA EB 2 DC

S 22 9 3 NL ER2209

BÖHLER CN 22/9 N-UP // BB 202

SAW wire/flux-combination, high-alloyed, highly corrosion resistant

Description

Sub-arc wire/flux combination for welding the Duplex stainless steels 1.4462 / S31803. Smooth beads, easy slag removal without any slag residues and good welding characteristics even for fillet welds are very much appreciated by users.

Suitable for service temperatures from -40 °C to +250 °C. The pitting index PREN is > 35. BOHLER BB 202 is a fluoride-basic agglomerated flux. For CVN requirements lower than -40 °C we recommend our flux BOHLER BB 203. For information regarding the sub-arc welding fluxes BOHLER BB 202 and BB 203 see our detailed data sheets.

Typical Composition of Solid Wire and All-weld Metal

SAW solid wire %	C	Si	Mn	Cr	Ni	Mo	N	PREN
	≤ 0.02	0.40	1.7	23.0	9.0	3.2	0.15	36.0
all-weld metal %	0.015	0.55	1.30	22.5	8.9	3.1	0.14	35.0

Mechanical Properties of All-weld Metal

(*) yield strength Re N/mm ² : tensile strength Rm N/mm ² :		u ≥ 550 ≥ 750
elongation A (Lo = 5do) %:	+ 20 °C·	≥ 27 >100
	- 40 °C:	≥ 32

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: 300 - 350 °C, 2 h - 10 h max. amperage: 800 A ø mm 3.0

Base Materials

same-alloyed duplex stainless steels, as well as similar-alloyed, ferritic-austenitic steels with higher tensile strength

1.4462 X2CrNiMoN22-5-3, 1.4362 X2CrNiN23-4, 1.4462 X2CrNiMoN22-5-3 with 1.4583 X10CrNiMoNb18-12 or other stainless steel grades

UNS S31803, S32205

Approvals and Certificates

TÜV-D (7507.), TÜV-A (339), ABS (ER 2209), CL (1049), DNV (X), GL (4462 TM), LR (X), UDT, (TÜV-D with BB203 9173.)

Same Alloy Filler Metals

SMAW stick electrode:	FOX CN 22/9 N-B	GMAW solid wire:	CN 22/9 N-IG
GTAW rod:	FOX CN 22/9 N CN 22/9 N-IG	GMAW flux cored wire:	CN 22/9 PW-FD CN 22/9 N-FD

2.7 Filler metals for Dissimilar Joints and Special Applications

Objectives

The materials used for welding engineering appear vast, confusing and complicated if one takes into consideration all the dissimilar weld joints that are possible between the most varied types of steel. It is practically impossible to record every individual combination of materials. Since this is the case, the queries received by our welding technicians help line very often refer to the practical problems surrounding welding of dissimilar joints.

The choice of filler metal must be emphasised as a crucial criterion. This choice must be made so that where possible the weld metal generated is not too hard, brittle and susceptible to cracks allowing for dilution with the different parent metals.

As a consequence of this, later sections of this manual set out general ground rules containing tips, recommendations and precautionary measures in the form of broad guidelines which are to be considered when choosing filler metals and creating a welding technology. However, ground rules such as these may only be deemed as of value if they can be implemented in practice with sufficient expertise and basic knowledge of metallurgy.

This section describes filler metals that may be used for many different dissimilar welds or in the welding of problem steels.

Contents

OVERVIEW	264
SMAW STICK ELECTRODES	266
GTAW RODS	276
GMAW SOLID WIRES	279
GMAW FLUX-CORED WIRES	282
SAW WIRE/FLUX-COMBINATIONS	290

Overview – Standard Classifications

Böhler	EN		AWS	
SMAW stick elect	rodes			
FOX A 7	EN 1600:	E 18 8 Mn B 2 2	AWS A5.4-92:	E307-15(mod.)
FOX A 7-A	EN 1600:	E Z 18 9 MnMo R 3 2	AWS A5.4-92:	E307-16(mod.)
FOX CN 19/9 M	EN 1600:	E 20 10 3 R 3 2	AWS A5.4-92:	E308Mo-17(mod.)
FOX CN 23/12-A	EN 1600:	E 23 12 L R 3 2	AWS A5.4-92:	E309L-17
FOX CN 23/12 Mo-A	EN 1600:	E 23 12 2 L R 3 2	AWS A5.4-92:	E309MoL-17(mod.)
FOX CN 24/13	EN 1600:	E 23 12 B 2 2	AWS A5.4-92:	E309L-15
FOX CN 24/13 Nb	EN 1600:	E 23 12 Nb B 2 2	AWS A5.4-92:	E309Cb-15
FOX CN 29/9	EN 1600:	E 29 9 R 1 2	AWS A5.4-92:	E312-16(mod.)
FOX CN 29/9-A	EN 1600:	E 29 9 R 3 2	AWS A5.4-92:	E312-17(mod.)
FOX RDA				
GTAW rods				
A 7 CN-IG	EN 12072:	W 18 8 Mn	AWS A5.9-93:	ER307(mod.)
CN 19/9 M-IG	EN 12072:	W 20 10 3	AWS A5.9-93:	ER308Mo(mod.)
CN 23/12-IG	EN 12072:	W 23 12 L	AWS A5.9-93:	ER309L
GMAW solid wires	5			
A 7-IG	EN 12072:	G 18 8 Mn	AWS A5.9-93:	ER307(mod.)
CN 19/9 M-IG	EN 12072:	G 20 10 3	AWS A5.9-93:	ER308Mo(mod.)
CN 23/12-IG	EN 12072:	G 23 12 L	AWS A5.9-93:	ER309L
GMAW flux-cored	wires			
A 7-MC	EN 12073:	T 18 8 Mn MM1	AWS A5.9-93:	EC307(mod.)
CN 23/12-MC	EN 12073:	T 23 12 L MM1	AWS A5.9-93:	E309L
A 7-FD	EN 12073:	T 18 8 Mn R M 3	AWS A5.22-95	:E307T0-G
		T 18 8 Mn R C 3		
A 7 PW-FD	EN 12073:	T 18 8 Mn P M 2	AWS A5.22-95	:E307T1-G
		T 18 8 Mn P C 2		
CN 23/12-FD	EN 12073:	T 23 12 L R M 3	AWS A5.22-95	:E309LT0-4
		T 23 12 L R C 3		E309LT0-1
CN 23/12 PW-FD	EN 12073:	T 23 12 L P M 1	AWS A5.22-95	:E309LT1-4
		T 23 12 L P C 1		E309LT1-1
CN 23/12 Mo-FD	EN 12073:	T 23 12 2 L R M 3	AWS A5.22-95	E309LMoT0-4
		T 23 12 2 L R C 3		E309LMoT0-1
CN 23/12 Mo PW-FD	EN 12073:	T 23 12 2 L P M 1	AWS A5.22-95	:E309LMoT1-4
		T 23 12 2 L P C 1		E309LMoT1-1
CAM wine films				

SAW wire/flux-combinations

A 7CN-UP	EN 12072: S 18 8 Mn	AWS A5.9-93:	ER307(mod.)
A 7CN-UP/BB 203	EN 12072/760: S 18 8 Mn / SA FB 2	AWS:	ER307(mod.)
CN 23/12-UP	EN 12072: S 23 12 L	AWS A5.9-93:	ER309L
CN 23/12-UP/BB 202	EN 12072/760: S 23 12 L / SA FB 2	AWS:	ER309L

Overview – Typical Chemical Composition

Böhler	С	Si	Mn	Cr	Ni	Mo	Nb
SMAW stick elect	trodes						
FOX A 7	0.10	0.7	6.5	18.8	8.8	-	
FOX A 7-A	0.10	1.2	4.2	19.5	8.5	0.7	
FOX CN 19/9 M	0.04	0.8	1.0	20.2	10.3	3.2	
FOX CN 23/12-A	0.02	0.7	0.7	23.0	12.5	-	
FOX CN 23/12 Mo-A	0.02	0.7	0.8	23.0	12.5	2.7	
FOX CN 24/13	0.03	0.3	1.3	24.0	13.0		
FOX CN 24/13 Nb	0.03	0.4	1.0	24.5	12.5	-	0.85
FOX CN 29/9	0.11	1.0	0.7	29.0	10.2		
FOX CN 29/9-A	0.11	0.9	0.7	28.5	9.5		
FOX RDA	-	-	-	-	-	-	
GTAW rods							
A 7 CN-IG	0.08	0.8	7.0	19.0	9.0		
CN 19/9 M-IG	0.06	0.7	1.3	20.0	10.0	3.3	
CN 23/12-IG	≤ 0.02	0.5	1.7	24.0	13.2		
GMAW solid wire	S						
A 7-IG	0.08	0.9	7.0	19.2	9.0		
CN 19/9 M-IG	0.06	0.7	1.3	20.0	10.0	3.3	
CN 23/12-IG	0.02	0.5	1.7	24.0	13.2		
GMAW flux-cored	d wires						
A 7-MC	0.1	0.6	6.3	18.8	9.2		
CN 23/12-MC	≤0.03	0.6	1.4	22.7	12.2		
A 7-FD	0.1	0.7	6.5	18.5	8.8		
				10.0			
A / PW-FD	0.1	0.8	7.0	19.0	9.0		
	.0.00	0.7		00.0	10.5		
CN 23/12-FD	≤0.03	0.7	1.4	22.0	12.5		
CN 23/12 PW-ED	~0.03	0.7	1.4	22.8	12.5		
011 20/12 1 10-1 0	50.00	0.7	1.4	22.0	12.5		
CN 23/12 Mo-ED	<0.03	0.6	14	227	12.3	27	
0.1.20.12.1.0.1.2	20.00	0.0			. 2.0	2.7	
CN 23/12 Mo PW-FD	≤0.03	0.7	1.4	22.7	12.3	2.7	
		-			-		
SAW wire/flux-co	mbinati	ons					·
A 7CN-UP	0.08	0.8	7.0	19.2	9.0		
A 7CN-UP/BB 203	0.08	0.9	6.8	18.5	8.8		
CN 23/12-UP	≤0.02	0.5	1.7	24.0	13.2		
CN 23/12-UP/BB 202	0.015	0.65	1.3	23.4	13.1		

EN 1600:1997: E 18 8 Mn B 2 2 AWS A5.4-92: E307-15(mod.)

BÖHLER FOX A 7

SMAW stick electrode, high-alloyed, special applications

Description

Basic coated special stainless steel electrode for joint welding of dissimilar joints, problem steels and for repair and maintenance. Very popular electrode for numerous applications. The weld metal offers exceptionally high ductility and elongation together with outstanding crack resistance. There is no fear of embrittlement when operating down to service temperatures of -110 °C or above +500 °C. The scaling resistance goes up to +850 °C. When working at service temperatures above +650 °C please contact the supplier. The weld metal can be post weld heat treated without any problems. The deposit will work harden and offers good resistance against cavitation. Ductility is good even after high dilution when welding problem steels or when subjected to thermal shock or scaling. An excellent alloy providing cost effective performance.

Typical Composition of All-weld Metal

wt-%	C	Si	Mn	Cr	Ni
	0.1	0.7	6.5	18.8	8.8

Mechanical Properties of All-weld Metal

(*)		u	
vield strength Re N/mm ² :		460	(≥ 390)
tensile strength Rm N/mm ² :		660	(≥ 620)
elongation A (Lo = 5do) %:		38	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	90	(≥ 80)
•	- 110 °C:		(≥ 32)

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 120 - 200 °C, min. 2 h electrode identification: FOX A 7 E 18 8 Mn B	ømm 2.5 3.2 4.0 5.0 6.0	L mm 300 350 350 450 450	amps A 55 - 75 80 - 100 100 - 130 140 - 170 160 - 200	=+	

Preheating and interpass temperature as required by the base metal.

Base Materials

For fabrication, repair and maintenance!

Dissimilar joints, tough buffer and intermediate layers prior to hardfacing, 14 % manganese steels, 13 - 17 % chromium heat resistant steels up to +850 °C, armour plates, high carbon and quenched & tempered steels, surfacing of gears, valves, turbine blades etc.

Approvals and Certificates

TÜV-D (06786.), DNV (E 18 8 MnB), GL (4370), UDT, LTSS, VUZ, PRS (4370), SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX A 7-A GTAW rod: A 7CN-IG GMAW solid wire: A 7-IG Metal cored wire: A 7-MC GMAW flux cored wire: A 7-FD, A 7 PW-FD SAW combination: A 7CN-UP/BB 203 EN 1600:1997: EZ 18 9 MnMo R 3 2 AWS A5,4-92; E307-16(mod.)

BÖHLER FOX A 7-A

SMAW stick electrode, high-alloyed, special applications

Description

Rutile-basic coated special stainless steel electrode for joint welding of dissimilar joints, problem steels and for repair and maintenance. Very popular electrode for numerous applications. The weld metal offers exceptionally high ductility and elongation together with outstanding crack resistance. There is no fear of embrittlement when operating down to service temperatures of -100 °C or above +500 °C. The scaling resistance goes up to +850 °C. When working at service temperatures above +650 °C please contact the supplier. The weld metal can be post weld heat treated without any problems. The deposit will work harden and offers good resistance against cavitation. Ductility is good even after high dilution when welding problem steels or when subjected to thermal shock or scaling. An excellent alloy providing cost effective performance. BÖHLER FOX A 7-A is suitable for both AC and DC.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Mo
wt-%	0.10	1.2	4.2	19.5	8.5	0.7

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		520	(≥ 390)
tensile strength Rm N/mm ² :		720	(≥ 620)
elongation A (Lo = 5do) %:		35	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	75	(≥ 47)
	- 100 °C:		(≥ 32)

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 120 - 200 °C, min. 2 h electrode identification: FOX A 7-A E Z 18 9 MnMo R	ømm 2.5 3.2 4.0	L mm 350 350 350	amps A 60 - 80 80 - 110 110 - 140	=+ ~
	5.0	450	140 - 170	

Preheating and interpass temperature as required by the base metal.

Base Materials

For fabrication, repair and maintenance!

Dissimilar joints, tough buffer and intermediate layers prior to hardfacing, 14 % manganese steels, 13 - 17 % chromium heat resistant steels up to +850 °C, armour plates, high carbon and guenched & tempered steels, surfacing of gears, valves. turbine blades etc.

Approvals and Certificates

TÜV-D (09101.), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX A 7
GTAW rod:	A 7CN-IG
GMAW solid wire:	A 7-IG

Metal cored wire: GMAW flux cored wire: A 7-FD, A 7 PW-FD SAW combination:

A 7-MC A 7CN-UP/BB203 EN 1600:1997: E 20 10 3 R 3 2 AWS A5.4-92 E308Mo-17(mod.)

BÖHLER FOX CN 19/9 M

SMAW stick electrode, high-alloyed, special applications

Description

Rutile coated electrode of type E 20 10 3 / 308Mo. This electrode is designed for dissimilar joints and weld cladding.

BÖHLER FOX CN 19/9 M offers a lower chromium and ferrite content than a 309MoL weld deposit with the result that carbon diffusion and Cr-carbide formation is reduced after post weld heat treatment and lower ferrite contents can be achieved in the second layer of 316L claddings.

Suitable for service temperatures from -80 °C to +300 °C. Safety against formation of porosity due to the moisture resistant coating.

Typical Composition of All-weld Metal								
wt-%	С 0.04	Si 0.8	Mn 1.0	Cr 20.2	Ni 10.3	Mo 3.2	N 0.09	
Mechani	Mechanical Properties of All-weld Metal							
(*) yield strengt tensile streng elongation A impact work	h Re N/mm ² gth R _m N/m (L₀ = 5d₀) º ISO-V KV	²: m²: %: J	+ 20 °C: - 80 °C:	u 520 700 30 70	(≥ 450) (≥ 650) (≥ 25) (≥ 55) (≥ 32)			

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 250 - 300 °C, min. 2 h electrode identification: FOX CN 19 9 M E 20 10 3 R	ø mm 2.5 3.2 4.0	L mm 250 350 350	amps A 50 - 85 75 - 115 110 - 160	=+ ~	
	5.0	450	160 - 200		

Preheating and interpass temperature as required by the base metal.

Base Materials

high-strength, mild steels and low-alloyed constructional steels, QT-steels and armour plates among themselves or among each other; non-alloy as well as alloyed boiler or constructional steels with high-alloy stainless Cr- and Cr-Ni-steels; austenitic manganese steels similar and dissimilar.

Approvals and Certificates

TÜV-D (1086.), DB (30.014.03), ÜZ (30.014), ÖBB, ABS (Cr18/20, Ni8/10Mo), GL (4431), LR (V4-P12), ÜDT

Same Alloy Filler Metals

GTAW rod: CN 19/9 M-IG

GMAW solid wire:

CN 19/9 M-IG

EN 1600:1997: E 23 12 L R 3 2 AWS A5.4-92: E309L-17

BÖHLER FOX CN 23/12-A

SMAW stick electrode, high-alloyed,

special applications

Description

Rutile coated stainless steel electrode of type E 23 12 L / 309L providing increased delta ferrite contents (FN ~17) in the weld deposit for safe and crack resistant dissimilar joint welds and claddings. BOHLER FOX CN 23/12-A is noted for its superior welding characteristics and metallurgy. It can be used on AC and DC. Other advantages include high current carrying capacity, minimum spatter formation, self releasing slag, smooth and clean weld profile, safety against formation of porosity due to the moisture resistant coating and its packaging into hermetically sealed tins. Operating temperature from -60 °C to +300 °C and for weld claddings up to +400 °C.

Typical Composition of All-weld Metal										
wt-%	C 0.02	Si 0.7	Mn 0.7	Cr 23.0	Ni 12.5					
Mechanical Properties of All-weld Metal										
(*) yield strem tensile stre elongation impact wo (*) u untre	gth Re N/m ength Rm N. A (Lo = 5dd rk ISO-V K eated, as-w	m²: /mm²:)) %: V J elded	+ 20 °C: - 60 °C:	u 440 570 40 60	(≥ 400) (≥ 550) (≥ 30) (≥ 47) (≥ 32)					

Operating Data

→ →	re-drying if necessary: 250 - 300 °C, min. 2 h electrode identification: FOX CN 23/12-A 309L-17 E 23 12 L R	ø mm 2.5 3.2 4.0 5.0	L mm 350 350 350 450	amps A 60 - 80 80 - 110 110 - 140 140 - 180	=+ ∼	
nontina or	a informace tomporature as required by	tho hoco	motol			

Preheating and interpass temperature as required by the base metal.

Base Materials

dissimilar joint welds: of and between high-strength, mild steels and low-alloyed QT-steels, stainless, territic Cr- and austenitic Cr-Ni- steels, manganese steels

claddings: for the first layer of corrosion resistant weld claddings on ferritic-perlitic steels in boiler and pressure vessel parts up to fine-grained steel S500N, as well as of high temperature steels like 22NIMoCr4-7 acc. SEW-Werkstoffblatt 365, 366, 20MnMoNi5-5 and G18NIMoCr3-7

Approvals and Certificates

TÜV-D (1771.), DB (30.014.08), ÜZ (30014), ÖBB, TÜV-A (130), ABS (E 309L-17), BV (UP), CL (1477), DNV (NV 309 L), GL (4332), LR (DXV u. 0, CMnSS), UDT, VUZ, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode	e: FOX CN 23/12 Mo-A	GMAW flux cored wire	e: CN 23/12-FD
GTAW rod:	CN 23/12-IG		CN 23/12 PW-FD
GMAW solid wire:	CN 23/12-IG		CN 23/12 Mo-FD
Metal cored wire:	CN 23/12-MC		CN 23/12 Mo PW-FD
		SAW combination	CN 23/12-UP/BB 202

EN 1600:1997: E 23 12 2 L R 3 2 AWS A5.4-92: E309MoL-17(mod.)

BÖHLER FOX CN 23/12 Mo-A

SMAW stick electrode, high-alloyed, special applications

Description

Rutile coated stainless steel electrode of type E 23 12 2 L / 309MoL providing increased delta ferrite contents (FN ~20) in the weld deposit for safe and crack resistant dissimilar joint welds as well as claddings or root passes of clad steel. BOHLER FOX CN 23/12 Mo-A is noted for its superior welding characteristics and metallurgy. It can be used on AC and DC. Other advantages include high current carrying capacity, minimum spatter formation, self releasing slag, smooth and clean weld profile, safety against formation of porosity due to the moisture resistant coating and its packaging into hermetically sealed tins.

Operating temperature from -10 °C to +300 °C and for weld claddings (1# layer) up to +400 °C.

Typical Composition of All-weld Metal С Si Mn Cr Ni Mo wt-% 0.02 0.7 0.8 23.0 12.5 2.7 Mechanical Properties of All-weld Metal (≥ 490) yield strength Re N/mm²: 580 tensile strength Rm N/mm²: 720 (≥ 630) elongation A (Lo = 5do) %: impact work ISO-V KV J 27 25) (≥ + 20 °C: 55 (≥ 47) - 20 °C: 45 32) (> (*) u untreated, as-welded Operating Data

۸.		re-urying in necessary.	9 11111	L	amps A	
Ī.		250 - 300 °C, min. 2 h	2.0	300	45 - 60	- '
<u>ا</u> _	-	electrode identification:	2.5	350	60 - 80	r l
		FOX CN 23/12 Mo-A E 23 12 2 L R	3.2	350	80 - 120	
			4.0	350	100 - 160	
			5.0	450	140 - 220	

Preheating and interpass temperature as required by the base metal.

Base Materials

dissimilar joint welds:

mild steels and low-alloyed constructional and QT-steels among themselves or among each other; unalloyed as well as low-alloyed boiler or constructional steels with stainless Cr-, CrNiand CrNiMo-steels; ferritic-austenitic joint welds in boiler and pressure vessel parts. *weld claddings*: for the first layer of corrosion resistant claddings on P235GH, P265GH, S255N, P295GH, S355N - S500N; for the first layer of corrosion resistant weld claddings on high temperature guenched and tempered fine-grained steels acc. AD-Merkblatt HPO, class 3.

Approvals and Certificates

TÜV-D (1362.), TÜV-A (34), ABS (E 309 Mo), CL (1191), RINA (309Mo), DNV (309MoL), LR (DXV u. 0, CMnSS), BV (309 Mo), UDT, LTSS, VUZ, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electroc	le: FOX CN 23/12-A	GMAW flux cored wir	e: CN 23/12-FD
GTAW rod:	CN 23/12-IG		CN 23/12 PW-FD
GMAW solid wire:	CN 23/12-IG		CN 23/12 Mo-FD
Metal cored wire:	CN 23/12-MC		CN 23/12 Mo PW-FD
		SAW combination:	CN 23/12-UP/BB 202

EN 1600:1997: AWS A5.4-92: E 23 12 L B 2 2 E309L-15

BÖHLER FOX CN 24/13

SMAW stick electrode for special applications

Description

Special basic coated electrode with controlled alloying elements to meet the metallurgical requirements of buffer layers. Stringer bead technique is recommended. Normally used in combination with different corrosion resistant claddings, depending on the base material also with an additional PWHT. For service temperatures up to +400 °C.

Typical Composition of All-weld Metal											
wt-%	С 0.03	Si 0.3	Mn 1.3	Cr 24.0	Ni 13.0						
Mechanical Properties of All-weld Metal											
(*) u yield strength R _° N/mm ² : 430 (≥ 320) tensile strength R _° N/mm ² : 570 (≥ 520) elongation A (L=5do) %: 35 (≥ 30) impact work ISO-V KV J +20 °C: 70 (≥ 47) (*) u untreated, as-welded											
Operating Data											
	re-dry 300-3 electr FOX	ing: if nec 50 °C, min ode identif CN 24/13	essary: n. 2 h ication: 309 L-15 E	23 12 L B	ø mm 3.2 4.0	L mm 350 350	amps A 95-115 120-145				

'<u>_</u>→

Preheating and interpass temperature acc. the base materials.

Base Materials

For buffer layers on weldable unalloyed, high tensile, high temperature or alloyed base metals.

Approvals and Certificates

EN 1600:1997: AWS A5.4-92: E 23 12 Nb B 2 2 E309Cb-15 BÖHLER FOX CN 24/13 Nb

SMAW stick electrode for special applications

Description

Special basic coated electrode with controlled alloying elements to meet the metallurgical requirements of buffer layers. Excellent welding properties, stable arc, well detaching slag without residuals. Stringer bead technique is recommended. Normally used in combination with different corrosion resistant claddings, depending on the base material also with an additional PWHT. For service temperatures up to +400 °C.

Typical	Chemical	Com	position	of	All-weld	Metal
---------	----------	-----	----------	----	----------	-------

	С	Si	Mn	Cr	Ni	Nb
wt-%	0.03	0.4	1.0	24.5	12.5	0.85

Mechanical Properties of All-weld Metal

(*)		u	
yield strength R _e N/mm ² :		505	(≥ 350)
tensile strength R _m N/mm ² :		690	(≥ 550)
elongation A (L=5d) %:		25	(≥ 22)
impact work ISO-V KV J	+20 °C:	95	(≥ 47)
	-10 °C:	85	. ,

(*) u untreated, as-welded

Operating Data

re-drying: if necessary	ø mm	L mm	amps A
300-350 °C. min. 2 h	3.2	350	95-115
electrode identification:	4.0 B	350	120-145

Preheating and interpass temperature acc. the base materials.

Base Materials

ᆖ┥

For buffer layers on weldable unalloyed, high tensile, high temperature or alloyed base metals.

Approvals and Certificates

TÜV-D (00141.)

EN 1600:1997: E 29 9 R 1 2 AWS A5.4-92: E312-16(mod.)

BÖHLER FOX CN 29/9

SMAW stick electrode, high-alloved. special applications

Description

Rutile-basic coated stainless steel electrode of type 29 % Cr 9 % Ni / E312.

BÖHLER FOX CN 29/9 is a repair & maintenance electrode that offers outstanding operating characteristics and weld metals of high strength combined with high crack resistance when welding problem steels or dissimilar joints.

The weld metal also work hardens making it suitable for wear resisting build-ups on clutches, gear wheels, shafts, etc. Also suitable for repair welding of tools.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni
wt-%	0.11	1.0	0.7	29.0	10.2

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		620	(≥ 490)
tensile strength Rm N/mm ² :		770	(≥ 690)
elongation $A(L_0 = 5d_0)$ %:		25	(≥ 20)
impact work ISO-V KV J	+ 20 °C:	30	(≥ 24)
(*) u untreated, as-welded			. ,

Operating Data

	re-drying if necessary: 250 - 300 °C, min. 2 h electrode identification:	ø mm 2.5 3.2	L mm 300 350	amps A 60 - 80 80 - 110	=+ ~	
	FOX CN 29/9 E 29 9 R	4.0	350	110 - 140		
eheating	and internass temperature as require	ed by the base	metal			

Preheating and interpass temperature as require

Base Materials

for problem steels with high strength, joining of dissimilar materials, tool steels, heat treatable or quenched and tempered steels, spring steels, high carbon steels etc.

Approvals and Certificates

DB (30.014.11), ÜZ (30.014), ÖBB, UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 29/9-A

EN 1600:1997: E 29 9 R 3 2 AWS A5.4-92: E312-17(mod.)

BÖHLER FOX CN 29/9-A

SMAW stick electrode, high-alloyed, special applications

Description

Rutile coated stainless steel electrode of type 29 % Cr 9 % Ni / E312.

BÖHLER FOX CN 29/9-A is a repair & maintenance electrode that offers outstanding operating characteristics on both DC and AC and weld metals of high strength combined with high crack resistance when welding problem steels or dissimilar joints.

The weld metal also work hardens making it suitable for wear resisting build-ups on clutches, gear wheels, shafts, etc. Also suitable for repair welding of tools.

Typical Composition of All-weld Metal

	•			•	
	C	Si	Mn	Cr	NI
wt-%	0.11	0.9	0.7	28.5	9.5

Mechanical Properties of All-weld Metal

(*) viold strongth R. N/mm²:		U 650	(> 400)
topoilo otropath P N/mm ²		030	(2 490)
clongetion A (Le – Ede) 9/ :		010	(2070)
impact work $ SO_V K V $	1 20 °C·	24	(2 20)
(*) u untreated as-welded	+ 20 0.	50	(2 24)

Operating Data

re-drying it necessary: 6 I 250 - 300 °C, min. 2 h 22 electrode identification: 3 FOX CN 29/9-A E 29 9 R 4	2.5 300 3.2 350 3.0 350 3.0 450	60 - 80 80 - 110 110 - 140 140 - 180	=+ ∼
---	--	---	---------

Preheating and interpass temperature as required by the base metal.

Base Materials

for problem steels with high strength, joining of dissimilar materials, tool steels, heat treatable or quenched and tempered steels, spring steels, high carbon steels etc.

Approvals and Certificates

DB (30.014.16, 20.014.07), ÜZ (30.014), ÖBB, UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 29/9

BÖHLER FOX RDA

SMAW stick electrode, high-alloyed, special applications

Description

Special coated stainless steel electrode for welding of rule die steel.

This electrode provides easy striking and re-striking, excellent welding characteristics as well as very ductile and crack resistant joints welds on rule die steel.

Operating Data

 re-drying if necessary:
 ø mm
 L mm
 amps A

 120 - 200 °C, min. 2 h
 1.5
 250
 40 - 60

 electrode identification:
 2.0
 250
 50 - 80

 FOX RDA
 FOX RDA
 250
 50 - 80

Base Materials

Rule die steels

Approvals and Certificates

UDT

EN 12072:1999: W 18 8 Mn AWS A5.9-93: ER307(mod.) W.Nr.: 1.4370

BÖHLER A 7 CN-IG

GTAW rod, high-alloyed, special applications

Description

GTAW rod of type W 18 8 Mn / ER307 for numerous applications.

The weld metal offers exceptionally high ductility and elongation together with outstanding crack resistance. There is no fear of embrittlement when operating down to service temperatures of -110 °C or above +500 °C. The scaling resistance goes up to +850 °C. When working at service temperatures above +650 °C please contact the supplier.

The weld metal can be post weld heat treated without any problems. The deposit will work harden and offers good resistance against cavitation. Ductility is good even after high dilution when welding problem steels or when subjected to thermal shock or scaling. An excellent alloy providing cost effective performance.

Very good welding and wetting characteristics.

Typical Composition of Welding Rod

	0	0:	Mm	C+	N.C.
vart 0/	0.00	00		10.0	
WU-70	0.00	0.0	7.0	19.0	9.0

Mechanical Properties of All-weld Metal

(*)		u	
vield strength Re N/mm ² :		460	(≥ 450)
tensile strength Rm N/mm ² :		660	(≥ 620)
elongation A (Lo = 5do) %:		38	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	120	(≥ 100)
	- 110 °C:		(≥ 32)

(*) u untreated, as-welded - shielding gas Argon

Operating Data

shielding gas: 100 % Argon rod marking: front: + W 18 8 Mn back: 1,4370	ømm 1.6 2.0 2.4	=-
baok. Hitoro	3.0	

Preheating and interpass temperature as required by the base metal.

Base Materials

For fabrication, repair and maintenance! Dissimilar joints, tough buffer and intermediate layers prior to hardfacing, 14 % manganese steels, 13 - 17 % chromium heat resistant steels up to +850 °C, armour plates, high carbon and quenched & tempered steels, surfacing of gears, valves, turbine blades etc.

Approvals and Certificates

TÜV-D (00023.), DNV (X), GL (4370), UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX A 7 FOX A 7-A GMAW solid wire: A 7-IG Metal cored wire: A 7-MC GMAW flux cored wire: A 7-FD, A 7 PW-FD SAW combination: A 7CN-UP/BB 203 EN 12072:1999: W 20 10 3 AWS A5.9-93: ER308Mo(mod.) W.Nr.: 1.4431

BÖHLER CN 19/9 M-IG

GTAW rod, high-alloyed, special applications

Description

GTAW rod of type W 20 10 3 / 308Mo. This rod is designed for dissimilar joints and weld cladding. BOHLER CN 19/9 M-IG offers a lower chromium and ferrite content than a 309L weld deposit with the result that carbon diffusion and Cr-carbide formation is reduced after post weld heat treatment and lower ferrite contents can be achieved in the second layer of 316L claddings. Suitable for service temperatures from -80 °C to +300 °C. Verv good welding and wetting characteristics.

Typical Composition of Welding Rod								
wt-%	С 0.06	Si 0.7	Mn 1.3	Cr 20.0	Ni 10.0	Mo 3.3		
Mechan	Mechanical Properties of All-weld Metal							
(*) $\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Operati	na Data							

oporating	Butu		
Preheating an	shielding gas: 100 % Argon rod marking: front: W 20 10 3 back: 1.4431 d internass temperature as require	ø mm 1.6 2.0 2.4 d by the base metal	=-
		,	

Base Materials

high-strength, mild steels and low-alloyed constructional steels, QT-steels and armour plates among themselves or among each other; non-alloy as well as alloyed boiler or constructional steels with high-alloy stainless Cr- and Cr-Ni-steels; austenitic manganese steels similar and dissimilar.

Approvals and Certificates

TÜV-D (0427.), DNV (308Mo)

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 19/9 M

GMAW solid wire: CN 19/9 M-IG

EN 12072:1999: W 23 12 L AWS A5.9-93: ER309 L W.Nr.: 1.4332

BÖHLER CN 23/12-IG

GTAW rod, high-alloyed, special applications

Description

GTAW rod of type W 23 12 L / ER309L. This is a standard alloy for welding dissimilar joints with an average ferrite content 16 FN.

BÖHLER CN 23/12-IG is designed for very good welding and wetting characteristics as well as good safety after dilution when welding dissimilar joints. Suitable for service temperatures between -120 °C and +300 °C.

Typical	Compo	sition	of Weldi	ing Rod	
wt-%	C 0 02	Si	Mn 17	Cr 24 0	Ni 13.2

Mechanical Properties of All-weld Metal

(*) yield strength R_{θ} N/mm ² : tensile strength R_{m} N/mm ² :		u 440 590	(≥ 4	430) 580)	
impact work ISO-V KV J	+ 20 °C:	150	(≥	80))
	- 120 °C:		(≥	32)	1
(*) u untropted on wolded	obiolding goo	Argon			

(*) u untreated, as-welded – shielding gas Argon

Operating Data

↓ →	shielding gas: 100 % Argon	ø mm
T I	rod marking:	1.6
' →	front:	2.0
	back: ER 309 L	2.4
Prohoating	and internass temperature as required h	w the base metal

Preheating and interpass temperature as required by the base metal.

Base Materials

dissimilar joint welds:

of and between high-strength, mild steels and low-alloyed QT-steels, stainless, ferritic Cr- and austenitic Cr-Ni- steels, manganese steels

claddings:

for the first layer of corrosion resistant weld claddings on ferritic-perlitic steels in boiler and pressure vessel parts up to fine-grained steel S500N, as well as of high temperature steels like 22NiMoCr4-7 acc. SEW-Werkstoffblatt 365, 366, 20Mn/MoNi5-5 and G18NiMoCr3-7

Approvals and Certificates

TÜV-D (4699.), TÜV-A (307), CL (0321), GL (4332), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 23/12-A	GMAW flux cored wire:	CN 23/12-FD
	FOX CN 23/12 Mo-A		CN 23/12 PW-FD
GMAW solid wire:	CN 23/12-IG		CN 23/12 Mo-FD
Metal cored wire:	CN 23/12-MC		CN 23/12 Mo PW-FD
		SAW combination:	CN 23/12-UP/BB 202

EN 12072:1999: G 18 8 Mn AWS A5.9-93: ER307 (mod.) W.Nr.: 1.4370

BÖHLER A 7-IG

GMAW solid wire, high-alloyed, special applications

Description

GMAW wire of type G 18 8 Mn / ER307 for numerous applications.

The weld metal offers exceptionally high ductility and elongation together with outstanding crack resistance. There is no fear of embrittlement when operating down to service temperatures of -110 °C or above +500 °C. The scaling resistance goes up to +850 °C. When working at service temperatures above +650 °C please contact the supplier.

The weld metal can be post weld heat treated without any problems. The deposit will work harden and offers good resistance against cavitation. Ductility is good even after high dilution when welding problem steels or when subjected to thermal shock or scaling. An excellent alloy providing cost effective performance. Very good feeding, welding and wetting characteristics.

Typical Composition of Solid Wire

	С	Si	Mn	Cr	Ni
wt-%	0.08	0.9	7.0	19.2	9.0

Mechanical Properties of All-weld Metal

(*)		u	
vield strength Re N/mm ² :		430	(≥ 370)
tensile strength Rm N/mm ² :		640	(≥ 600)
elongation A (Lo = 5do) %:		36	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	110	(≥ 100)
	- 110 °C:		(≥ 32)
(+)	1 * 1 #		

(*) u untreated, as-welded – shielding gas Argon + max. 2.5 % CO2

Operating Data

t_↓	shielding gas: Argon + max. 2.5 % CO ₂	ø mm 0.8 1.0 1.2	=+
Preheating and as required by	d interpass temperature the base metal.	1.6	

Base Materials

For fabrication, repair and maintenance!

Dissimilar joints, fough buffer and intermediate layers prior to hardfacing, 14 % manganese steels, 13 - 17 % chromium heat resistant steels up to +850 °C, armour plates, high carbon and quenched & tempered steels, surfacing of gears, valves, turbine blades etc.

Approvals and Certificates

TÜV-D (06632.), DB (43.014.13), ÜZ (43.014/1), ÖBB, UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode:	FOX A 7
	FOX A 7-A
GTAW rod:	A 7CN-IG

Metal cored wire: A 7-MC GMAW flux cored wire: A 7-FD, A 7 PW-FD SAW combination: A 7CN-UP/BB 203 EN 12072:1999: AWS A5.9-93: W.Nr.: G 20 10 3 ER308Mo(mod.) 1.4431

BÖHLER CN 19/9 M-IG

GMAW solid wire, high-alloyed, special applications

Description

GMAW wire of type G 20 10 3 / (308Mo). This wire is designed for dissimilar joints and weld cladding.

BÖHLER CN 19/9 M-IG offers a lower chromium and ferrite content than a 309L weld deposit with the result that carbon diffusion and Cr-carbide formation is reduced after post weld heat treatment and lower ferrite contents can be achieved in the second layer of 316L claddings. Suitable for service temperatures from -60 °C to +300 °C.

Typical Composition of Solid Wire							
Mechanical Properties of All-weld Metal							

Operating Data

shielding gases:	ø mm	
Argon + max. 2.5 % CO ₂	1.0	=+
Argon + max. 1.0 % O2	1.2	-

Preheating and interpass temperature as required by the base metal.

Base Materials

high-strength, mild steels and low-alloyed constructional steels, QT-steels and armour plates among themselves or among each other; non-alloy as well as alloyed boiler or constructional steels with high-alloy stainless Cr- and Cr-Ni-steels; austenitic manganese steels similar and dissimilar.

Approvals and Certificates

TÜV-D (1087.), DB (43.014.10), ÜZ (43.014/1), ÖBB, DNV (308Mo)

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 19/9 M

GTAW rod: CN 19/9 M-IG

EN 12072-1999 G 23 12 L AWS A5 9-93 FR3091 1 4332 W Nr ·

BÖHLER CN 23/12-IG

GMAW solid wire, high-alloyed, special applications

Description

GMAW wire of type G 23 12 L / ER309L. This is a standard alloy for welding dissimilar joints with an average ferrite content 16 FN.

BÖHLER CN 23/12-IG is designed for very good welding, wetting and feeding characteristics as well as good safety after dilution when welding dissimilar joints. Suitable for service temperatures between -80 °C and +300 °C.

Typical	Compo	sition o	of Solid	wire	
wt-%	C	Si	Mn	Cr	Ni
	0.02	0.5	1.7	24.0	13.2

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		420	(≥ 400)
tensile strength Rm N/mm ² :		570	(≥ 550)
elongation A (Lo = 5do) %:		32	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	130	(≥ 55)
•	- 80 °C:		(≥ 32)
(*) u untreated, as-welded -	shielding gas	Araon +	max, 2.5 % CO2

Operating Data

shielding gases:	ø mm	
Argon + max. 2.5 % CO ₂	0.8	=+1
Argon + max. 1.0 % O2	1.0	
	1.0	

Preheat and interpass temperature as required by the base metal.

Base Materials

dissimilar joint welds:

of and between high-strength, mild steels and low-alloyed QT-steels, stainless, ferritic Cr- and austenitic Cr-Ni- steels, manganese steels

claddings:

for the first layer of corrosion resistant weld claddings on ferritic-perlitic steels in boiler and pressure vessel parts up to fine-grained steel S500N, as well as of high temperature steels like 22NiMoCr4-7 acc. SEW-Werkstoffblatt 365, 366, 20MnMoNi5-5 and G18NiMoCr3-7.

Approvals and Certificates

TÜV-D (4698.), DB (43.014.18), ÜZ (43014), ÖBB, TÜV-A (308), CL (0351), DNV (309L), GL (4332S), ÚDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 23/12-A	GMAW flux cored wire:	CN 23/12-FD
	FOX CN 23/12 Mo-A		CN 23/12 PW-FD
GTAW rod:	CN 23/12-IG		CN 23/12 Mo-FD
Metal cored wire:	CN 23/12-MC		CN 23/12 Mo PW-FD
		SAW combination:	CN 23/12-UP/BB 202

EN 12073:2000: T 18 8 Mn MM1 AWS A5.9-93: EC307(mod.)

BÖHLER A 7-MC

Metal cored wire, high-alloyed, special applications

Description

Metal cored wire of type T 18 8 Mn/ EC307 for numerous applications.

The weld metal offers exceptionally high ductility and elongation together with outstanding crack resistance. There is no fear of embrithement when operating down to service temperatures of -110 °C or above +500 °C. The scaling resistance goes up to +850 °C. When working at service temperatures above +650 °C. Please contact the supplier. The weld metal can be post weld heat treated without any problems. The deposit will work harden and offers good resistance against cavitation. Ductility is good even after high dilution when welding problem steels or when subjected to thermal shock or scaling. An excellent alloy providing cost effective performance, excellent welding characteristics, smooth almost spatter free weld finish. The wider arc, in comparison to solid wire, will reduce the risk of lack of fusion and is less sensitive against misalignment of edges and different gap widths.

Typical Composition of All-weld Metal

wt-%	C	Si	Mn	Cr	Ni
	0.1	0.6	6.3	18.8	9.2
	•	0.0	0.0		

Mechanical Properties of All-weld Metal

(*)		u	
vield strength Re N/mm ² :		400	(≥ 350)
tensile strength Rm N/mm ² :		600	(≥ 500)
elongation A (Lo = 5do) %:		42	(≥ 25)
impact work ISO-V KV J	+ 20 °C:	70	(≥ 32)
•	- 110 °C:	30	. ,
(+)	- Is is I all a subscription	A	0 5 0/ 00

(*) u untreated, as-welded – shielding gas Argon + 2.5 % CO2

Operating Data

shielding gas:	ø mm	amps A	voltage V
Argon + 2.5 % CO2	1.2	60-280	13-30

Preheating and interpass temperature as required by the base metal. Welding with conventional or pulsed power sources (preferably slightly leading torch position, angel appr. 80 °). Recommended stick out 15-20 mm and length of arc 3-5 mm. Positional weldability of metal cored wires is similar to solid wires (puls arc welding is recommended).

Base Materials

For fabrication, repair and maintenance!

Dissimilar joints, fough buffer and intermediate layers prior to hardfacing, 14 % manganese steels, 13-17 % chromium and heat resistant steels up to +850 °C, armour plates, high carbon and quenched & tempered steels, surfacing of gears, valves, turbine blades etc.

Approvals and Certificates

Same Alloy Filler Metals

SMAW stick electrode:

GTAW rod: GMAW solid wire:

FOX A 7 FOX A 7-A A 7CN-IG A 7-IG GMAW flux cored wire:

SAW combination:

A 7-FD A 7 PW-FD A 7CN-UP/BB 203 EN 12073: 2000: T 23 12 L MM1 AWS A5 9-93 EC3091

BÖHLER CN 23/12-MC

Metal cored wire. high-alloved, special applications

Description

Metal cored wire of type T 23 12 L / ER309L for welding dissimilar joints between high alloyed Cr- and CrNi(Mo)-steels and mild- or low alloyed steels.

BÖHLER CN 23/12-MC is designed for very good welding, wetting and feeding characteristics as well as good safety after dilution when welding dissimilar joints. Suitable for service temperatures between -120 °C and +300 °C.

The wider arc, in comparison to solid wire, will reduce the risk of lack of fusion and is less sensitive against misalignment of edges and different gap widths.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni
wt-%	≤ 0.03	0.6	1.4	22.7	12.2

Mechanical Properties of All-weld Metal

(*)	u		
vield strength Re N/mm ² :	400	(≥	350)
tensile strength Rm N/mm ² :	450	(≥	520)
elongation $A(L_0 = 5d_0)$ %:	32	(≥	30)
impact work ISO-V KV J	+ 20 °C: 70	(≥	47)
	- 120 °C:	(≥	32)
(*) u untreated, as-welded -	 shieldina aas Araon + 2. 	5 %	CO_2

Operating Data sł Δ

nielding gas:	ø mm	amps A	voltage V
rgon + 2.5 % CO2	1.2	60 - 280	13 - 30

Preheat and interpass temperature as required by the base metal. Welding with conventional or pulsed power sources (preferably slightly leading torch position, angel appr. 80 °). Recommended stick out 15-20 mm and length of arc 3-5 mm. Positional weldability of metal cored wires is similar to solid wires (puls arc welding is recommended).

Base Materials

dissimilar ioint welds:

of and between high-strength, mild steels and low-alloyed QT-steels, stainless, ferritic Cr- and austenitic Cr-Ni- steels, manganese steels

claddinas:

for the first layer of corrosion resistant weld claddings on ferritic-perlitic steels in boiler and pressure vessel parts up to fine-grained steel S500N, as well as of high temperature steels like 22NiMoCr4-7 acc. SEW-Werkstoffblatt 365, 366, 20MnMoNi5-5 and G18NiMoCr3-7

Approvals and Certificates

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 23/12-A	GMAW flux cored wire:	CN 23/12-FD
	FOX CN 23/12 Mo-A		CN 23/12 PW-FD
GTAW rod:	CN 23/12-IG		CN 23/12 Mo-FD
GMAW solid wire:	CN 23/12-IG		CN 23/12 Mo PW-FD
		SAW combination:	CN 23/12-UP/BB 202

EN 12073:1999: T 18 8 Mn R M 3 T 18 8 Mn R C 3 AWS A5.22-95: E307T0-G BÖHLER A 7-FD

GMAW flux cored wire, high-alloyed, special applications

Description

Rutile flux cored welding wire preferable for flat & horizontal welding positions. BÖHLER A7-FD achieves high productivity and is easy to operate providing excellent welding characteristics, self releasing slag, almost no spatter formation and temper discoloration, smooth weld finish and safe penetration. Increased travel speeds as well as little demand for cleaning provide considerable savings in time and money. The weld deposit offers high ductility and elongation together with excellent crack resistance even when subjected to thermal shock. It will work harden and offers good resistance against cavitation. Ductility is good even after high dilution when welding problem steels. There is no fear of embrittlement when operating down to service temperatures of -100 °C or above +500 °C. The scaling resistance goes up to +850 °C. When working at service temperatures above +650 °C please contact the supplier.

Typical Composition of All-weld Metal							
wt-%	C 0.1	Si 0.8	Mn 6.8	Cr 19.0	Ni 9.0		
Mechani	ical Pro	perties	of All-v	veld Me	tal		
(*) yield streng tensile strer elongation / impact work (*) u untrea	th R₀ N/m ngth R _m N A (L₀ = 5da k ISO-V K a <i>ted, as-w</i>	m²: /mm²:)) %: V J elded – sh	+ 20 °C: - 100 °C: <i>ielding gas</i>	u 420 630 39 60 : Argon + 1	(≥ 400) (≥ 600) (≥ 35) (≥ 32) 8 % CO ₂	hardne appro. stress l up to 4	ss 200 HB hardened 00 HV
Operatir	Operating Data						
Ø1.6 Ø1.2	re-drying i shielding Argon + 100 % C Welding w torch posit necessary Preheating	f necessary gases: 15 - 25 % O ₂ vith standar tion (angel a to increase and interp	(: 150 °C/24 CO ₂ d GMAW-fac appr. 80 °), v e the voltage ass temperal	h cilities possi when using by 2 V. The ture as requi	ømm 1.2 1.6 ble, slightly traili 100 % CO ₂ as s e gas flow should red by the base	amps A 125 - 280 200 - 350 ng hielding gas it d be 15-18 l/m metal.	voltage V 20 - 34 25 - 35 is. =+

Base Materials

For fabrication, repair and maintenance!

Dissimilar joints, tough buffer and intermediate layers prior to hardfacing, 14 % manganese steels, 13 - 17 % chromium heat resistant steels up to +850 °C, armour plates, high carbon and quenched & tempered steels, surfacing of gears, valves, turbine blades etc.

Approvals and Certificates

Same Alloy Filler Metals

SMAW stick electrode:	FOX
	FOX
OTANA	

GTAW rod: GMAW solid wire: FOX A 7-A FOX A 7 A 7CN-IG A 7-IG Metal cored wire: GMAW flux cored wire: SAW combination: A 7-MC A 7 PW-FD A 7CN-UP/BB 203

EN 12073:1999:	T 18 8 Mn P M 2
	T 18 8 Mn P C 2
AWS A5.22-95:	E 307 T 1-G

BÖHLER A 7 PW-FD

GMAW flux cored wire. high-alloyed, special applications

Description

Rutile flux cored welding wire with fast freezing slag providing positional welding characteristics and fast travel speedsl BÖHLER A7 PW-FD achieves high productivity and is easy to operate providing excellent welding characteristics, self releasing slag, almost no spatter formation and temper discoloration, smooth weld finish and safe penetration. The weld deposit offers high ductility and elongation together with excellent crack resistance even when subjected to thermal shock. It will work harden and offers good resistance against cavitation. Ductility is good even after high dilution when welding problem steels. Beside the major savings in time and cost BÖHLER offers a high production quality level together with lowest probabilities for welding errors. Increased travel speeds as well as little demand for cleaning and pickling provide considerable savings in time and money. Description of all-weld-metal: strain hardening, good resistance against cavitation, crack resistance, resistance against thermal shock, scaling resistance goes up to +850 °C. There is no fear of embrittlement when operating down to service temperatures of -100 °C or above +500 °C. When working at service temperatures above +650 °C please contact the supplier.

Typical Composition of All-weld Metal

wt-%	C 0.1	Si 0.8	Mn 6.8	Cr 19.0	Ni 9.0	

Mechanical Properties of All-weld Metal

(*) yield strength R₀ N/mm ² : tensile strength Rm N/mm ² : elongation A (L₀ = 5d₀) %:	· 20 °C	u 420 630 39	(≥ 400) (≥ 600) (≥ 35)	hardness appro. 200 HB stress hardened
impact work ISO-V KV J	+ 20 °C:	60	(= 00)	up to 400 HV
	- 100 °C:		(≥ 32)	

(*) u untreated, as-welded – shielding gas Argon + 18 % CO2

Operating Data

	re-drying if necessary: 150 °C/24 h shielding gases:	ø mm 1.2	amps A 120 - 190	voltage V 21 - 29
→	Argon + 15 - 25 % CO2			
	100 % CO2			=+
ina with	standard GMAW-facilities possible, slightly trailing t	orch posit	ion (angel	

weld approx. 80 °C), slight weaving is recommended for all welding positions, when using 100 % CO2 as shielding gas it is necessary to increase the voltage by 2 V.

The gas flow should be 15-18 I/min.Preheating and interpass temperature as required by the base metal.

Base Materials

For fabrication, repair and maintenance!

Dissimilar joints, tough buffer and intermediate layers prior to hardfacing, 14 % manganese steels, 13 - 17 % chromium heat resistant steels up to +850 °C, armour plates, high carbon and quenched & tempered steels, surfacing of gears, valves, turbine blades etc.

Approvals and Certificates

Same Alloy Filler Metals

SMAW stick electrode:	FOX A 7-A
GTAW rod:	A 7CN-IG
GMAW solid wire:	A 7-IG

Metal cored wire: GMAW flux cored wire: SAW combination:

A 7-MC A 7-FD A 7CN-UP/BB 203 Dissimilar Joints and Special Applications - GMAW Flux-cored Wires

EN 12073:1999:	T 23 12 L R M 3 T 23 12 L R C 3	BÖ	HLER CN 23/12-FD
AWS A5.22-95:	E309LT0-4 E309LT0-1		GMAW flux cored wire, high-alloyed,
EN 12073:1999: AWS A5.22-95:	T 23 12 L P M (C) 1 E309LT1-4/-1	(for ø 0.9 mm) (for ø 0.9 mm)	special applications

Description

Rutile flux-cored welding wire for GMAW of dissimilar joints of Cr. and CrivitMo-steels and non- or low-alloy steels, as well as weld dading of un- or low alloyed base metals preferably in flat or horizontal position. This product achieves high productivity and is easy to operate achieving excellent welding characteristics, self releasing slag, almost no spatter formation and temper discolouration, smooth weld finish and safe penetration. Beside the major savings in time and cost BOHLER offers a high production quality level together with lowest probabilities for welding errors. Increased travel speeds as well as little demand for cleaning and picking provide considerable savings in time and concey. Suitable for service temperatures of -60 °C to +300 °C.

BÖHLER CN 23/12-FD ø 0.9 mm is well súltable for welding of sheet metal (thickness greater than 1.5 mm, for out-of-position welding greater than 5 mm). The slag concept gives the opportunity to weld this diameter in all welding positions. Wires with ø 1.2 mm can be used for wall thicknesses from 3 mm and up.

Wire ø 0.9 mm is designed for positional welding, wire ø 1.2 mm and 1.6 mm are recommended mainly for downhand and horizontal welding positions.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni
wt-%	≤ 0.03	0.7	1.4	22.8	12.5

Mechanical Properties of All-weld Metal

		u <i>u</i>	ntreated,	as-welded - sh	nielding g	as Ar+18%CO2
yield strength Re N/mm ² :		400	(≥ 350)			
tensile strength Rm N/mm ² :		540	(≥ 520)			
elongation A (L0 = 5d0) %:		35	(≥ 30)			
impact work ISO-V KV J	+ 20 °C:	60	(≥ 47)	- 60 °C:	45 (≥	32)

Operating Data

Ø 0.9	t_ļ	re-drying if necessary: 150 °C/24 h shielding gases:	ø mm 0.9 1.2	amps A 100 - 160 125 - 280	voltage V 21 - 30 20 - 34	
Ø1.2	> '-→	Argon + 15 - 25 % CO ₂ 100 % CO ₂ welding with standard GMAW-facilities poss	1.6 sible, slight	200 - 350	25 - 35 ch	
Ø 1.6	+	 position (angel appr. 80 °), when using 100 % CO₂ as shielding gas it is necessary to increase the voltage by 2 V. The gas flow should be 15-18 l/min. Preheat and interpass temperatures as required by the base metal. 				

Base Materials

dissimilar joint welds: of and between high-strength, mild steels and low-alloyed QT-steels, stainless, ferritic Crand austenitic Cr-Ni- steels, manganese steels

claddings: for the first layer of corrosion resistant weld claddings on ferritic-perlitic steels in boiler and pressure vessel parts up to fine-grained steel S500N, as well as of high temperature steels like 22NiMoCr4-7 acc. SEW-Werkstoffbatt 365, 366, 20MnMoNi5-5 and G18NiMoCr3-7

Approvals and Certificates

TÜV-D (5349.), DB (43.014.16), ÜZ (43.014/2), ÖBB, TÜV-A (516), CL (1401), CWB (E309LT0-1(4)), GL (4571 (C1, M21)), UDT, SEPROZ, LR (DX, CMn/SS)

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 23/12-A	Metal cored wire:	CN 23/12-MC
	FOX CN 23/12 Mo-A	GMAW flux cored wire:	CN 23/12 PW-FD
GTAW rod:	CN 23/12-IG		CN 23/12 Mo-FD
GMAW solid wire:	CN 23/12-IG		CN 23/12 Mo PW-FD
		SAW combination:	CN 23/12-UP/BB 202

Dissimilar Joints and Special Applications - GMAW Flux-cored Wires

EN 12073:1999: T 23 12 L P M 1 T 23 12 L P C 1 AWS A5.22-95: E 309 LT1-4 E 309 LT1-1 BÖHLER CN 23/12 PW-FD

GMAW flux cored wire, high-alloyed, special applications

Description

BOHLER CN 23/12 PW-FD is a rutile flux cored welding wire with fast freezing slag providing excellent positional welding characteristics and fast travel speeds. It is easy to use and operates with a powerful penetrating spray arc transfer, minimum spatter formation and self releasing slag.

This flux cored welding wire offers many economical and quality advaritages over solid wire pulse arc welding. High deposition rates and productivity gains are easily achievable. Additional cost effective benefits are offered through use of less expensive shielding gases, good wetting characteristics (less grinding), lite temper discoloration & bead oxidation, easy operation and safe penetration (reduces the risk of weld defects and associated repair work costs), and smooth and clean weld finish (less post weld work).

Due to its characteristics mainly for positional welding and service temperatures between -60 °C to +300 °C. For downhand & horizontal welding positions (1G,1F, 2F) our flux cored wire BOHLER CN 23/12-FD should be preferred.

Typical Composition of All-weld Metal

	wt-%	C ≤ 0.03	Si 0.7	Mn 1.4	Cr 22.8	Ni 12.5
--	------	-------------	------------------	-----------	------------	------------

Mechanical Properties of All-weld Metal

(*)	u	
vield strength R _a N/mm ² :	400	(≥ 350)
tensile strength Rm N/mm ² :	540	(≥ 520)
elongation $A(L_0 = 5d_0)$ %:	35	(≥ 30)
impact work ISO-V KV J + 20 °C:	65	(≥ 47)
- 60 °C:	50	(≥ 32)
(*) u untreated as-welded - shielding	nas Ar + 18	% CO2

Operating Data

↓	re-drying if necessary: possible, 150 °C / 24 h	ø mm 1.2	amps A 100 - 220	voltage V 20 - 31	
l†	shielding gases: Argon + 15 - 25 % 100 % CO ₂	CO ₂1.6	175 - 260	21 - 29	

welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), slight weaving is recommended for all welding positions; when using 100 % CO₂ as shielding gas it is necessary to increase the voltage by 2 V. The gas flow should be 15-18 l/min. Preheat and interpass temperatures as required by the base metal.

Base Materials

dissimilar joint welds: of and between high-strength, mild steels and low-alloyed QT-steels, stainless, ferritic Cr- and austenitic Cr-Ni- steels, manganese steels

claddings: for the first layer of corrosion resistant weld claddings on ferritic-peritic steels in boiler and pressure vessel parts up to fine-grained steel S500N, as well as of high temperature steels like 22NiMoCr4-7 acc. SEW-Werkstoffblatt 365, 366, 20MnM/oNi5-5 and G18NiMoCr3-7

Approvals and Certificates

TÜV-D (09115.), DB (43.014.22), ÜZ (43.014/02), ABS (E309 LT 1-1(4)), CL (0264), LR (DXV u. O, CMn/SS), CWB (E309LT0-1(4)), UDT, SEPROZ, ÖBB

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode:	FOX CN 23/12-A FOX CN 23/12 Mo-A	Metal cored wire: GMAW flux cored
GTAW rod: GMAW solid wire:	CN 23/12-IG CN 23/12-IG	

CN 23/12-MC CN 23/12-FD CN 23/12 Mo-FD CN 23/12 Mo PW-FD CN 23/12 Wo PW-FD CN 23/12-UP/BB 202

SAW combination:

wire:

Dissimilar Joints and Special Applications - GMAW Flux-cored Wires

EN 12073:1999: T 23 12 2 L R M 3 T 23 12 2 L R C 3 AWS A5.22-95: E 309LMoT0-4 (1) EN 12073:1999: T 23 1 2 2 L P M (C) 1 (for ø 0.9 mm) AWS A5.22-95: E 309 LMoT1-4/-1 (for ø 0.9 mm) GMAW flux cored wire, high-alloyed, special applications

Description

Rutile flux-cored welding wire of type T 23 12 2 1 / E309LMoT0 for GMAW of dissimilar joints of Cr- and CrNi(Mo)steels and non- or low-aloy steels, as well as weld clading of un- or low alloyed base metals preferably in flat or horizontal position. The wire offers a high safety against hot cracking even in the case of high dilution. For Mo-alloyed cladings the product is necessary for the 1. layer. This product achieves high productivity and is easy to operate achieving excellent welding characteristics, self releasing slag, almost no spatter formation and temper discolouration, smooth weld finish and safe penetration. Beside the major savings in time and cost 60 HLER offers a high production quality level together with lowest probabilities for welding errors. Increased fravel speeds as well as little demand for clearing and pickling provide considerable savings in time and norey. Suitable for service temperatures of -60° Ct b -300° Ct. BOHLER NO 23/12 Mo-FD o 0.3 mm is well suitable for welding of sheet metal finicheness greater than 1.5 to 3 mm, for out-of-position welding greater than 5 mm). The slag concept gives the opportunity to weld this clameter in all welding positions. Wires vit 10 a 1.2 mm and 1.6 mm are recommended mainly for downhand and horizontal welding positions, horizontal/weiciag position as well as suitify vertical down position (1 octock).

Typical Composition of All-weld Metal

wt-%	C ≤ 0.03	Si 0.6	Mn 1.4	Cr 22.7	Ni 12.3	Mo 2.7

Mechanical Properties of All-weld Metal

a unitodica, do wolada - oniciality gao ni +	10 70 002
yield strength Re N/mm ² : 500 (≥ 450)	
tensile strength Rm N/mm ² : 700 (\geq 550)	
elongation A ($L_0 = 5d_0$) %: 30 (≥ 25)	
impact work ISO-V KV J + 20 °C: 55 (≥ 47) - 60 °C: 37 (≥ 32)	

Operating Data

2 Ø 0.9

Q

0

re-drying if necessary: 150 °C/24 h	ø mn	n amps A	voltage V	
shielding gases:	0.9	100 - 160	21 - 30	
Argon + 15 - 25 % CO ₂	1.2	125 - 280	20 - 34	
	1.6	200 - 350	25 - 35	т

welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), when using 100 % CO₂ as shielding gas it is necessary to increase the voltage by 2 V. The gas flow should be 15-18 l/min. Preheat and interpass temperatures as required by the base metal.

Base Materials

dissimilar joint welds: mild steels and low-alloyed constructional and QT-steels among themselves or among each other; unalloyed as well as low-alloyed boiler constructional steels with stainless Cr-, CrNi- and CrNiMo-steels; ferritic-austenitic joint welds in boiler and pressure vessel parts.

weld claddings: for the first layer of corrosion resistant claddings on P235GH, P265GH, S255N, P295GH, S355N - S500N; for the first layer of corrosion resistant weld claddings on high temperature quenched and tempered finegrained steels acc. AD-Merkblatt HPO, class 3.

Approvals and Certificates

TÜV-D (5351.), DB (43.014.17), ÜZ (43.014/2), ÖBB, TÜV-A (517), ABS (E 308 MoLT0-4), CL (1304), DNV (309MoL (M21)), GL (4459 (C1, M21)), LR (X (M21)), RINA (309MO S), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode	C.
GTAW rod: GMAW solid wire:	

FOX CN 23/12-A FOX CN 23/12 Mo-A CN 23/12-IG CN 23/12-IG Metal cored wire: GMAW flux cored wire:

CN 23/12-MC CN 23/12-FD CN 23/12 PW-FD CN 23/12 Mo PW-FD CN 23/12-UP/BB 202

SAW combination:

Dissimilar Joints and Special Applications – GMAW Flux-cored Wires

EN 12073:1999: T 23 12 2 L P M 1 T 23 12 2 | P C 1 AWS A5.22-95: E 309LMoT1-4 E 309LMoT1-1

BÖHLER CN 23/12 Mo PW-FD

GMAW flux cored wire, high-alloyed, special applications

Description

BÖHLER CN 23/12 Mo PW-FD is a rutile flux cored welding wire with fast freezing slag providing excellent positional welding characteristics and fast travel speeds. It is easy to use and operates with a powerful penetrating spray arc transfer, minimum spatter formation and self releasing slag.

This flux cored welding wire offers many economical and guality advantages over solid wire pulse arc welding. High deposition rates and productivity gains are easily achievable. Additional cost effective benefits are offered through use of less expensive shielding gases (Argon + 15-25 % CO2 or 100 % CO2), good wetting characteristics (less grinding), little temper discoloration & bead oxidation, easy operation and safe penetration (reduces the risk of weld defects and associated repair work costs), and smooth and clean weld finish (less post weld work).

Due to its characteristics mainly for positional welding and service temperatures between -60 °C to +300 °C. For downhand & horizontal welding positions (1G, 1F, 2F) our flux cored wire BÖHLER CN 23/12 Mo-FD should be preferred.

Typical Composition of All-weld Metal

wt- %	C	Si	Mn	Cr	Ni	Mo
	≤ 0.03	0.7	1.4	22.7	12.3	2.7
	= 0.00	•				

Mechanical Properties of All-weld Metal

(*)	u	
vield strength R _o N/mm ² :	530	(≥ 450)
tensile strength R _m N/mm ² :	720	(≥ 550)
elongation A ($L_0 = 5d_0$) %:	32	(≥ 25)
impact work ISO-V KV J + 20 °C;	65	(≥ 47)
- 60 °C;	50	(≥ 32)
	10.0/ /	

*) u untreated, as-welded – shielding gas Ar + 18 % CO₂

Operating Data

►	re-drying if necessary: possible, 150 °C / 24 h	ø mm 1.2	amps A 100 - 220	voltage V 20 - 31	=-
> *	shielding gases: Argon + 15 -	25 % CO₂			

Welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), slight weaving is recommended for positional welding. When using 100 % CO2 as shielding gas it is necessary to increase the voltage by 2 V. The gas flow should be 15-18 l/min. Preheat and interpass temperatures as required by the base metal.

Base Materials

dissimilar joint welds; mild steels and low-alloved constructional and QT-steels among themselves or among each other; unalloyed as well as low-alloyed boiler or constructional steels with stainless Cr-, CrNi- and CrNiMo-steels; ferritic-austenitic joint welds in boiler and pressure vessel parts. weld claddings: for the first layer of corrosion resistant claddings on P235GH, P265GH, S255N, P295GH, S355N - S500N; for the first layer of corrosion resistant weld claddings on high temperature guenched and tempered fine-grained steels acc. AD-Merkblatt HPO, class 3.

Approvals and Certificates

TÜV-D (09116.), BV (309Mo), UDT, SEPROZ

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode	FOX CN 23/12-A
	FOX CN 23/12 Mo-A
GTAW rod:	CN 23/12-IG
GMAW solid wire:	CN 23/12-IG

Metal cored wire: GMAW flux cored wire: CN 23/12 Mo-FD

SAW combination:

CN 23/12-MC CN 23/12-FD CN 23/12 PW-FD CN 23/12-UP/BB 202 Dissimilar Joints and Special Applications - SAW Wire/Flux-Combinations

SAW solid wire: EN 12072:1999: S 18 8 Mn AWS A5.9-93: ER307 (mod.) sub-arc flux: EN 760: SA FB 2 DC BÖHLER A 7 CN-UP // BB 203 SAW wire/flux-combination, high-alloyed, special applications

Description

SAW wire/flux combination of type S 18 8 Mn / (ER307) for numerous applications. BÖHLER A 7-UP // BB 203 yields a weld deposit offering exceptionally high ductility and elongation together with outstanding crack resistance. There is no fear of embrittlement when operating down to service temperatures of -100 °C or above +500 °C. The scaling resistance goes up to +850 °C. When working at service temperatures above +650 °C please contact the supplier. The weld metal can be post weld heat treated without any problems. The deposit will work harden and offers good resistance against cavitation. Ductility is good even after high dilution when welding problem steels or when subjected to thermal shock or scaling. An excellent alloy providing good operating characteristics, smooth beads and a low hydrogen weld metal. For information regarding this sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni
SAW wire wt-%	0.08	0.8	7.0	19.2	9.0
SAW wire wt-%	0.08	0.9	6.8	18.5	8.8

Mechanical Properties of All-weld Metal

(*)		u
yield strength Re N/mm ² :		≥ 390
tensile strength Rm N/mm ² :		≥ 620
elongation A (Lo = 5do) %:		≥ 36
impact work ISO-V KV J	+ 20 °C:	≥ 95
	- 50 °C:	≥ 60
	- 100 °C:	≥ 40

(*) u untreated, as-welded

Operating Data

re-drying of sub-arc flux: Ø mm 300 - 350 °C, 2 h - 10 h max. amperage of sub-arc flux: 800 A Preheat and interpass temperatures as required by the base metal.

Base Materials

For fabrication, repair and maintenance! Dissimilar joints, tough buffer and intermediate layers prior to hardfacing, 14 % manganese steels, 13 - 17 % chromium heat resistant steels, armour plates, high carbon and quenched & tempered steels, surfacing of gears, valves, turbine blades etc.

Approvals and Certificates

UDT SAW solid wire: TÜV-D (02604.), UDT

Same Alloy Filler Metals

SMAW stick electrode:	FOX A 7	GMAW solid wire:	A 7-IG
	FOX A 7-A	Metal cored wire:	A 7-MC
GTAW rod:	A 7CN-IG	GMAW flux cored wire:	A 7-FD, A 7 PW-FD

Dissimilar Joints and Special Applications - SAW Wire/Flux-Combinations

SAW solid wire: EN 12072:1999: S 23 12 L AWS A5.9.93: ER309L sub-arc flux: EN 760: SA FB 2 DC BÖHLER CN 23/12-UP // BB 202 SAW wire/flux-combination,

high-alloyed, special applications

Description

SAW wire/flux combination of type S 23 12 L / ER309L. This is a standard alloy for welding dissimilar joints, steels with poor weldability and weld claddings.

SAW wire/flux-combination for multi-pass welding, smooth beads, low hydrogen contents (HD > 5 ml/100 g), easy slag removal without any slag residues and good welding characteristics even for fillet welds are very much appreciated by users. The average ferrite content is 16 FN. Suitable up to service temperatures of +300 °C.

BÖHLER BB 202 is a fluoride-basic, agglomerated flux providing good operating characteristics. For information regarding this sub-arc welding flux see our detailed data sheet.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni
SAW wire wt-%	≤ 0.02	0.50	1.7	24.0	13.2
all-weld metal %	0.015	0.65	1.3	23.4	13.1

Mechanical Properties of All-weld Metal

(*)		u
yield strength Re N/mm ² :		≥ 320
tensile strength Rm N/mm ² :		≥ 520
elongation $A(L_0 = 5d_0)$ %:		≥ 30
impact work ISO-V KV J	+ 20 °C:	≥ 70
(*) u untreated, as-welded		

Operating Data

re-drying of sub-arc flux: 300 – 350 °C / 2 h – 10 h	ø mm 3.0	=±
max. amperage: 800 A		
Preheat and interpass temperatures as	required by the base metal.	

Base Materials

dissimilar joint welds:

of and between high-strength, mild steels and low-alloyed QT-steels, stainless, ferritic Cr- and austenitic Cr-Ni- steels, manganese steels

claddings:

for the first layer of corrosion resistant weld claddings on ferritic-perlitic steels in boiler and pressure vessel parts up to fine-grained steel S500N, as well as of high temperature steels like 22NiMoCr4-7 acc. SEW-Werkstoffbiatt 365, 366, 20MnMoNi5-5 and G18NiMoCr3-7

Approvals and Certificates

DNV (309L), UDT SAW solid wire: TÜV-D (2604.)

Same Alloy/Similar Alloy Filler Metals

SMAW stick electrode	: FOX CN 23/12-A	Metal cored wire:	CN 23/12-MC
	FOX CN 23/12 Mo-A	GMAW flux cored	wire: CN 23/12-FD
GTAW rod:	CN 23/12-IG		CN 23/12 PW-FD
GMAW solid wire:	CN 23/12-IG		CN 23/12 Mo-FD
			CN 23/12 Mo PW-FD
2.8 Filler metals for Heat Resistant Steels

Objectives

This section contains data sheets for filler metals that are suitable for welding heat-resistant steels.

Heat-resistant steels are used at temperatures over 550 °C. In addition to scale-resistance and adequate high-temperature strength there is also a requirement for the lowest possible changes in volume during repeated heating up and cooling down so that the oxide layers do not crack open. Over and above this they should also have adequate resistance to various annealing and furnace atmospheres.

The Cr, Si and Al alloying elements give rise to the scale resistance due to the formation of dense and adhesive oxide layers. The Cr-Al alloy steels are ferritic and less suitable for welding but are extremely resistant in sulphurcontaining gases. The Cr-Ni-Si alloy steels exhibit an austenitic microstructure, have excellent resistance in carburising furnace atmospheres containing nitrogen but form a low melting point eutectic with nickel in sulphurous gases at approx. 700 °C.

With these steels it is important to be aware of the embrittlement ranges 400...500 °C (with Cr contents above 15 %) and above 950 °C (grain growth) in ferritic steels and the sphase embrittlement between 650 and 800 °C with Cr contents above 20 %.

Content

OVERVIEW	96
SMAW STICK ELECTRODES	97
GTAW RODS)5
GMAW SOLID WIRES	11

Overview – Standard Classifications

Böhler	EN	AWS
SMAW stick electrod FOX FA FOX FF FOX FFB FOX FFB FOX FFB-A FOX CN 21/33 Mn FOX CN 25/35 Nb FOX CN 35/45 Nb	es EN 1600: E 25 4 B 2 2 EN 1600: E 22 12 B 2 2 EN 1600: E 22 12 R 3 2 EN 1600: E 25 20 B 2 2 EN 1600: E 25 20 B 2 2 EN 1600: E Z 23 3 B 4 2 EN 1600: E Z 235 Nb B 6 2 EN 1600: E Z 35 45 Nb B 6 2	- AWS A5.4-92: E309-15(mod.) AWS A5.4-92: E309-17(mod.) AWS A5.4-92: E310-15(mod.) AWS A5.4-92: E310-16 - -
GTAW rods FA-IG FF-IG FFB-IG CN 21/33 Mn-IG CN 25/35 Nb-IG CN 35/45 Nb-IG GMAW solid wires	EN 12072: W 25 4 EN 12072: W 25 12 EN 12072: W 25 20 Mn EN 12072: W 25 30 Nb EN 12072: W 225 35 Nb EN 12072: W 225 35 Nb EN 12072: W 235 45 Nb H	- AWS A5.9-93: ER309(mod.) AWS A5.9-93: ER310(mod.) - -
FA-IG FF-IG FFB-IG CN 21/33 Mn-IG CN 25/35 Nb-IG CN 35/45 Nb-IG	EN 12072: G 25 4 EN 12072: G 22 12 H EN 12072: G 22 20 Mn EN 12072: G 22 20 Mn EN 12072: G 225 35 Nb EN 12072: G Z35 45 Nb H	- AWS A5.9-93: ER309(mod.) AWS A5.9-93: ER310(mod.) -

Overview – Typical Chemical Composition

Böhler	C	Si	Mn	Cr	Ni	Nb	Fe	Ti
SMAW stick electrodes FOX FA FOX FF- FOX FF-A FOX FFB FOX FFB-A FOX CN 21/33 Mn FOX CN 25/35 Nb FOX CN 35/45 Nb	0.1 0.1 0.11 0.12 0.14 0.4 0.45	0.5 1.0 0.8 0.6 0.5 0.3 1.0 1.0	1.2 1.1 1.0 3.5 2.2 4.5 1.5 0.8	25.0 22.5 26.0 26.0 21.0 25.0 35.0	5.4 12.0 12.5 20.5 20.5 33.0 35.0 45.5	1.3 1.2 0.9	bal. bal. bal.	0.1
GTAW rods	0.08	0.8	12	25.7	4.5			
FF-IG FFB-IG CN 21/33 Mn-IG CN 25/35 Nb-IG CN 35/45 Nb-IG	0.00 0.11 0.12 0.2 0.42 0.42	1.2 0.9 0.2 1.2 1.5	1.2 3.2 2.3 1.8 1.0	22.0 25.0 22.0 26.0 35.0	4.5 11.0 20.5 33.0 35.0 45.5	1.7 1.3 0.8	bal.	
FA-IG	0.08	0.8	1.2	25.7	4.5			
FF-IG FFB-IG CN 21/33 Mn-IG CN 25/35 Nb-IG CN 35/45 Nb-IG	0.08 0.12 0.2 0.42 0.42	1.1 0.9 0.2 1.2 1.5	1.6 3.2 2.3 1.8 1.0	23.0 25.0 22.0 26.0 35.0	12.5 20.5 33.0 35.0 45.5	1.7 1.3 0.8	bal.	

EN 1600:1997: E 25 4 B 2 2

BÖHLER FOX FA

SMAW stick electrode, high-alloyed, heat resistant

Description

Basic coated alloyed-core wire electrode for welding heat resistant steels. For furnaces requiring elevated resistance to reducing and oxidizing sulphurous gases as well as for final passes of weld joints in heat resistant, ferritic CrSiAI steels. Scaling resistant up to +1100 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni
wt-%	0.10	0.5	1.2	25.0	5.4

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		520	(≥ 490)
tensile strength Rm N/mm ² :		680	(≥ 640)
elongation A ($L_0 = 5d_0$) %:		22	(≥ 15)
impact work ISO-V KV J	+ 20 °C:	45	(≥ 30)
(*) u untreated, as-welded			. ,

Operating Data

	re-drying if necessary:	ø mm 2.5	L mm 300	amps A 50 - 75	=+
	electrode identification:	3.2	350	80 - 105	
	FOX FA E 25 4 B	4.0	350	100 - 130	
na	and internass temperatures 200 - 4	00 °C depending	on the	relevant base	metal

Preheating and interpass temperatures 200 - 400 °C, depending on and material thickness.

Base Materials

ferritic-austenitic 1.4821 X 20 CrNiši 25 4, 1.4823 G-X 40 CrNiši 27 4 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4762 X 10 CrAI 25, 1.4710 X 30 CrSI 6, 1.4740 G-X 40 CrSI 17 Vol cort - 4071 + 407

AISI 327, ASTM A297HC

Approvals and Certificates

UDT, SEPROZ

Same Alloy Filler Metals

GTAW rod: FA-IG

GMAW solid wire:

FA-IG

EN 1600:1997: E 22 12 B 2 2 AWS A5.4-92: E309-15(mod.) **BÖHLER FOX FF**

SMAW stick electrode, high-alloyed, heat resistant

Description

Basic coated alloyed-core wire electrode for welding analogous, heat resistant rolled, forged and cast steels as well as heat resistant ferritic CrSiAI steels. For weld joints exposed to reducing, sulplurous gases, the final layer has to be deposited by means of FOX FA, e.g. in annealing plants, hardening plants, steam boiler construction, the crude oil industry and the ceramics industry. Scaling resistant up to +1000 °C.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni
wt-%	0.1	1.0	1.1	22	12

Mechanical Properties of All-weld Metal

(*)		u	
yield strength Re N/mm ² :		440	(≥ 400)
tensile strength Rm N/mm ² :		600	(≥ 550)
elongation A (Lo = 5do) %:		35	(≥ 30)
impact work ISO-V KV J	+ 20 °C:	80	(≥ 47)
(*) untreated as-welded			. ,

Operating Data

	re-drying if necessary: electrode identification:	ø mm 2.5 3.2	L mm 300 350	amps A 50 - 75 80 - 100	=+			
	FOX FF E 22 12 B	4.0	350	110 - 140				
heating and interpass temperatures for ferritic steels 200 - 300 °C.								

Base Materials

Pre

austenitic 1.4828 X 15 CrNiSi 20 12, 1.4826 G-X 40 CrNiSi 22 9, 1.4833 X7 CrNi23 14 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4710 G-X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 305, ASTM A297HF

Approvals and Certificates

TÜV-D (9090.), TÜV-A (21), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX FF-A GTAW rod: FF-IG GMAW solid wire: FF-IG

EN 1600:1997: E 22 12 R 3 2 AWS A5.4-92: E309-17 BÖHLER FOX FF-A

SMAW stick electrode, high-alloyed, heat resistant

Description

Rutile coated alloyed-core wire electrode for welding analogous, heat resistant rolled, forged and cast steels as well as heat resistant ferritic CrSiAI steels, e.g. in annealing plants, hardening plants, steam boiler construction, the crude oil industry and the ceramics industry. For weld joints in CrSiAI steels exposed to sulphurous gases, the final layer has deposited by means of FOX FA. Scaling resistant up to +1000 °C. Smooth beads and easy slag removal.

Typical Composition of All-weld Metal										
wt-%	C 0.1	Si 0.8	Mn 1.0	Cr 22.5	Ni 12.5					
Mechani	Mechanical Properties of All-weld Metal									
*) U /ield strength R₀ N/mm ² : 460 (≥ 350) ensile strength Rm N/mm ² : 610 (≥ 550) Jongation A (Lo = 5do) %: 37 (≥ 30) mpact work ISO-V KV J + 20 °C: 60 (≥ 47) *) u untreated, as-welded										
Operatir	ng Data	a								
re-drying if necessary: 120 - 200 °C, min. 2 h electrode identification: FOX FF-A E 22 12 R Preheating and interpass temperatures for ferritic ste					ø mm 2.5 3.2 4.0 els 200 - 3	L mm 350 350 350 00 °C.	amps A 50 - 80 80 - 110 110 - 140	=+ ∼		
Base Ma	Rase Materials									

austenitic 1.4828 X 15 CrNiSi 20 12, 1.4826 G-X 40 CrNiSi 22 9, 1.4833 X7 CrNi23 14 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4710 G-X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 305, ASTM A297HF

Approvals and Certificates

TÜV-D (9091.), ABS (309-17), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX FF GTAW rod: FF-IG GMAW solid wire: FF-IG

EN 1600:1997: E 25 20 B 2 2 AWS A5.4-92: E310-15(mod.)

BÖHLER FOX FFB

SMAW stick electrode, high-alloyed, heat resistant

Description

Basic coated alloyed-core wire electrode for analogous, heat resisting rolled, forged and cast steels e.g. in annealing plants, hardening plants, steam boiler construction, the crude oil industry and the ceramics industry. Joint welds in heat resisting CrSiAI steels exposed to sulphurous gases should be given a final layer deposited by means of FOX FA. Scaling resistant up to +1200 °C. Cryogenic resistance down to -196 °C. The service temperatu-

Šcaling resistant up to +1200 °C. Cryogenic resistance down to -196 °C. The service temperature range between +650 and +900 °C should be avoided owing to the risk of embrittlement.

Typical Composition of All-weld Metal								
wt-%	C 0.11	Si 0.6	Mn 3.5	Cr 26.0	Ni 20.5			
Mechanical Properties of All-weld Metal								
(*) yield streng tensile stre elongation impact wor (*) u untre	gth R₀ N/m ngth R _m N A (L₀ = 5d k ISO-V ł ated, as-w	nm²: I/mm²: Io) %: KV J <i>velded</i>	+ 20 °C: - 196 °C:	u 420 600 36 100	(≥ 350) (≥ 560) (≥ 30) (≥ 47) (≥ 32)			

Operating Data

	re-drying if necessary: – electrode identification: FOX FFB E 25 20 B	ø mm 2.5 3.2 4.0 5.0	L mm 300 350 350 450	amps A 50 - 75 80 - 110 110 - 140 140 - 180	=+
aboating a	and internees temperatures for forritic	otoolo 1000 2	00 00		

Preheating and interpass temperatures for ferritic steels +200 - 300 °C.

Base Materials

austenitic 1.4841 X 15 CrNiSi 25 20, 1.4845 X 12 CrNi 25 21, 1.4828 X 15 CrNiSi 20 12, 1.4840 G-X 15 CrNi 25 20, 1.4846 G-X 40 CrNi 25 21, 1.4826 G-X 40 CrNiSi 22 9 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4762 X 10 CrAI 25, 1.4710 G-X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 305, 310, 314; ASTM A297 HF; A297 HJ

Approvals and Certificates

TÜV-D (0143.), Statoil, UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX FFB-A GTAW rod: FFB-IG GMAW solid wire: FFB-IG

EN 1600:1997: E 25 20 R 3 2 AWS A5.4-92: E310-16

BÖHLER FOX FFB-A

SMAW stick electrode, high-alloyed, heat resistant

Description

Rutile coated alloyed-core wire electrode for analogous, heat resisting rolled steels e.g. in annealing shops, hardening shops, steam boiler construction, the crude oil industry and the ceramics industry. In weld joints exposed to sulphurous gases the final layer has to be deposited by means of FOX FA. Smooth beads and easy slag removal.

Scaling resistance up to +1200 °C.

The temperature range between +650 and +900 °C should be avoided owing to the risk of embrittlement. Thick-walled weldments to be carried out by means of the basic electrode FOX FFB.

Typical Composition of All-weld Metal

wt-%	C	Si	Mn	Cr	Ni
	0.12	0.5	2.2	26.0	20.5

Mechanical Properties of All-weld Metal

(*) yield strength Re N/mm ² : tensile strength Rm N/mm ² : elongation A (Lo = 5do) %:		u 430 620 35	(≥ 350) (≥ 550) (≥ 30)
impact work ISO-V KV J	+ 20 °C:	75	(≥ 47)
(*) u untreated as-welded			

Operating Data

re-drying if necessary: 120 - 200 °C, min. 2 h electrode identification: FOX FFB-A 310-16 E 25 20 R	ø mm 2.0 2.5 3.2	L mm 300 300 350	amps A 40 - 60 50 - 80 80 - 110	=+ ~
 	4.0	350	110 - 140	

Preheating and interpass temperatures for ferritic steels 200 - 300 °C.

Base Materials

austenitic 1.4841 X 15 CrNiSi 25 20, 1.4845 X 12 CrNi 25 21, 1.4828 X 15 CrNiSi 20 12, 1.4840 G-X 15 CrNi 25 20, 1.4846 G-X 40 CrNi 25 21, 1.4826 G-X 40 CrNiSi 22 9 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4762 X 10 CrAI 25, 1.4710 G-X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 305, 310, 314; ASTM A297 HF; A297 HJ

Approvals and Certificates

Statoil, UDT, VUZ, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX FFB GTAW rod: FFB-IG GMAW solid wire: FFB-IG

EN 1600:1999:

EZ 21 33 B 4 2

BÖHLER FOX CN 21/33 Mn

> SMAW stick electrode high-alloyed, heat resistant

Description

Basic coated electrode for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition. Suitable for operating temperatures up to 1050 °C in carburized low-sulphur gas. Typicall alloy for welding of pyrolysis furnace tubes.

Typical Composition of All-weld Metal									
wt-%	С 0.14	Si 0.3	Mn 4.5	Cr 21	Ni 33	Nb 1.3	Fe bal.		
Mechani	cal Pro	perties	of All-w	veld Met	al				
(*) u yield strength R _* N/mm ² : ≥ 410 tensile strength R _m N/mm ² : ≥ 600 elongation A (La=5d ₀) %: ≥ 25 impact work ISO-V KV J ≥ 70 (*) u untreated, as-welded									
Operatin	g Data								
	re-dryir 250-30 electroo FOX C	ng: 0°C, min de identifi N 21/33 I	. 2 h cation: /in	ø mm 2.5 3.2 4.0	L m 300 350 400	m))	amps A 50-75 70-110 90-140	=+	
Base Ma	terials								
1.4876 X10 NiCrAITi 32 20 1.4859 GX10 NiCrNb 32 20 1.4958 X 5 NiCrAITi 3120 1.4959 X 8NiCrAITi 32 21 Alloy 800 H, UNS N08800, N08810, N08811									
Approva	Is and (Certific	ates						
TÜV-D (105	14.), TÜV-	A, CL							
Same-all	ov Fille	r Meta	le						

GTAW ro	od:	CN 21/33	Mn-IG

GMAW sol	id wire:	CN 21/33	Mn-IG

EN 1600:1999:

EZ 25 35 Nb B 6 2

BÖHLER FOX CN 25/35 Nb

SMAW stick electrode high-alloyed, heat resistant

Description

Basic coated electrode for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition Resistant to scaling up to 1150 °C. Typicall alloy for welding of pyrolysis furnace tubes.

Typical Composition of All-weld Metal									
wt-%	С 0.4	Si 1.0	Mn 1.5	Cr 25	Ni 35	Nb 1.2	Ti 0.1	Fe bal.	
Mechanic	al Prop	erties o	f All-w	eld Meta	ıl				
(*) yield strength tensile streng elongation A	R₀ N/mm²: th R _m N/mr (L₀=5d₀) %:	n²:		u ≥ 480 ≥ 700 ≥ 8					
(*) u untrea	ited, as-we	lded							
Operating	g Data								
	re-drying 250-300 electrode FOX CN	°C, min. 2 e identificat 25/35 Nb	tion:	ø mm 2.5 3.2 4.0	L mr 300 350 400	n	amps A 50-75 70-120 100-140	=+	
Base Mat	erials								
1.4852 GX40 1.4857 GX40	NiCrSiNb3 NiCrSi35-2	5-25 5							
Approvals and Certificates									
TÜV-D (applie	ed), TÜV-A	, CL							
Similar-al	loy Fille	er Metal	s						
GTAW rod: GMAW solid	wire:	CN 25/3 CN 25/3	5 Nb-IG						

DIN EN1600:1997: EZ 35 45 Nb B 6 2

BÖHLER FOX CN 35/45 Nb

> SMAW stick electrode high-alloyed, heat resistant

Description

Basic coated electrode for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition Resistant to scaling up to 1180 °C. Typicall alloy for welding of pyrolysis furnace tubes.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Ni	Nb	Fe
wt-%	0.45	1	0.8	35.0	45.5	0.9	bal.

Mechanical Properties of All-weld Metal

(*)	u
yield strength R _e N/mm ² :	≥ 450
tensile strength R _m N/mm ² :	≥ 600
elongation A (L=5d) %:	≥ 8

(*) u untreated, as welded

Operating Data

t

->	re-drying if necessary: 120 - 200 °C, min. 2-3 hrs	ø mm 2.5	L mm 300	amps A 70-90	=+
	electrode identification: FOX CN 35/45 Nb	3.2 4.0	350 350	90-110 100-140	

Base Materials

GX45NiCrNbSiTi45-35

Approvals and Certificates

Same Alloy Filler Metals

GTAW rod:	CN 35/45 Nb-IG
GMAW solid wire:	CN 35/45 Nb-IG

EN 12072:1999: W.Nr.: W 25 4 1.4820 **BÖHLER FA-IG**

GTAW rod, high-alloyed, heat resistant

Description

TIG welding rod for gas-shielded welding of heat resisting, analogous or similar steels. Ferriticaustenitic deposit. The low Ni-content renders this filler metal especially recommendable for applications involving the attack of sulphurous oxidizing or reducing combustion gases. Scaling resistance up to +1100 °C.

Typical	Compo	osition of	Weldi	ing Rod	
	C	Si	Mn	Cr	Nii

	С	Si	Mn	Cr	Ni
wt-%	0.08	0.8	1.2	25.7	4.5

Mechanical Properties of All-weld Metal

(*)	u	
yield strength Re N/mm ² :	540	(≥ 500)
tensile strength Rm N/mm ² :	710	(≥ 650)
elongation $A(L_0 = 5d_0)$ %:	22	(≥ 20)
impact work ISO-V KV J + 20 °C:	70	(≥ 40)
(*) u untreated, as-welded – shielding gas	Argon	

Operating Data

shielding gas: 100 % Argon			ø mm
rod marking:			2.4
front: 🕆 W 25 4			
back: 1.4820			

Preheating and interpass temperature as required by the base metal.

Base Materials

ferritic-austenitic 1.4821 X 20 CrNiSi 25 4, 1.4823 G-X 40 CrNiSi 27 4 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4762 X 10 CrAI 25, 1.4710 X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 327; ASTM A297HC

Approvals and Certificates

UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX FA

GMAW solid wire: FA-IG

EN 12072:1999: AWS A5.9-93: W.Nr.: W 22 12 H ER309(mod.) 1.4829

BÖHLER FF-IG

GTAW rod, high-alloyed, heat resistant

Description

TIG welding rod for analogous, heat resisting rolled, forged and cast steels as well as for heat resisting, ferritic CrSiAI steels, e.g. in annealing shops, hardening shops, steam boiler construction, the crude oil industry and the ceramics industry. Austenitic deposited with a ferrite content of approx. 8 %. Preferably used for applications involving the attack of oxidizing gases. The final layer of joint welds in CrSiAI steels exposed to sulphurous gases must be deposited by means of FOX FA or FA-IG. Scaling resistance up to +1000 °C.

Typica	I Compo	sition o	of Weldi	ing Rod			
wt-%	C 0.11	Si 1.2	Mn 1.2	Cr 22.0	Ni 11.0		

Mechanical Properties of All-weld Metal

(*)	u	
yield strength Re N/mm ² :	500	(≥ 420)
tensile strength Rm N/mm ² :	630	(≥ 600)
elongation A ($L_0 = 5d_0$) %:	32	(≥ 30)
impact work ISO-V KV J + 20 °	C: 115	(≥ 85)
(*) u untreated, as-welded - shielding	gas Argon	. ,

Operating Data

↓ →	shielding gas: 100 % Argon	ø mm
IT I	rod marking:	1.6
' →	front: W 22 12 H	2.0
	back: 1.4829	2.4
Preheating	and interpass temperatures for ferritic s	teels 200 - 300 °C.

Base Materials

austenitic 1.4828 X 15 CrNiSi 20 12, 1.4826 G-X 40 CrNiSi 22 9, 1.4833 X7 CrNi 2314 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4710 G-X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 305; ASTM A297HF

Approvals and Certificates

TÜV-A (20), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX FF FOX FF-A GMAW solid wire: FF-IG

EN 12072:1999: AWS A5.9-93: W.Nr.: W 25 20 Mn ER310(mod.) 1.4842 **BÖHLER FFB-IG**

GTAW rod, high-alloyed, heat resistant

Description

TIG welding rod for analogous, heat resisting, rolled, forged and cast steels, e.g. in annealing shops, hardening shops, steam boiler construction, the crude oil industry and the ceramics industry. Fully austenitic deposit. Preferably employed for applications involving the attack of oxidizing, nitrogen-containing or low-oxygen gases. The final layer of joint welds in heat resisting CrSiAl steels exposed to sulphurous gases must be deposited by means of FOX FA or FA-IG.

Scaling resistance up to +1200 °C. Cryogenic toughness down to -196 °C.

Typical Composition of Welding Rod					
wt-%	C 0.12	Si 0.9	Mn 3.2	Cr 25.0	Ni 20.5
Mechani	cal Prop	erties c	of All-w	eld Meta	al
(*) yield strengt tensile stren elongation A impact work (*) u untrea	th R _e N/mm ligth R _m N/m $A (L_0 = 5d_0)$ $A (L_0 = 5d_0)$ $A (L_0 = 5d_0)$ $A (L_0 = 5d_0)$ $A (L_0 = 5d_0)$?: m²: %: J + - 1 ded – shiel	20 °C: 96 °C: ding gas A	u 420 630 33 85 Argon	(≥ 380) (≥ 580) (≥ 25) (≥ 80) (≥ 32)

Operating Data

▲ →	shielding gas:	100 % Argon	e	s mm
I	rod marking:	1		1.6
' →	front:	W 25 20 Mn		2.0
	back:	1.4842		2.4
Description of the second states of	the day was a set of the second	a such one s for the militar	-+	000 00

Preheating and interpass temperatures for ferritic steels 200 - 300 °C.

Base Materials

austenitic

1.4841 X 15 CrNiši 25 20, 1.4845 X 12 CrNi 25 21, 1.4828 X 15 CrNiši 20 12, 1.4840 G-X 15 CrNi 25 20, 1.4846 G-X 40 CrNi 25 21, 1.4826 G-X 40 CrNiši 22 9 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4762 X 10 CrAI 25, 1.4710 G-X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 305, 310, 314; ASTM A297 HF; A297 HJ

Approvals and Certificates

UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX FFB FOX FFB-A GMAW solid wire: FFB-IG

EN 12072: 1999: W.No.: W Z21 33 Nb 1.4850(mod.)

GTAW rod, high-alloyed, heat resistant

Description

GTAW rod for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition. Suitable for operating temperatures up to +1050 °C in carburized low-sulphur gas. Typicall alloy for welding of pyrolysis furnace tubes.

Typical Composition of Welding Rod							
wt-%	C 0.2	Si 0.2	Mn 2.3	Cr 22.0	Ni 33.0	Nb 1.7	

Mechanical Properties of All-weld Metal

(*)		u
yield strength R ₀ N/mm ² :		≥ 450
tensile strength R _m N/mm ² :		≥ 620
elongation A (L=5d) %:		≥ 17
impact work ISO-V KV J	+20 °C:	≥ 50

(*) u untreated, as-welded – shielding gas Argon

Operating Data

	shielding gas: 100 % Argon rod marking: front: → 21/33 back: 1.4850	ømm 2.0 2.4 3.2	=-
--	---	--------------------------	----

Base Materials

1.4876 X10 NiCrAITi 32 20 1.4859 GX10 NiCrNb 32 20 1.4958 X 5 NiCrAITi 3120 1.4959 X 8 NiCrAITi 32 21 Alloy 800 H, UNS N08800, N08810, N08811

Approvals and Certificates

TÜV-D (applied)

Same Alloy Filler Metals

SMAW stick electrode:	FOX CN 21/33 Mn
GMAW solid wire:	CN 21/33 Mn-IG

EN 12072:1999: W.No.: W Z25 35 Nb 1.4853 BÖHLER CN 25/35 Nb-IG

GTAW rod, high-alloyed, heat resistant

Description

GTAW rod for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition Resistant to scaling up to 1150 °C. Typical alloy for welding of pyrolysis furnace tubes.

Typical (Compo	sition o	of Weldi	ng Rod				
wt-%	С 0.42	Si 1.2	Mn 1.8	Cr 26	Ni 35	Nb 1.3	Fe bal.	
Mechani	ical Pro	operties	of All-	weld Me	tal			
(*) yield streng tensile stren elongation A (*) u untr	th R₀ N/m ngth R _m N A (L₀=5d₀) reated, as	nm²: //mm²: %: s-welded		u ≥ 400 ≥ 600 ≥ 8				
Operatir	ng Data	3						
	shield 100 % rod m front: back:	ding gas: % Argon harking: 25/35 1.4853	Nb		øn 2. 2. 3.	1m 4 4 2		=-
Base Ma	aterials	;						
GX40 NiCr G-X40 NiCr	SiNb 35-2 Si 35-25	25 (1.4852) (1.4857)						
Approva	als and	Certific	ates					
TÜV-D (app	olied), TÜ	V-A, CL						

Same Alloy Filler Metals

SMAW stick electrode:	FOX CN 25/35 Nb
GMAW solid wire:	CN 25/35 Nb-IG

DIN EN12072:1999: W Z35 45 Nb H

Tunical Commonition of Walding Dad

BÖHLER CN 35/45 Nb-IG

GTAW rod, high-alloyed, heat resistant

Description

GTAW rod for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition Resistant to scaling up to 1180 °C. Typicall alloy for welding of pyrolysis furnace tubes.

Typical	Compo	sition o	or weigh	пд коа			
wt-%	С 0.42	Si 1.5	Mn 1.0	Cr 35	Ni 45.5	Nb 0.8	
Mechai	nical Pr	operties	of All-v	veld Me	tal		
(*) yield stren tensile stre elongation	igth R₀ N/m ength R๓ N i A (L₀=5d₀)	nm²: /mm²: %:		u ≥ 450 ≥ 550 ≥ 6			
(*) <i>u ur</i>	ntreated, as	-welded					
Operat	ing Data	a					
	shield 100 s rod n front:	ding gas: % Argon harking: 			øn 2. 2. 3.	nm 0 4 2	=-
Base N	laterials	;					
GX45NiCr	NbSiTi45-	35					

Approvals and Certificates

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 35/45 Nb GMAW solid wire: CN 35/45 Nb-IG EN 12072:1999: G 25 4 W.Nr.: 1.4820

BÖHLER FA-IG

GMAW solid wire, high-alloyed, heat resistant

Description

GMAW wire for gas-shielded welding of heat resisting, analogous or similar steels. Ferritic-austenitic deposit. The low Ni-content renders this filler metal especially recommendable for applications involving the attack of sulphurous oxidizing or reducing combustion gases. Scaling resistance up to +1100 °C.

Typica	Compe	SILION C	JI 30110	wire	
unt 0/	C	Si	Mn	Cr	Ni
WI-%	0.08	0.8	1.2	25.7	4.5

Mechanical Properties of All-weld Metal

Tunical Composition of Colid Wire

(*)	u		
vield strength Re N/mm ² :	520	(≥	450)
tensile strength Rm N/mm ² :	690	(≥	630)
elongation $A(L_0 = 5d_0)$ %:	20	(≥	15)
impact work ISO-V KV J + 20 °C:	50	(≥	30)
(*) u untreated, as-welded - shielding g	as Ar + 2.5 % CC	\hat{D}_2	,

Operating Data

shielding gases: Argon + max. 2.5 % CO ₂	ø mm 1.0 1.2

Preheating and interpass temperature as required by the base metal.

Base Materials

ferritic-austenitic 1.4821 X 20 CrNiši 25 4, 1.4823 G-X 40 CrNiši 27 4 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4762 X 10 CrAI 25, 1.4710 X 30 CrSI 6, 1.4740 G-X 40 CrSi 17 Vol cort - 4071 4 4071 4 0 G-X 40 CrSi 17

AISI 327; ASTM A297HC

Approvals and Certificates

UDT

Same Alloy Filler Metals

SMAW stick electrode: FOX FA

GTAW rod:

FA-IG

EN 12072:1999: AWS A5.9-93: W.Nr.: G 22 12 H ER309(mod.) 1.4829 BÖHLER FF-IG

GMAW solid wire, high-alloyed, heat resistant

Description

GMAW wire for analogous, heat resisting rolled, forged and cast steels as well as for heat resisting, ferritic CrSiAI steels, e.g. in annealing shops, hardening shops, steam boiler construction, the crude oil industry and the ceramics industry. Austenitic deposited with a ferrite content of approx. 8 %. Preferably used for applications involving the attack of oxidizing gases. The final layer of joint welds in CrSiAI steels exposed to sulphurous gases must be deposited by means of FOX FA or FA-IG.

Scaling resistance up to +1000 °C.

Typical Composition of Solid Wire

	С	Si	Mn	Cr	Ni
wt-%	0.08	1.1	1.6	23.0	11.5

Mechanical Properties of All-weld Metal

(*) yield strength Re N/mm²: tensile strength Rm N/mm²: elongation A (Lo = 5d₀) %:	u 480 620 34	(≥ ≤) (≥ ≤)	350) 540) 30)	
impact work ISO-V KV J	+ 20 °C: 110	(≥	70)	i
(*) u untreated, as-welded - shi	elding gas Ar + 2.5 % CO	Ż		

Operating Data

4

shielding gases: Argon + max. 2.5 % CO ₂	ø mm 1.0 1.2	=+
--	---------------------------	----

Preheating and interpass temperatures for ferritic steels 200 - 300 °C.

Base Materials

austenitic 1.4828 X 15 CrNiSi 20 12, 1.4826 G-X 40 CrNiSi 22 9, 1.4833 X7 CrNi 23 14 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4710 G-X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 305; ASTM A297HF

Approvals and Certificates

TÜV-A (26), UDT, SEPROZ

Same Alloy Filler Metals

SMAW stick electrode: FOX FF FOX FF-A GTAW rod:

FF-IG

EN 12072:1999: AWS A5.9-93: W.Nr.: G 25 20 Mn ER310(mod.) 1.4842 BÖHLER FFB-IG

GMAW solid wire, high-alloyed, heat resistant

Description

GMAW wire for analogous, heat resisting, rolled, forged and cast steels, e.g. in annealing shops, hardening shops, steam boiler construction, the crude oil industry and the ceramics industry. Fully austenitic deposit. Preferably employed for applications involving the attack of oxidizing, nitrogen-containing or low-oxygen gases. The final layer of joint welds in heat resisting CrSiAl steels exposed to sulphurous gases must be deposited by means of FOX FA or FA-IG.

Scaling resistance up to +1200 °C. Cryogenic toughness down to - 196 °C.

Typica	I Compo	sition o	of Solid	Wire			
wt-%	C 0.12	Si 0.9	Mn 3.2	Cr 25.0	Ni 20.5		

Mechanical Properties of All-weld Metal

(*)		u			
yield strength Re N/mm ² :		400	(≥	350))
tensile strength Rm N/mm ² :		620	(≥	540))
elongation $A(L_0 = 5d_0)$ %:		38	(≥	30))
impact work ISO-V KV J	+ 20 °C:	95	(≥	63))
	- 196 °C:		(≥	32))
(*) u untreated, as-welded -	shielding gas	Argon + 2	2.5 % C	O2 (

Operating Data

Ì↓	shieldi Argon	ng gases + max.	: 2.5 % (C O 2				ø mm 0.8 1.0	=+
							 	1.2	

Preheating and interpass temperatures for ferritic steels 200 - 300 °C.

Base Materials

austenitic 1.4841 X 15 CrNiSi 25 20, 1.4845 X 12 CrNi 25 21, 1.4828 X 15 CrNiSi 20 12, 1.4840 G-X 15 CrNi 25 20, 1.4846 G-X 40 CrNi 25 21, 1.4826 G-X 40 CrNiSi 22 9 ferritic-perlitic 1.4713 X 10 CrAI 7, 1.4724 X 10 CrAI 13, 1.4742 X 10 CrAI 18, 1.4762 X 10 CrAI 25, 1.4710 G-X 30 CrSi 6, 1.4740 G-X 40 CrSi 17

AISI 305, 310, 314; ASTM A297 HF; A297 HJ

Approvals and Certificates

UDT, SEPROZ

Same Alloy Filler Metals

SMAW	stick	electrod	e: F	=OX	FFB
			F	=OX	FFB-A

GTAW rod:

FFB-IG

EN 12072: 1999: W.No.: G Z21 33 Nb 1.4850(mod.) BÖHLER CN 21/33 Mn-IG

GMAW solid wire, high-alloyed, heat resistant

Description

GMAW wire for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition. Suitable for operating temperatures up to +1050 °C in carburized low-sulphur gas. Typicall alloy for welding of pyrolysis furnace tubes.

Typical Composition of Solid Wire											
wt-%	C	Si	Mn	Cr	Ni	Nb					
	0.2	0.2	2.3	22.0	33.0	1.7					

Mechanical Properties of All-weld Metal

(*)		u
yield strength R _a N/mm ² :		≥ 380
tensile strength R _m N/mm ² :		≥ 600
elongation A (L=5d) %:		≥ 25
impact work ISO-V KV J	+20 °C:	≥ 50

(*) u untreated, as-welded – shielding gas Argon + 2.5 % CO2

Operating Data

•	shielding gas: Argon + 2.5 % CO ₂	ø mm 1.0	=+
*	-	1.2	

Base Materials

1.4876 X10 NiCrAITi 32 20 1.4859 GX10 NiCrNb 32 20 1.4958 X5 NiCrAITi 31 20 1.4959 X8 NiCrAITi 32 21 Alloy 800 H, UNS N08800, N08810, N08811

Approvals and Certificates

-

Same Alloy Filler Metals

SMAW stick electrode:	FOX CN 21/33 Mn
GTAW rod:	CN 21/33 Mn-IG

EN 12072:1999: W.No.: G Z25 35 Nb 1.4853

BÖHLER CN 25/35 Nb-IG

GMAW solid wire, high-alloyed, heat resistant

Description

GMAW wire for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition Resistant to scaling up to 1150 °C. Typical alloy for welding of pyrolysis furnace tubes.

Typical Composition of Solid Wire										
wt-%	С 0.42	Si 1.2	Mn 1.8	Cr 26	Ni 35	Nb 1.3	Fe bal.			
Mechanical Properties of All-weld Metal										
(*) u yield strength \mathbb{R}_{n} N/mm ² : \geq 400 tensile strength \mathbb{R}_{m} N/mm ² : \geq 600 elongation A (L ₂ =5d ₃) %: \geq 8 (*) u untreated, as-welded – shielding gas Argon + 2.5 % CO										
Operatin	g Data									

shielding gas: Argon + 2.5 % CO₂ ø mm 1.2

Base Materials

GX40NiCrSiNb35-25 (1.4852) G-X40 NiCrSi 35 25 (1.4857)

Approvals and Certificates

CL

Similar Alloy Filler Metals

SMAW stick electrode: FOX CN 25/35 Nb GTAW rod: CN 25/35 Nb-IG DIN EN12072:1999: G Z35 45 Nb H

BÖHLER CN 35/45 Nb-IG

> GMAW solid wire high-alloyed, heat resistant

Description

GMAW wire for joining and surfacing of heat resistant steels and cast steels of the same or similar chemical composition Resistant to scaling up to 1180 °C. Typicall alloy for welding of pyrolysis furnace tubes.

Typical Composition of Solid Wire										
wt-%	C 0.42	Si 1.5	Mn 1.0	Cr 35	Ni 45.5	Nb 0.8				

Mechanical Properties of All-weld Metal

(*)	u
yield strength R _a N/mm ² :	≥ 245
tensile strength R _m N/mm ² :	≥ 450
elongation A (L=5d) %:	≥ 6

(*) u untreated, as-welded - shielding gas Argon + 2.5 % CO2

Operating Data

shielding gas: Argon + 2.5 % CO₂ ø mm 1.2

Base Materials

GX 45NiCrNbSiTi45-35

Approvals and Certificates

Same Alloy Filler Metals

SMAW stick electrode: FOX CN 35/45 Nb GTAW rod: CN 35/45 Nb-IG

2.9. Nickel-base Filler Metals

Objectives

This section contains product information for nickel base filler metals. The main applications of these filler metals are welding of nickel base alloys, high temperature and creep resisting steels, heat resisting and cryogenic materials, dissimilar joints and low alloy problem steels.

Nickel and its alloys with Cr, Cu, Fe, Mo, Co, Al and Ti offer a broad and universal range of possibilities for use, e.g. for highly corrosion resisting offshore constructions, chemical and petrochemical plant engineering, in flue gas desulphurisation or for sea water desalination plants as well as for high temperature and heat resistant applications like the boiler fabrication or the construction of heating ovens and furnaces.

In addition some of the nickel base alloys are also suitable for cryogenic applications down to -196 $^\circ\text{C}.$

Contents

OVERVIEW	320
SMAW STICK ELECTRODES	322
GTAW RODS	330
GMAW SOLID WIRES	336
GMAW FLUX CORED WIRES	342
SAW WIRE/FLUX-COMBINATIONS	344

Overview – Standard Classifications

SIMAW stick electrodes FOX INBAS 6015 ENISO14172: ENI 6620 (NIC714M07Fe) AWS 5.11-97: ENICrMo-6 FOX INBAS 625 ENISO14172: ENI 6620 (NIC72M04Nb) AWS A5.11-97: ENICrMo-3 FOX INBAS 70/15 ENISO14172: ENI 6122 (NIC715Fe6Mn) AWS A5.11-97: ENICrFe-3 FOX INBAS 70/15 ENISO14172: ENI 6029 (NIC72M016) AWS A5.11-97: ENICrFe-3 FOX NIBAS 70/20 ENISO14172: ENISO14172: ENISO14172: ENISO14172: ENISO14172: ENISO14172: ENI 4000 (NIC02M04Nb) AWS 5.11-97: ENICrMo-13 FOX NIBAS C276 ENISO14172: ENI 4000 (NIC02M04NT) AWS 5.11-97: ENICrMo-4 AWS 5.11-97: ENICrMo-4 FOX NIBAS C276 ENISO14172: ENI 4000 (NIC02M04NT) AWS 5.11-97: ENICrMo-3 AWS 5.11-97: ENICrMo-4 FOX NIBAS 2020-IG ENISO14272: ENI 4000 (NIC02M04NT) AWS 5.14-97: ENICrMo-3 NIBAS 202-IG ENISO14274: S NI 6625 (NIC72M09Nb) AWS 5.14-97: ENICrMo-3 NIBAS 202-IG ENISO18274: S NI 6625 (NIC72M04Nb) AWS 5.14-97: ENICrMo-3 NIBAS 202-IG ENISO1827	Böhler	ENISO / D	AWS		
FOX NIBAS 60/15 ENISO14172: ENISO14173	SMAW stick elect	rodes			
FOX NIRS 70/15 CX NIC 70/15 FOX NIC 70/15 FOX NIC 70/15 FOX NIRS 70/20 ENISO14172: ENISO14274: SNI 6625 (NIC 22M09Nb) SG-NIC 2 Nb AWS A5.11-97: ENICrFe-3 AWS 5.11: ENICrCoMo-1 AWS 5.11-97: ENICrMo-4 AWS 5.11-97: ENICrMo-4 AWS 5.11-97: ENICrMo-4 ENISO14274: SNI 6625 (NIC 22M09Nb) SG-NIC 2 Nb 9 Nb AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-3 AWS A5.1	FOX NIBAS 60/15 FOX NIBAS 625 FOX NICr 625*	ENISO14172: ENISO14172: DIN 1736:	E Ni 6620 (NiCr14Mo7Fe) E Ni 6625 (NiCr22Mo9Nb) EL-NiCr 20 Mo 9 Nb	AWS 5.11-97: ENiCrMo-6 AWS A5.11-97: ENiCrMo-3	
FOX NIC 70 Nb ⁺ FOX NIBAS C 24 ENISO14172: ENISO14274: SNI 6625 (NIC 22M09Nb) SG-NIC 7 20 Nb SG-NIC 7	FOX NIBAS 70/15 FOX NICr 70/15*	ENISO14172: DIN 1736:	E Ni 6182 (NiCr15Fe6Mn) EL-NiCr 16 FeMn	AWS A5.11-97: ENiCrFe-3	
FOX NIBAS C 24 ENISO14172: ENISO14274: SNI 6625 (NICr22M09Nb) SONC2 20 M 09 Nb NIBAS C 24-IG ENISO18274: SNI 6625 (NICr22M09Nb) SONC2 20 M 09 Nb NIBAS C 276-IG ENISO18274: SNI 6625 (NICr22M09Nb) SONC2 20 M 09 Nb NIBAS C 276-IG ENISO18274: SNI 6625 (NICr22M09Nb) SONC2 20 M 09 NI 1736: SONC2 20 12 M 09 NI 1736: SON 602 (NICr23M016) AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-14 AW	FOX NIBAS 70/20 FOX NICr 70 Nb*	ENISO14172: DIN 1736:	E Ni 6082 (NiCr20Mn3Nb) EL-NiCr 19 Nb	AWS A5.11-97: ENiCrFe-3(mod.)	
FOX NIBAS 617 ENISO14172: ENISO14274: SNI 6625 (NICr22M09Nb) SCHCr2 1M 09 Nb NIBAS 7020-IG ENISO18274: SNI 6625 (NICr22M09Nb) SCHCr2 1M 09 Nb NIBAS 7020-IG ENISO18274: SNI 6625 (NICr22M09Nb) SCHCr2 1M 09 Nb NIBAS 214-97: ERNICrMo-3 SCHCr2 1M 09 Nb NIBAS 214-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-3 NIBAS 7020-IG ENISO18274: SNI 6605 (NICr22M09Nb) AWS A5.14-97: ERNICrMo-3 NIBAS 7020-IG ENISO18274: SNI 6605 (NICr22M09Nb) AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-3 DIN 1736: SCHCC 20 CO 12 M0 9 NIBA	FOX NIBAS C 24	ENISO14172: DIN 1736:	E Ni 6059 (NiCr23Mo16) EL-NiCr 22 Mo 16	AWS A5.11-97: ENiCrMo-13	
FOX NIBAS C 276 FOX NIBAS 400 ENISO14172: ENISO14274: ENISO142	FOX NIBAS 617	ENISO14172: DIN 1736:	E Ni 6617 (NiCr21Co12Mo) EL-NiCr 21 Co 12Mo	AWS 5.11: ENiCrCoMo-1	
FOX NIBAS 400 ENISCI 14172: DIN 1736: E NI 4060 (NICu30Mn3TI) EL-NICu 30 Mn AWS 5.11: ENICu7 GTAW rods NIBAS 625-IG NICr 625-IG NIBAS 625-IG ENISO18274: ENISO18274: S NI 6625 (NICr22Mo9Nb) SS-NICr 21 Mo 9 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG NIBAS 70/20-IG ENISO18274: ENISO18274: S NI 6625 (NICr22Mo9Nb) SS-NICr 23 Mo 9 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 617-IG ENISO18274: ENISO18274: S NI 6059 (NICr23M016) SS-NICr 23 Mo 16 AWS A5.14-97: ERNICrMo-13 NIBAS 617-IG ENISO18274: ENISO18274: S NI 6059 (NICr23M016) SS-NICr 23 Mo 16 AWS A5.14-97: ERNICrMo-1 NIBAS 400-IG ENISO18274: ENISO18274: S NI 6052 (NICr20M015Fe6W4) DIN 1736: AWS A5.14-97: ERNICrMo-4 NIBAS 625-IG ENISO18274: ENISO18274: S NI 6052 (NICr20M09Nb) DIN 1736: AWS A5.14-97: ERNICrMo-3 NIBAS 625-IG ENISO18274: DIN 1736: S NI 6052 (NICr20M09Nb) DIN 1736: AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG ENISO18274: DIN 1736: S NI 6052 (NICr20M09Nb) DIN 1736: AWS A5.14-97: ERNICrMo-3 NIBAS 617-IG DIN 1736: S G-NICG 100 DIN 1736: S SI 6052 (NICr20M09Nb) DIN 1736: AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG DIN 1736: S G-NICG 100 DIN 1736: S S	FOX NIBAS C 276	ENISO14172: DIN 1736:	E Ni 6276 (NiCr15Mo15Fe6W4) EL-NiMo 15 Cr 15 W	AWS 5.11-97: ENiCrMo-4	
GTAW rods NIBAS 625-IG NICr 625-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 224-IG NIBAS 224-IG NIBAS 224-IG NIBAS 224-IG NIBAS 227-IG NIBAS 227-	FOX NIBAS 400	ENISO14172: DIN 1736:	E Ni 4060 (NiCu30Mn3Ti) EL-NiCu 30 Mn	AWS 5.11: ENiCu7	
NIBAS 625-IG NICr 625-IG* NIBAS 70/20-IG ENISO18274: ENISO18274: SNI6625 (NIC/20M0RNb) AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 DIN 1736: SG-NICr 20 AWG AWS A5.14-97: ERNICrMO-3 AWS A5.14-97: ERNICrMO-3 DIN 17	GTAW rods				
NIBAS 70/20-IG NIC 70 Nb-IG* NIBAS C 24-IG ENISO18274: ENISO18274: SNI6059 (NICr23M016) AWS A5.14-97: ERNICr-3 NIBAS C 24-IG NIBAS C 24-IG ENISO18274: ENISO18274: SNI6059 (NICr23M016) AWS A5.14-97: ERNICrMo-13 NIBAS 617-IG ENISO18274: ENISO18274: SNI6059 (NICr23M016) AWS A5.14-97: ERNICrCoMo-1 NIBAS C 276-IG ENISO18274: ENISO18274: SNI6060 (NICr23M016) AWS A5.14-97: ERNICrCoMo-1 NIBAS C 276-IG ENISO18274: ENISO18274: SNI6060 (NICr23M013T) AWS A5.14-97: ERNICrCoMo-1 NIBAS 625-IG ENISO18274: SNI6060 (NICr23M013T) AWS A5.14-97: ERNICrMo-4 NIBAS 625-IG ENISO18274: SNI6062 (NICr22M09Nb) AWS A5.14-97: ERNICrMo-3 NICC 702-IG ENISO18274: SNI6059 (NICr23M016) AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG ENISO18274: SNI6059 (NICr23M016) AWS A5.14-97: ERNICrMo-13 NIBAS 617-IG ENISO18274: SNI6059 (NICr23M016) AWS A5.14-97: ERNICrMo-13 NIBAS 617-IG ENISO18274: SNI6059 (NICr23M016) AWS A5.14-97: ERNICrMo-13 NIBAS 617-IG ENISO18274: SNI6059 (NICr23M016) AWS A5.14-97: ERNICrMo-13 NIBAS 70/20-UP/BB 444 ENISO18274: SNI6062 (NICr20Mn3Nb) AWS A5.14-97: ERNICrMo-13 NIBAS 70/20-UP/BB 444 ENISO18274: SNI6062 (NICr22Mn3Nb) A	NIBAS 625-IG NICr 625-IG*	ENISO18274: DIN 1736:	S Ni 6625 (NiCr22Mo9Nb) SG-NiCr 21 Mo 9 Nb	AWS A5.14-97: ERNiCrMo-3	
NIBAS C 24-IG ENISO18274: DNI 736: SG-NiCr 23 Mo 16 AWS A5.14-97: ERNICrMo-13 NIBAS 517-IG DNI 736: ENISO18274: DNI 736: SG-NiCr 22 Co 12 Mo 9 AWS A5.14-97: ERNICrCoMo-1 DNI 736: SG-NiCr 22 Co 12 Mo 9 NIBAS C 276-IG ENISO18274: DNI 736: SG-NiCr 22 Co 12 Mo 9 AWS A5.14-97: ERNICrCoMo-1 DNI 736: SG-NiCr 22 Co 12 Mo 9 NIBAS 400-IG ENISO18274: ENISO18274: SG-NiCr 22 Co 12 Mo 9 AWS A5.14-97: ERNICrCoMo-1 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-3 SG-NiCr 20 Mo 9 No NICr 20 AD-16' NIBAS 502-IG NIEAS 702-0-DP/BE 444 ENISO18274: SNI 6082 (NICr22Mo9Nb) DIN 1736: SG-NICC 12 Mo DIN 1736: SG-NICC 12 MO SG-NICC 12 MO DIN 1736: SG-NICC 12 MO DIN 1736: SG-NICC 12 MO DIN 1736: SG-NICC 12 MO SG-NICC 12 MO SG	NIBAS 70/20-IG NICr 70 Nb-IG*	ENISO18274: DIN 1736:	S Ni 6082 (NiCr20Mn3Nb) SG-NiCr 20 Nb	AWS A5.14-97: ERNiCr-3	
NIBAS 617-IG ENIS018274: ENIS018274: SOLUC 22 Co 12 Mo 9 AWS A5.14-97: ERNICrCoMo-1 NIBAS C 276-IG ENIS018274: ENIS018274: SOLUC 15 Motol 15 Fe6W4) AWS A5.14-97: ERNICrCoMo-1 NIBAS 400-IG ENIS018274: ENIS018274: SOLUC 15 Motol 1708: SOLUC 22 Coll 2 Mo 9 AWS A5.14-97: ERNICrCoMo-1 GMAW solid wires SNI 6625 (NICr22M09Nb) SOLID 1738: SOLID 2 Coll 2 Mo 9 Nb AWS A5.14-97: ERNICrMo-3 MIBAS 625-IG NIBAS 502-IG NIBAS 70/20-IG ENIS018274: ENIS018274: SOLIC 20 Mb SNI 6625 (NICr22M09Nb) SOLIC 20 Mb AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG NIBAS 70/20-IG ENIS018274: ENIS018274: SOLIC 20 Mb SNI 6692 (NICr22M09Nb) SOLIC 20 Mb AWS A5.14-97: ERNICrMo-3 NIBAS 617-IG ENIS018274: ENIS018274: SOLIC 20 Mb SNI 6692 (NICr22M09Nb) SOLIC 20 Mb AWS A5.14-97: ERNICrMo-13 NIBAS 617-IG ENIS018274: ENIS018274: SOLIC 20 Mb SNI 6692 (NICr20M016) ENIS018274: SOLIC 20 LM 09 AWS A5.14-97: ERNICrMo-13 NIBAS 70/20-UP/BB 444 ENIS014172: ENIS014172: ENIS014172: ENIS014172: ENIS014172: ENIS014172: ENIS014172: ENIS014172: ENIS014172: ENIS018274: SOLIC 20 Mb AWS A5.14-97: ERNICrMo-3 SAW wire/flux-combination ENIS014172: ENIS018274: SOLIC 20 Mb AWS A5.14-97: ERNICrMo-3 NIBAS 625-UP/BB 444 ENIS018274: ENIS018274: SOLIC 20 Mo 16 Flux: EN760: SA-FE 2 AC	NIBAS C 24-IG	ENISO18274: DIN 1736:	S Ni 6059 (NiCr23Mo16) SG-NiCr 23 Mo 16	AWS A5.14-97: ERNiCrMo-13	
NIBAS C 276-IG ENISCI8274: ENISCI8274: SNIBAS 400-IG SNI 68276 (INCr15M016Fe6W4) ENISCI8274: SNI 4060 (INCu30Mn3Ti) SNI4060 (INCu30Mn3Ti) AWS A5.14-97: ERNICrMo-4 GMAW solid wires SNI 6625 (INCr22M09Nb) SG-NIC 625-IG AWS A5.14-97: ERNICrMo-3 AWS A5.14-97: ERNICrMo-3 ID 1736: SG-NIC 625-IG ENISCI8274: SG-NIC 702-0-IG SNI 6625 (INCr22M09Nb) SG-NIC 70 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG ENISCI8274: DN 1736: SG-NIC 70 Nb SNI 6625 (INCr22M09Nb) SG-NIC 70 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG ENISCI8274: DN 1736: SG-NIC 70 Nb SNI 6692 (INCr22M016) SG-NIC 70 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 617-IG ENISCI8274: DN 1736: SG-NIC 70 Nb SNI 6692 (INCr20M016) SG-NIC 70 Nb AWS A5.14-97: ERNICrMo-13 NIBAS 400-IG ENISCI8274: DN 1736: SG-NIC 70 CO 12 Mo 9 AWS A5.14-97: ERNICrMo-4 AWS A5.14-97: ERNICrMo-14 NIBAS 70/20-FD FOX NIBAS 625-FD ENISCI4172: ENISCI4172: ENISCI4274: SNI 6062 (INCr20Mn3Nb) DIN 1736: SG-NIC 72 Nb AWS A5.14-97: ERNICrMo-3 SIBAS 70/20-UP/BB 444 ENISCI4274: SNI 6062 (INCr20Mn3Nb) DIN 1736: SG-NIC 72 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 625-UP/BB 444 ENISCI4274: SNI 6062 (INCr20Mn3Nb) DIN 1736: SG-NIC 72 Mo 91Nb AWS A5.14-97: ERNICrMo-3 NIBAS 617-UP/B 444 ENIS	NIBAS 617-IG	ENISO18274: DIN 1736:	S Ni 6617 (NiCr22Co12Mo) SG-NiCr 22 Co 12 Mo 9	AWS A5.14-97: ERNiCrCoMo-1	
NIBAS 400-IG ENISO18274: ENISO18274: S Ni 4060 (NCL30Mn31i) SG-NIC 203-Min 3 Ti AWS A5.14-97: ERNICu7 GMAW solid wires ENISO18274: SG-NIC 203-G S Ni 6622 (NCr22M09Nb) SG-NIC 70 Nb-G AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 224-IG ENISO18274: ENISO18274: SNi 6622 (NCr22M09Nb) AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG NIBAS 204-IG ENISO18274: ENISO18274: SNi 6659 (NCr23M016) AWS A5.14-97: ERNICrMo-3 NIBAS 24-IG NIBAS 24-IG ENISO18274: ENISO18274: SNi 6659 (NCr23M016) AWS A5.14-97: ERNICrMo-13 NIBAS 617-IG ENISO18274: SNi 6659 (NCr23M016) AWS A5.14-97: ERNICrMo-13 NIBAS 204-IG ENISO18274: ENISO18274: SNi 6060 (NCu30Mn3Ti) AWS A5.14-97: ERNICrMo-4 NIBAS 70/20-FD FOX NIBAS 625-FD ENISO14172: ENISO1420 MIN DIN 1736: SG-NICr 20 MIN DIN 1736: SG-NICr 20 MIN DIN 1736: SG-NICr 20 MIN SG-NICr 20 MIN SG-NICr 20 MIN SG-NICr 20 MIN SG-NICr 20 MIN	NIBAS C 276-IG	ENISO18274: DIN 1736:	S Ni 6276 (NiCr15Mo16Fe6W4) SG-NiMo 16 Cr 16 W	AWS A5.14-97: ERNiCrMo-4	
GMAW solid wires NIBAS 625-IG NICr 625-IG NICr 625-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 70/20-IG NIBAS 224-IG NIBAS 617-IG NIBAS 625-ID NIBAS 625-I	NIBAS 400-IG	ENISO18274: DIN 1736:	S Ni 4060 (NiCu30Mn3Ti) SG-NiCu 30 Mn 3 Ti	AWS A5.14-97: ERNiCu7	
NIBAS 625-IG ENISCI8274: SNIE625 (NICr22M09Nb) AWS A5.14-97: ERNICrMo-3 NICr 625-IG* DIN 1736: SG-NICr 20 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 70/20-IG ENISCI8274: ENISCI8274: NIBAS 224-IG SNIE682 (NICr20Mn3Nb) DIN 1736: SG-NICr 20 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 617-IG ENISCI8274: ENISCI8274: SNIE6059 (NICr23M016) AWS A5.14-97: ERNICrMo-13 NIBAS 617-IG ENISCI8274: ENISCI8274: SNIE607 (NICr22C012Mo) AWS A5.14-97: ERNICrCoMo-1 NIBAS 627-IG ENISCI8274: ENISCI8274: SNIE607 (NICr22C012Mo) AWS A5.14-97: ERNICrMo-4 NIBAS 400-IG ENISCI8274: ENISCI8274: SNIE605 (NICr23M013T) AWS A5.14-97: ERNICrMo-4 NIBAS 70/20-FD ENISCI4172: ENISCI427: ENISCI4274: SNIE605 (NICr22M08Nb) AWS A5.14-97: ERNICr3T0-4 AWS A5.14-97: ERNICr3T0-4 AWS A5.14-97: ERNICr3T0-4 AWS A5.14-97: ERNICr3T0-4 SAW wire/flux-combination ENISCI4172: INF36: UP-NICr2 10 MP AWS A5.14-97: ERNICrA3 NIBAS 625-UP/BB 444 ENISCI8274: ENISCI8274: NIBAS 625-UP/BB 444 SNI 6082 (NICr22M08Nb) UP-NICr2 10 M9 Nb AWS A5.14-97: ERNICrA3 NIBAS 625-UP/BB 444 ENISCI8274: ENISCI8274: NIBAS 617-UP/BB 444 SNI 6082 (NICr22M08Nb) UP-NICr2 10 M 9 Nb AWS A5.14-97: ERNICrMo-3 NIBAS 617-UP/BB	GMAW solid wires	S			
NIBAS 70/20-IG NIC 70 Nb-IG* NIBAS C24-IG ENISO18274: ENISO18274: ENISO18274: SNIE059 (NIC/23M016) AWS A5.14-97: ERNICr-3 NIBAS C24-IG DIN 1736: ENISO18274: NIBAS 617-IG ENISO18274: ENISO18274: ENISO18274: ENISO18274: ENISO18274: ENISO18274: SNIE050 (NIC/23M016) AWS A5.14-97: ERNICrMo-13 NIBAS C276-IG DIN 1736: ENISO18274: NIBAS 400-IG ENISO18274: ENISO18274: ENISO18274: ENISO18274: ENISO18274: ENISO18274: SNIE050 (NIC/23M016) AWS A5.14-97: ERNICrCoM0-1 MBAS 400-IG ENISO18274: ENISO1	NIBAS 625-IG NICr 625-IG*	ENISO18274: DIN 1736:	S Ni 6625 (NiCr22Mo9Nb) SG-NiCr 21 Mo 9 Nb	AWS A5.14-97: ERNiCrMo-3	
NIBAS C24-IG ENISO18274: DIN 1736: S Ni 6059 (NIC/C23M016) SG-NIC 22 Or 12 Mo 16 AWS A5.14-97: ERNICrMo-13 NIBAS 517-IG DIN 1736: ENISO18274: DIN 1736: S Ni 6617 (NIC/22C012M0) SG-NIC 2C 012 Mo 9 AWS A5.14-97: ERNICrCoMo-1 DIN 1736: SG-NIC 12 C 012 Mo 9 AWS A5.14-97: ERNICrCoMo-1 AWS A5.14-97: ERNICrCoMo-1 AWS A5.14-97: ERNICrCoMo-1 DIN 1736: SG-NIC 12 G C 16 Wo ENISO18274: S Ni 4060 (NIC:02M0A3TI) DIN 1736: SG-NIC 12 G C 16 Wo ENISO18274: S Ni 4060 (NIC:02M0A3TI) DIN 1736: SG-NIC 12 Mo 80 (NIC:22M08Nb) AWS A5.14-97: ERNICrCoMo-1 AWS A5.14-97: ERNICrCo AWS A5.14-97: ERNICrMo-3 DIN 1736: DIN 1736: SG-NIC7 23 Mo 16 FUX: EN760: SA-FB 2 AC NIBAS C 24-UP/BB 444 ENISO18274: DIN 1736: SG-NIC7 23 Mo 16 FUX: EN760: SA-FB 2 AC AWS A5.14-97: ERNICrMo-13 DIN 1736: SG-NIC7 22 C 12 Mo 9 FUX: EN760: SA-FB 2 AC NIBAS C 24-UP/BB 444 ENISO18274: DIN 1736: SG-NIC7 22 C 12 Mo 9 FUX: EN760: SA-FB 2 AC AWS A5.14-97: ERNICrMo-13 SG-NIC7 22 C 12 Mo 9 FUX: EN760: SA-FB 2 AC NIBAS C 276-UP/BB 444 ENISO18274: DIN 1736: SG-NIC7 22 C 12 Mo 9 FUX: EN760: SA-FB 2 AC AWS A5.14-97: ERNICrMo-13 SG-NIC7 22 C 12 Mo 9 FUX: EN760: SA-FB 2 AC NIBAS C 276-UP/BB 444 ENISO18274: SN 6617 (NIC722C012M0) FUX: EN760: SA-FB 2 AC N	NIBAS 70/20-IG NICr 70 Nb-IG*	ENISO18274: DIN 1736:	S Ni 6082 (NiCr20Mn3Nb) SG-NiCr 20 Nb	AWS A5.14-97: ERNiCr-3	
NIBAS 617-IG ENISCI 8274: ENISCI 8274: ENIS	NIBAS C24-IG	ENISO18274: DIN 1736:	S Ni 6059 (NiCr23Mo16) SG-NiCr 23 Mo 16	AWS A5.14-97: ERNiCrMo-13	
NIBAS C 276-IG ENISCI8274:	NIBAS 617-IG	ENISO18274: DIN 1736:	S Ni 6617 (NiCr22Co12Mo) SG-NiCr 22 Co 12 Mo 9	AWS A5.14-97: ERNiCrCoMo-1	
NIBAS 400-IG ENISCI8274: ENISCI8274: SO-NICU 30 Mn 3 Ti AWS A5.14-97: ERNICU7 GMAW flux cored wires ENISCI4172: NIBAS 70/20-FD ENISCI4172: ENIS	NIBAS C 276-IG	ENISO18274: DIN 1736:	S Ni 6276 (NiCr15Mo16Fe6W4) SG-NiMo 16 Cr 16 W	AWS A5.14-97: ERNiCrMo-4	
GMAW flux cored wires NIBAS 70/20-PD FOX NIBAS 625-FD ENISO14172: ENISO14172: Typ E Ni 6082 (NICr20Mn3Nb) ENISO14172: AWS A5.34: ENICr 3T0-4 AWS A5.11-97: ENICMo-3T0-4 SAW wire/flux-combination NIBAS 70/20-UP/BB 444 ENISO18274: S Ni 6082 (NICr20Mn3Nb) DIN 1736: AWS A5.14-97: ERNICr-3 UP-NICr 20 Mo 180 NIBAS 625-UP/BB 444 ENISO18274: S Ni 6082 (NICr20Mn3Nb) DIN 1736: AWS A5.14-97: ERNICr-3 UP-NICr 21 Mo 9 Nb NIBAS 625-UP/BB 444 ENISO18274: S Ni 6682 (NICr22Mn9Nb) DIN 1736: AWS A5.14-97: ERNICr-3 UP-NICr 21 Mo 9 Nb NIBAS 624-UP/BB 444 ENISO18274: S Ni 6682 (NICr22Mn9Nb) DIN 1736: AWS A5.14-97: ERNICrMo-3 DIN 1736: NIBAS 617-UP/BB 444 ENISO18274: S Ni 6059 (NICr23Mn16) DIN 1736: AWS A5.14-97: ERNICrMo-13 SG-NICr 22 Co 12 Mo 9 Flux: EN760: NIBAS C276-UP/BB 444 ENISO18274: S Ni 6051 (NICr22Co12Mo) DIN 1736: AWS A5.14-97: ERNICrMo-1 SG-NICr 22 Co 12 Mo 9 Flux: EN760: AWS A5.14-97: ERNICrCoMo-1 DIN 1736: SA-FB 2 AC NIBAS C276-UP/BB 444 ENISO18274: S Ni 6057 (NICr22Co12Mo) DIN 1736: AWS A5.14-97: ERNICrMo-1 SG-NIM0 16 Cr 16 W AWS A5.14-97: ERNICrMo-4 DIN 1736: SA-FB 2 AC	NIBAS 400-IG	ENISO18274: DIN 1736:	S Ni 4060 (NiCu30Mn3Ti) SG-NiCu 30 Mn 3 Ti	AWS A5.14-97: ERNiCu7	
NIBAS 70/20-FD FOX NIBAS 625-FD ENISO14172: ENISO14172: Typ E Ni 6082 (NiCr20Mn3Nb) ENISO14172: AWS A5.34: ENICr 3T0-4 AWS A5.11-97: ENICrMo-3T0-4 AWS A5.11-97: ENICrMo-3T0-4 AWS A5.11-97: ENICrMo-3T0-4 AWS A5.11-97: ENICrMo-3T0-4 AWS A5.11-97: ENICrMo-3T0-4 AWS A5.14-97: ERNICrMo-3T0-4 AWS A5.14-97: ERNICrMo-3T0-4 AWS A5.14-97: ERNICrMo-3 DIN 1736: NIBAS 625-UP/BB 444 ENISO18274: ENISO18274: ENISO18274: ENISO18274: ENISO18274: S Ni 6082 (NICr22Mn9Nb) AWS A5.14-97: ERNICrMo-3 UP-NICr 21 Mo 9 Nb Flux: EN760: S A-FB 2 AC NIBAS 617-UP/BB 444 ENISO18274: ENISO18274: DIN 1736: S G-NICr 23 Mo 16 Flux: EN760: S A-FB 2 AC AWS A5.14-97: ERNICrMo-13 SG-NICr 22 CO 12 Mo 9 Flux: EN760: S A-FB 2 AC NIBAS 617-UP/BB 444 ENISO18274: ENISO18274: S Ni 6617 (NICr22Co12M0) Flux: EN760: S A-FB 2 AC AWS A5.14-97: ERNICrMo-13 AWS A5.14-97: ERNICrMo-14 ENISO18274: S Ni 6617 (NICr22Co12M0) Flux: EN760: S A-FB 2 AC NIBAS C276-UP/BB 444 ENISO18274: ENISO18274: S Ni 6617 (NICr22Co12M0) Flux: EN760: S A-FB 2 AC AWS A5.14-97: ERNICrMo-14 AWS A5.14-97: ERNICrMo-14 BY ASC NIBAS C276-UP/BB 444 ENISO18274: ENISO18274: S Ni 6617 (NICr22Co12M0) Flux: EN760: S A-FB 2 AC AWS A5.14-97: ERNICrMo-4 BY ASC	GMAW flux cored	wires			
SAW wire/flux-combination NIBAS 70/20-UP/BB 444 ENIS018274: S. Ni 6082 (NICr20Mn3Nb) UP-NICr 20 Nb AWS A5.14-97: ERNICr-3 NIBAS 625-UP/BB 444 ENIS018274: S. Ni 6682 (NICr22Mo9Nb) Flux: EN760: AWS A5.14-97: ERNICrMo-3 NIBAS 625-UP/BB 444 ENIS018274: S. Ni 6655 (NICr22Mo9Nb) DIN 1736: AWS A5.14-97: ERNICrMo-3 NIBAS C 24-UP/BB 444 ENIS018274: S. Ni 6059 (NICr23M016) DIN 1736: AWS A5.14-97: ERNICrMo-13 NIBAS 617-UP/BB 444 ENISO18274: S. Ni 6059 (NICr22Co12Mo) DIN 1736: AWS A5.14-97: ERNICrMo-13 NIBAS 617-UP/BB 444 ENISO18274: S. Ni 6677 (NICr22Co12Mo) DIN 1736: AWS A5.14-97: ERNICrMo-14 NIBAS C276-UP/BB 444 ENISO18274: S. Ni 6677 (NICr22Co12Mo) DIN 1736: AWS A5.14-97: ERNICrMo-14 NIBAS C276-UP/BB 444 ENISO18274: S. Ni 6677 (NICr22Co12Mo) SG-NICr 22 Co 12 Mo 9 AWS A5.14-97: ERNICrMo-14 NIBAS C276-UP/BB 444 ENISO18274: S. Ni 6676 (NICr15Mo16Fe6W4) DIN 1736: AWS A5.14-97: ERNICrMo-4 SG-NIMO 16 Cr 16 W Flux: EN760: SA-FE 2 AC AWS A5.14-97: ERNICrMo-4	NIBAS 70/20-FD FOX NIBAS 625-FD	ENISO14172: ENISO14172:	Typ E Ni 6082 (NiCr20Mn3Nb) E Ni 6625 (NiCr22Mo9Nb)	AWS A5.34: ENICr 3T0-4 AWS A5.11-97: ENICrMo-3T0-4	
NIBAS 70/20-UP/BB 444 ENISO18274: IDN 1736: S Ni 6082 (NICr20Mn3Nb) UP-NICr 20 Nb AWS A5.14-97: ERNICr-3 NIBAS 625-UP/BB 444 ENISO18274: ENISO18274: NIBAS 625-UP/BB 444 ENISO18274: ENISO18274: INISO18274: NIBAS C 24-UP/BB 444 SNi 6059 (NICr22Mo9Nb) UP-NICr 21 M0 9 Nb AWS A5.14-97: ERNICrMo-3 DIN 1736: SA-FB 2 AC NIBAS C 24-UP/BB 444 ENISO18274: ENISO18274: NIBAS 617-UP/BB 444 SNi 6059 (NICr23Mo16) DIN 1736: SG-NICr 22 Ko 16 AWS A5.14-97: ERNICrMo-13 DIN 1736: SG-NICr 22 Co 12 Mo 9 NIBAS C17-UP/BB 444 ENISO18274: ENISO18274: NIBAS C276-UP/BB 444 ENISO18274: ENISO18274: SNI 6057 (NICr22Co12M0) Flux: EN760: SA-FB 2 AC AWS A5.14-97: ERNICrCoMo-1 DIN 1736: SG-NICr 22 Co 12 M0 9 NIBAS C276-UP/BB 444 ENISO18274: ENISO18274: SNI 626 (NICr15Mo16Fe6W4) DIN 1736: SG-NIM0 16 Cr 16 W AWS A5.14-97: ERNICrMo-4 DIN 1736: SG-NIM0 16 Cr 16 W	SAW wire/flux-co	mbination			
NIBAS 625-UP/BB 444 FUX EV/00. SATE 2 AC AWS A5.14-97: ERNICrMo-3 DIN 1736: UP-NICY 21 M0 9 Nb AWS A5.14-97: ERNICrMo-3 DIN 1736: SA-FE 2 AC AWS A5.14-97: ERNICrMo-13 NIBAS C 24-UP/BB 444 ENISO18274: S Ni 6625 (NICr22M09Nb) AWS A5.14-97: ERNICrMo-13 SIBAS C 17-UP/BB 444 ENISO18274: S Ni 6625 (NICr22M016) AWS A5.14-97: ERNICrMo-13 NIBAS 617-UP/BB 444 ENISO18274: S Ni 6617 (NICr22C012M0) AWS A5.14-97: ERNICrMo-11 DIN 1736: SG-NICr 22 Co 12 M0 9 HINSO18274: S Ni 6627 (NICr15M016Fe60W4) HUX: EN760: SA-FE 2 AC NIBAS C276-UP/BB 444 ENISO18274: S Ni 6276 (NICr15M016Fe60W4) NIBAS C276-UP/BB 444 ENISO18274: S Ni 6276 (NICr15M016Fe60W4) AWS A5.14-97: ERNICrMo-4 DIN 1736: SG-NIM0 16 Cr 16 W AWS A5.14-97: ERNICrMo-4 SG-NIM0 16 Cr 16 W	NIBAS 70/20-UP/BB 444	ENISO18274: DIN 1736:	S Ni 6082 (NiCr20Mn3Nb) UP-NiCr 20 Nb	AWS A5.14-97: ERNiCr-3	
NIBAS C 24-UP/BB 444 EIN760: ENISO18274: SI 059 [VIC:23M016] AWS A5.14-97: ERNIC/M0-13 NIBAS 617-UP/BB 444 ENISO18274: ENISO18274: SI 0617 (VIC:22C012M0) AWS A5.14-97: ERNIC/M0-13 NIBAS 617-UP/BB 444 ENISO18274: ENISO18274: ENISO18274: SI 0617 (VIC:22C012M0) AWS A5.14-97: ERNIC/C0M0-11 NIBAS C276-UP/BB 444 ENISO18274: ENISO18274: SI 0617 (VIC:22C012M0) AWS A5.14-97: ERNIC/C0M0-11 NIBAS C276-UP/BB 444 ENISO18274: ENISO18274: SI 06276 (VIC:15M0167e66W4) AWS A5.14-97: ERNIC/M0-4 NIBAS C276-UP/BB 444 ENISO18274: ENISO18274: SI 06276 (VIC:15M0167e66W4) AWS A5.14-97: ERNIC/M0-4	NIBAS 625-UP/BB 444	ENISO18274: DIN 1736:	S Ni 6625 (NiCr22Mo9Nb) UP-NiCr 21 Mo 9 Nb	AWS A5.14-97: ERNiCrMo-3	
Flux: EN760: SA-FB 2 AC NIBAS 617-UP/BB 444 SNI 6617 (NICr22Co12Mo) AWS A5.14-97: ERNICrCoMo-1 DIN 1736: SG-NICr 22 Co 12 Mo 9 AWS A5.14-97: ERNICrCoMo-1 Flux: EN760: SA-FB 2 AC NIBAS C276-UP/BB 444 ENISO18274: S Ni 6276 (NICr15Mo16Fe6W4) NIBAS C276-UP/BB 444 ENISO18274: S Ni 6276 (NICr15Mo16Fe6W4) AWS A5.14-97: ERNICrMo-4 DIN 1736: SG-NIMo 16 Cr 16 W Hux: EN760: SA-FB 2 AC AWS A5.14-97: ERNICrMo-4	NIBAS C 24-UP/BB 444	Flux: EN760: ENISO18274: DIN 1736:	SA-FB 2 AC S Ni 6059 (NiCr23Mo16) SG-NiCr 23 Mo 16	AWS A5.14-97: ERNiCrMo-13	
Flux: EN760: SA-FB 2 AC NIBAS C276-UP/BB 444 ENIS018274: SN i6276 (NICr15Mo16Fe6W4) AWS A5.14-97: ERNICrMo-4 DIN 1736: SG-NIMo 16 Cr 15 W Flux: EN760: SA-FB 2 AC	NIBAS 617-UP/BB 444	Flux: EN760: ENISO18274: DIN 1736:	SA-FB 2 AC S Ni 6617 (NiCr22Co12Mo) SG-NiCr 22 Co 12 Mo 9	AWS A5.14-97: ERNiCrCoMo-1	
	NIBAS C276-UP/BB 444	Flux: EN760: ENISO18274: DIN 1736: Flux: EN760:	SA-FB 2 AC S Ni 6276 (NiCr15Mo16Fe6W4) SG-NiMo 16 Cr 16 W SA-FB 2 AC	AWS A5.14-97: ERNiCrMo-4	

* product name in Germany

Overview – Typical Chemical Composition

Si	Mn	Cr	Ni	Мо	Nb	Ti	Fe	Co	Та	AI	
es											
<pre><0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4</pre>	3.0 0.7 6.0 6.0 5.0 5.0 0.5 0.1 0.6	14.0 22.0 22.0 16.0 19.0 19.0 22.5 21.0 16.5	bal. ≥60.0 ≥67 ≥67 ≥67 ≥67 bal. bal. bal.	6.5 9.0 9.0 ⊈0.5 ⊈0.5 ⊈1.2 15.5 9.0 16.5	1.0 3.3 2.2 2.2 2.2 2.2	+ + + + 0.3	<10.0 0.5 6.0 6.0 3.0 1 1.0 5.0	≤0.05 ≤0.05 ≤0.08 ≤0.08 ≤0.08 ≤0.08 ≤0.08	≤0.08 ≤0.08	≤0.4 ≤0.4	Т 1.3
5 0.7	3.0		bal.			0.7	1.0			0.3	Cu 29
2 ≤0.2	≤0.3	21.5	≥60.0	9.0	3.6		≤2.0				
2 ≤0.2 3 ≤0.1 0.1 0.1 0.1 0.1 2 0.3	≤0.3 3.0 <0.5 0.1 3.2	21.5 20.0 20.0 23.0 21.5 16.0	≥60.0 ≥67 ≥67 bal. bal. bal. bal.	9.0 16.0 9.0 16.0	3.6 2.5 2.5	+ + 0.5 2.4	≤2.0 ≤1.7 ≤1.7 <1.0 1.0 1.0 1.0	11.0		1.0 T 3.5 <1.0	V 0.2 Cu 29
2 <0 2	<0.3	21.5	>60.0	9.0	3.6		<20				
30.2 ≤0.2 ≤0.2 ≤0.3 ≤0.3 ≤0.3 0.1 0.1 0.1 0.1 0.1	≤0.3 ≤0.3 3.0 <0.5 0.1 3.2	21.5 20.0 20.0 23.0 21.5 16.0	≥60.0 ≥67 ≥67 bal. bal. bal. bal.	9.0 9.0 9.0 16.0	3.6 2.5 2.5	+ + 0.5 2.4	≤2.0 ≤1.7 ≤1.7 <1.0 1.0 6.0 1.0	11.0		1.0 V 0.2 <1.0	T 3.5 Cu 29
res			07								
0.4	0.4	20.0	≥67 ≥60	8.5	2.5 3.3		<5.0				
inatio	n										
0.15 0.25 0.25 2 <0.1 0 0.25 2 <0.1 0 0.2 0 <0.2 0 <0.2 0 <0.2 0 <0.2 0 <0.2 0 <0.1 0 <0.2 0 <0.2 0 <0.1 0 <0.2 0 <0.2 0 <0.1 0 <0.2 0 <0.1 0 <0.2 0 <0.2 0 <0.1 0 <0.2 0 0 <0.2 0 0 <0.2 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 00 0 0	3.2 3.0 0.2 <0.5 0.25 <0.2 <0.2 <0.3 <0.5 0.4	20.5 20.0 22.0 21,5 23.0 20.5 20.0 15.5 15.0	bal. bal. bal. bal. bal. bal. bal. bal.	9.0 8.5 15.5 15.5 8.8 8.8 16.0 16.0	2.6 2.2 3.6 3.3	0.35 0.15 0.1 0.5 0.25	<2.0 0.8 <1.5 0.4 <1.5 0.25 <1.0 <1.0 <7.0 5.5	10.4 10.0		1.0 0.8	T 3.8 T 3.3
	Si Si les l i i i i i i i i i i i i i i i i i <td< th=""><th>Si Mn les - - - 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 2 0.2 2 50.2 3 50.1 3 50.1 1 0.1 2 2.52 2 50.2 3 50.1 1 0.1 2 2.52 3 50.3 3 50.3 3 50.3 2 50.25 0.22 2.02 1 0.4 1 0.4 1 0.4 1 0.4 0.1</th><th>Si Mn Cr les </th><th>Si Mn Cr Ni Iso 50.6 3.0 14.0 bal. 5 0.4 0.7 22.0 260.0 50.4 5 0.4 0.7 22.0 260.0 50.4 5 0.4 6.0 16.0 267 50.4 50.4 5 0.4 6.0 16.0 267 50.4 50.1 19.0 267 5 0.4 5.0 19.0 267 20.2 0.5 22.5 50.1 2 0.7 0.6 16.5 bal. 50.7 3.0 15.0 50.0 2 50.2 20.3 21.5 260.0 33.5 13.0 200.0 267 3 0.1 3.0 20.0 267 0.1 12.5 bal. 1 0.1 16.0 bal. 20.3 3.21 30.0 267 2 0.3 3.2 25.5 260.0 20.0 267 3 0.3 3.0 20.0 267 11 12.5<th>Si Mn Cr Ni Mo Iso 3 14.0 6.5 6.4 0.7 22.0 80.0 9.0 5 0.4 0.7 22.0 80.0 9.0 5 0.4 0.7 22.0 80.0 9.0 5 0.4 6.0 16.0 867 9.0 5 0.4 5.0 19.0 867 $s1.2$ 2 0.2 0.5 22.5 ball 9.0 2 0.2 9.03 21.5 860.0 9.0 2 0.2 9.03 21.5 860.0 9.0 3 0.1 3.0 20.0 867 16.0 3 9.0 10.1 9.0 16.0 9.0 1 0.1 0.1 16.0 867 9.0 1 0.1 0.1 16.0 867</th><th>Si Mn Cr Ni Mo Nb $e < 0.6$ 3.0 4.0 9.0 3.3 $5 0.4$ 0.7 22.0 860.0 9.0 3.3 $5 0.4$ 0.7 22.0 860.0 9.0 3.3 $5 0.4$ 6.0 16.0 267 9.5 2.2 $5 0.4$ 5.0 19.0 267 9.5 2.2 $5 0.4$ 5.0 19.0 267 41.2 2.2 $2 - 0.2$ 0.6 16.5 bal. 16.5 50.7 $2 - 0.2$ 0.6 16.5 bal. 16.5 50.7 $2 - 0.2$ 0.6 15.5 bal. 16.5 9.0 3.6 $3 - 0.1$ 3.0 20.0 267 2.5 7.2 7.5 $3 - 0.1$ 3.0 20.0 267 2.5 7.2 7.5 $3 - 0.1$ 3.0 20.0<th>Si Mn Cr Ni Mo Nb Ti les - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< th=""><th>Si Mn Cr Ni Mo Nb Ti Fe les 1 $0 - 6$ 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 6.0 16.0 $= 57$ $= 9.5$ $= 2.2$ $+$ 3.0 0.5 $= 0.4$ $= 0.0$ $= 0.3$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.3$ $= 0.3$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co $6 - 0.6$ $3 - 0.6$ $5 - 0.4$ 0.7 22.0 ± 60.0 9.0 3.3 0.5 ± 0.05 $5 - 0.4$ $6 - 0.6$ $5 - 0.4$ $6 - 0.6$ $6 - 0.5$ $2.2 + 6 - 0.6$ $5 - 0.5$ $2.2 + 6 - 0.6$ $6 - 0.6 - 0.60$ $5 - 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co Ta 185 -0.66 3.0 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.0666 -0.0666 -0.0666 -0.06666 $-0.066666666666666666666666666666666666$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co Ta AI 15 0.61 0.7 22.0 60.0 9.0 3.3 0.5 50.4 0.7 22.0 60.0 9.0 3.3 0.5 50.05 50.4 0.7 22.0 80.0 9.0 3.3 0.5 50.05 50.4 50.06 50.06</th></td<></th></th></th></td<>	Si Mn les - - - 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 5 0.4 2 0.2 2 50.2 3 50.1 3 50.1 1 0.1 2 2.52 2 50.2 3 50.1 1 0.1 2 2.52 3 50.3 3 50.3 3 50.3 2 50.25 0.22 2.02 1 0.4 1 0.4 1 0.4 1 0.4 0.1	Si Mn Cr les	Si Mn Cr Ni Iso 50.6 3.0 14.0 bal. 5 0.4 0.7 22.0 260.0 50.4 5 0.4 0.7 22.0 260.0 50.4 5 0.4 6.0 16.0 267 50.4 50.4 5 0.4 6.0 16.0 267 50.4 50.1 19.0 267 5 0.4 5.0 19.0 267 20.2 0.5 22.5 50.1 2 0.7 0.6 16.5 bal. 50.7 3.0 15.0 50.0 2 50.2 20.3 21.5 260.0 33.5 13.0 200.0 267 3 0.1 3.0 20.0 267 0.1 12.5 bal. 1 0.1 16.0 bal. 20.3 3.21 30.0 267 2 0.3 3.2 25.5 260.0 20.0 267 3 0.3 3.0 20.0 267 11 12.5 <th>Si Mn Cr Ni Mo Iso 3 14.0 6.5 6.4 0.7 22.0 80.0 9.0 5 0.4 0.7 22.0 80.0 9.0 5 0.4 0.7 22.0 80.0 9.0 5 0.4 6.0 16.0 867 9.0 5 0.4 5.0 19.0 867 $s1.2$ 2 0.2 0.5 22.5 ball 9.0 2 0.2 9.03 21.5 860.0 9.0 2 0.2 9.03 21.5 860.0 9.0 3 0.1 3.0 20.0 867 16.0 3 9.0 10.1 9.0 16.0 9.0 1 0.1 0.1 16.0 867 9.0 1 0.1 0.1 16.0 867</th> <th>Si Mn Cr Ni Mo Nb $e < 0.6$ 3.0 4.0 9.0 3.3 $5 0.4$ 0.7 22.0 860.0 9.0 3.3 $5 0.4$ 0.7 22.0 860.0 9.0 3.3 $5 0.4$ 6.0 16.0 267 9.5 2.2 $5 0.4$ 5.0 19.0 267 9.5 2.2 $5 0.4$ 5.0 19.0 267 41.2 2.2 $2 - 0.2$ 0.6 16.5 bal. 16.5 50.7 $2 - 0.2$ 0.6 16.5 bal. 16.5 50.7 $2 - 0.2$ 0.6 15.5 bal. 16.5 9.0 3.6 $3 - 0.1$ 3.0 20.0 267 2.5 7.2 7.5 $3 - 0.1$ 3.0 20.0 267 2.5 7.2 7.5 $3 - 0.1$ 3.0 20.0<th>Si Mn Cr Ni Mo Nb Ti les - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< th=""><th>Si Mn Cr Ni Mo Nb Ti Fe les 1 $0 - 6$ 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 6.0 16.0 $= 57$ $= 9.5$ $= 2.2$ $+$ 3.0 0.5 $= 0.4$ $= 0.0$ $= 0.3$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.3$ $= 0.3$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co $6 - 0.6$ $3 - 0.6$ $5 - 0.4$ 0.7 22.0 ± 60.0 9.0 3.3 0.5 ± 0.05 $5 - 0.4$ $6 - 0.6$ $5 - 0.4$ $6 - 0.6$ $6 - 0.5$ $2.2 + 6 - 0.6$ $5 - 0.5$ $2.2 + 6 - 0.6$ $6 - 0.6 - 0.60$ $5 - 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co Ta 185 -0.66 3.0 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.0666 -0.0666 -0.0666 -0.06666 $-0.066666666666666666666666666666666666$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co Ta AI 15 0.61 0.7 22.0 60.0 9.0 3.3 0.5 50.4 0.7 22.0 60.0 9.0 3.3 0.5 50.05 50.4 0.7 22.0 80.0 9.0 3.3 0.5 50.05 50.4 50.06 50.06</th></td<></th></th>	Si Mn Cr Ni Mo Iso 3 14.0 6.5 6.4 0.7 22.0 80.0 9.0 5 0.4 0.7 22.0 80.0 9.0 5 0.4 0.7 22.0 80.0 9.0 5 0.4 6.0 16.0 867 9.0 5 0.4 5.0 19.0 867 $s1.2$ 2 0.2 0.5 22.5 ball 9.0 2 0.2 9.03 21.5 860.0 9.0 2 0.2 9.03 21.5 860.0 9.0 3 0.1 3.0 20.0 867 16.0 3 9.0 10.1 9.0 16.0 9.0 1 0.1 0.1 16.0 867 9.0 1 0.1 0.1 16.0 867	Si Mn Cr Ni Mo Nb $e < 0.6$ 3.0 4.0 9.0 3.3 $5 0.4$ 0.7 22.0 860.0 9.0 3.3 $5 0.4$ 0.7 22.0 860.0 9.0 3.3 $5 0.4$ 6.0 16.0 267 9.5 2.2 $5 0.4$ 5.0 19.0 267 9.5 2.2 $5 0.4$ 5.0 19.0 267 41.2 2.2 $2 - 0.2$ 0.6 16.5 bal. 16.5 50.7 $2 - 0.2$ 0.6 16.5 bal. 16.5 50.7 $2 - 0.2$ 0.6 15.5 bal. 16.5 9.0 3.6 $3 - 0.1$ 3.0 20.0 267 2.5 7.2 7.5 $3 - 0.1$ 3.0 20.0 267 2.5 7.2 7.5 $3 - 0.1$ 3.0 20.0 <th>Si Mn Cr Ni Mo Nb Ti les - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< th=""><th>Si Mn Cr Ni Mo Nb Ti Fe les 1 $0 - 6$ 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 6.0 16.0 $= 57$ $= 9.5$ $= 2.2$ $+$ 3.0 0.5 $= 0.4$ $= 0.0$ $= 0.3$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.3$ $= 0.3$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co $6 - 0.6$ $3 - 0.6$ $5 - 0.4$ 0.7 22.0 ± 60.0 9.0 3.3 0.5 ± 0.05 $5 - 0.4$ $6 - 0.6$ $5 - 0.4$ $6 - 0.6$ $6 - 0.5$ $2.2 + 6 - 0.6$ $5 - 0.5$ $2.2 + 6 - 0.6$ $6 - 0.6 - 0.60$ $5 - 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co Ta 185 -0.66 3.0 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.0666 -0.0666 -0.0666 -0.06666 $-0.066666666666666666666666666666666666$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co Ta AI 15 0.61 0.7 22.0 60.0 9.0 3.3 0.5 50.4 0.7 22.0 60.0 9.0 3.3 0.5 50.05 50.4 0.7 22.0 80.0 9.0 3.3 0.5 50.05 50.4 50.06 50.06</th></td<></th>	Si Mn Cr Ni Mo Nb Ti les - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< th=""><th>Si Mn Cr Ni Mo Nb Ti Fe les 1 $0 - 6$ 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 6.0 16.0 $= 57$ $= 9.5$ $= 2.2$ $+$ 3.0 0.5 $= 0.4$ $= 0.0$ $= 0.3$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.3$ $= 0.3$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co $6 - 0.6$ $3 - 0.6$ $5 - 0.4$ 0.7 22.0 ± 60.0 9.0 3.3 0.5 ± 0.05 $5 - 0.4$ $6 - 0.6$ $5 - 0.4$ $6 - 0.6$ $6 - 0.5$ $2.2 + 6 - 0.6$ $5 - 0.5$ $2.2 + 6 - 0.6$ $6 - 0.6 - 0.60$ $5 - 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co Ta 185 -0.66 3.0 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.0666 -0.0666 -0.0666 -0.06666 $-0.066666666666666666666666666666666666$</th><th>Si Mn Cr Ni Mo Nb Ti Fe Co Ta AI 15 0.61 0.7 22.0 60.0 9.0 3.3 0.5 50.4 0.7 22.0 60.0 9.0 3.3 0.5 50.05 50.4 0.7 22.0 80.0 9.0 3.3 0.5 50.05 50.4 50.06 50.06</th></td<>	Si Mn Cr Ni Mo Nb Ti Fe les 1 $0 - 6$ 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 0.7 22.0 $0 - 60$ 9.0 3.3 0.5 0.4 6.0 16.0 $= 57$ $= 9.5$ $= 2.2$ $+$ 3.0 0.5 $= 0.4$ $= 0.0$ $= 0.3$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.5$ $= 2.2$ $+$ $= 3.0$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$ $= 0.3$	Si Mn Cr Ni Mo Nb Ti Fe Co $6 - 0.6$ $3 - 0.6$ $3 - 0.6$ $3 - 0.6$ $3 - 0.6$ $3 - 0.6$ $5 - 0.4$ 0.7 22.0 ± 60.0 9.0 3.3 0.5 ± 0.05 $5 - 0.4$ $6 - 0.6$ $5 - 0.4$ $6 - 0.6$ $6 - 0.5$ $2.2 + 6 - 0.6$ $5 - 0.5$ $2.2 + 6 - 0.6$ $6 - 0.6 - 0.60$ $5 - 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5$ $2.2 + 6 - 0.6 \pm 0.06$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5$ $5 - 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.$	Si Mn Cr Ni Mo Nb Ti Fe Co Ta 185 -0.66 3.0 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.66 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.0666 -0.0666 -0.0666 -0.06666 $-0.066666666666666666666666666666666666$	Si Mn Cr Ni Mo Nb Ti Fe Co Ta AI 15 0.61 0.7 22.0 60.0 9.0 3.3 0.5 50.4 0.7 22.0 60.0 9.0 3.3 0.5 50.05 50.4 0.7 22.0 80.0 9.0 3.3 0.5 50.05 50.4 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06 50.06

EN ISO 14172:2003:

AWS 5.11-97:

E Ni 6620 (NiCr14Mo7Fe) ENiCrMo-6

BÖHLER FOX NIBAS 60/15

SMAW stick electrode, high efficiency nickel base

Description

The high-nickel electrode FOX NIBAS 60/15 is especially suited for welding cold-tough nickel steels, such as X8Ni9. High performance lime-type electrode, recovery appr. 170 %. The electrode is designated for welding with ac, in order to avoid the magnetic arc blow effects which occur when welding cold-tough nickel steels with dc.

It is weldable in flat, horizontal and vertical-up position. Stable arc, easy slag removal.

Typical Composition of All-weld Metal

	С	Si	Mn	Cr	Мо	Nb	Fe	W	Ni
wt-%	<0.1	<0.6	3	14	6,5	1	<10.0	1.3	bal.

Mechanical Properties of All-weld Metal

(*)		u
yield strength R _e N/mm ² :		≥ 420
tensile strength R _m N/mm ² :		≥ 690
elongation A (L=5d) %:		≥ 35
impact work ISO-V KV J	-196 °C:	≥ 60

(*) u untreated, as-welded

Operating Data

•	re-drying: if necessary 250-300 °C, min. 2 h electrode identification: FOX NIBAS 60/15 NiCrMo 6	ømm 2.5 3.2 4 0	L mm 300 350 350	amps A 70-100 100-130 120-160	= -
	FUX INIDAS 60/15 INICTIVIO 6	4.0	350	120-160	

The weld zone must be bare and properly degreased. The electrode is welded with a slight tilt, short arc and sufficient high amperage adjustment. To avoid end crater cracks the crater must be filled properly and the arc drawn away to the side.

Base Materials

9 % nickel steel base metal: X 8 Ni 9 ASTM A333, A334, A353, A522, A553, K81340

Approvals and Certificates

TÜV-D (10510.)

Same Alloy Filler Metals

-

BÖHLER FOX NIBAS 625, FOX NiCr 625*

ENISO14172:2003: DIN 1736: AWS A5.11-97:

E Ni6625 (NiCr22Mo9Nb) EL-NiCr 20 Mo 9 Nb ENiCrMo-3

SMAW stick electrode, nickel base

Description

Basic coated alloyed-core wire electrode for welding the nickel-base alloy Inconel 625 as well as CrNiMo-steels with high molybdenum content (e.g. "6 Mo" steels). It is also recommended for high temperature and creep resisting steels, heat resisting and cryogenic materials, dissimilar joints, and lowalloyed problem steels.

Suitable in pressure vessel fabrication for -196 °C to +550 °C, otherwise up to the scaling resistance temperature of +1200 °C (S-free atmosphere). Due to the weld metal embrittlement between 600 - 850 °C, this temperature range should be avoided. Highly resistant to hot cracking. Furthermore C-diffusion at high temperature or during heat treatment of dissimilar joints is largely reduced.

Extremely resistant to stress corrosion cracking and pitting (PREx 52). Thermal shock resistant, fully austenitic, low coefficient of thermal expansion between C-steel and austenitic CrNi (Mo)-steel.

Excellent welding characteristics in all positions except vertical-down, easy slag removal, high resistance to porosity. Electrodes and weld metal meet highest quality requirements.

Typical Composition of All-weld Metal

wt-%	C 0.025	Si 0.4	Mn 0.7	Cr 22.0	Ni > 60.0	Mo 9.0	Al < 0.4	Nb 3.3	Co	Fe 0.5
VV L- 70	0.025	0.4	0.7	22.0	₽ 00.0	5.0	30.4	0.0	30.05	0.0

Mechanical Properties of All-weld Metal

(*)		u			
yield strength R _e N/mm ² :		530	(≥ 4	450)
tensile strength R _m N/mm ² :		800	(≥)	750)
elongation A ($L_0 = 5d_0$) %:		40	(≥	30)
impact work ISO-V KV J	+ 20 °C:	80	(≥	65)
	- 196 °C:	45	(≥	32)

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 250 - 300 °C, min. 2 h electrode identification: FOX NIBAS 625 E NiCrMo-3 resp. FOX NiCr 625 E NiCrMo-3	ø mm 2.5 3.2 4.0	L mm 250 300 350	amps A 45 - 60 65 - 95 90 - 120	=+	
---	---------------------------	---------------------------	---	----	--

Base Materials

2.4856 NiCr 22 Mo 9 Nb, 2.4858 NiCr 21 Mo, 2.4816 NiCr 15 Fe, 1.4583 X10CrMiMoNb18-12, 1.4876 X 10 NiCrAITi 32 20 H, 1.4876 X 10 NiCrAITi 32 21, 1.4529 X1NiCrMoCuN25-20-7, X 2 CrNiMoCuN 20 18 6, 2.4641 NiCr 21 Mo 6 Cu joint welds of listed materials with non alloy and low alloy steels, e.g. P265GH, P285NH, P295GH, 16M03, S355N, X8Ni9, ASTM A 553 Gr.1, Alloy 600, Alloy 800 (H), 9 % Ni-steels

Approvals and Certificates

TÜV-D (3773.), TÜV-A (478), Statoil, UDT, LTSS, SEPROS, (FOX NiCr 625: TÜV-D 3773.)

Same Alloy Filler Metals

GTAW rod: NIBAS 625-IG

* product name in Germany

GMAW solid wire: NIBAS 625-IG GMAW flux cored wire: NIBAS 625-FD SAW comb.: NIBAS 625-UP/BB 444

BÖHLER FOX NIBAS 70/15, ENISO14172:2003: E Ni6182 (NiCr15Fe6Mn) DIN 1736: EL-NiCr 16 FeMn AWS A5 11-97 ENiCrEe-3

SMAW stick electrode, nickel base

FOX NiCr 70/15*

Description

Basic coated alloyed-core wire electrode corresponding to AWS E NiCrFe-3 for high grade welding of nickelbase alloys, high-temperature and creep resisting steels, heat resisting and cryogenic materials, low-alloyed problem steels and dissimilar joints. Ferritic-austenitic joints for service temperatures above +300 °C or for applications where a post weld heat treatment is required

Suitable in pressure vessel fabrication for -196 °C to +650 °C, otherwise up to the scaling resistance temperature of +1200 °C (S-free atmosphere). Insusceptible to embrittlement, highly resistant to hot cracking, furthermore, C-diffusion at high temperature or during heat treatment of dissimilar joints is largely reduced. Thermal shock resistant, stainless, fully austenitic, low coefficient of thermal expansion between the coefficient values of C-steel and austenitic CrNi (Mo)-steel.

Excellent welding characteristics in all positions except vertical-down, easy slag removal, high resistance to porosity. Electrode and weld metal meet highest quality requirements.

Typical Composition of All-weld Metal

wt-%	C 0.025	Si 0.4	Mn 6.0	Cr 16.0	Ni ≥ 67	Mo ≤ 0.05	Ti 5 +	Ta ≤ 0.08	Nb 2.2	Co ≤ 0.08	Fe 6.0
Mechanical Properties of All-weld Metal											
(*) yield strengt tensile stren elongation A impact work (*) u untrea s1 stress s2 stress	th R _e N/n gth R _m N $(L_0 = 5c)$ ISO-V ated, as- s relieved s relieved	nm²: l/mm²: l₀) %: KV J <i>welded</i> d, 650 ° d, 760 °	+ 20 - 196 C/15 h C/10 h	40 67 4 °C: 12 °C: 8 ⁄air ⁄air		360) 600) 30) 90) 32)	s1 400 670 40 120 70	(≥ 360) (≥ 600) (≥ 30) (≥ 80) (≥ 32)		s2 400 (≥ 3 570 (≥ 6 40 (≥ 120 (≥ 70 (≥	60) 00) 30) 80) 32)
Operatin	g Data	a									
	re-dr 250 - electi FOX FOX	ving if n 300 °C rode ide NIBAS NICr 7	ecessa ;, min. entificat 70/15 0/15 E	ary: 2 h tion: E NiCr NiCrFe	Fe-3 r -3	esp.	ø mm 2.5 3.2 4.0	L mm 300 300 350	an 45 70 95	ips A 5 - 75 5 - 105 5 - 130	=+

Base Materials

NiCr 15 Fe (Inconel 600) as well as Ni-alloys of similar or same chemical composition; non alloy and low alloy steels for elevated temperatures, e.g. P235GH, P265GH, S255NB, P235GH-P355GH, 16Mo3, high temperature steels as well as constructional steels with comparable tensile strength; creep resistant austenitic steels, e.g. X8CrNiNb16-13, X8CrNiMoNb16-16, X8CrNiMoVNb16-13, Ni-steels containing 1.5% up to 5% Ni-steels; low alloyed constructional and pressure vessel steels, also X20CrMoV12-1 and X20CrMoWV12-1 on stainless and creep resistant austenitic steels; also suitable for Alloy 800.

Approvals and Certificates

TÜV-D (0842.), UDT, (FOX NiCr 70/15: TÜV-D (0842.), KTA 1408 1 (8037.00))

Similar and Same Allov Filler Metals

GTAW rod: NIBAS 70/20-IG

* product name in Germany

GMAW solid wire: NIBAS 70/20-IG GMAW flux cored wire: NIBAS 70/20-FD SAW comb.: NIBAS 70/20-UP/BB 444 ENISO14172:2003: E Ni6082

DIN 1736: AWS A5.11-97:

BÖHLER FOX NIBAS 70/20, (NiCr20Mn3Nb) ÈL-NiCr 19 Nb ENiCrFe-3(mod.)

FOX NiCr 70 Nb* SMAW stick electrode, nickel base

Description

Basic coated alloyed-core wire electrode corresponding to DIN EL-NiCr 19 Nb for high-grade welding of nickel-base alloys, high-temperature and creep resisting steels, heat resisting and cryogenic materials, lowalloved problem steels and dissimilar joints. Ferritic-austenitic joints for service temperatures above +300 °C or for applications where a post weld heat treatment is required

Suitable in pressure vessel fabrication for -196 °C to +650 °C, otherwise up to the scaling resistance temperature of +1200 °C (S-free atmosphere). Insusceptible to embrittlement, highly resistant to hot cracking, furthermore, C-diffusion at high temperature or during heat treatment of dissimilar joints is largely reduced. Thermal shock resistant, stainless, fully austenitic, low coefficient of thermal expansion between the coefficient values of C-steel and austenitic CrNi (Mo)-steel.

Excellent welding characteristics in all positions except vertical-down, easy slag removal, high resistance to porosity, absence of undercuts, high degree of purity. Electrode and weld metal meet highest quality requirements

Typical Composition of All-weld Metal

wt-%	C 0.025	Si 0.4	Mn 5.0	Cr 19.0	Ni ≥ 67.0	Mo ≤ 1.2	Ti +	Nb 2.2	Co ≤ 0.08	Fe 3.0	

Mechanical Properties of All-weld Metal

(*) yield strength tensile streng elongation A (impact work I (*) u untreat s1 stress s2 stress	R _• N/mm ² : th R _m N/mm ² : (L ₀ = 5d ₀) %: SO-V KV J red, as-welded relieved, 650 % relieved, 750 %	+ 20 °C: - 196 °C: C/15 h/air C/3 h/air	u 420 680 40 120 80	(≥ 380) (≥ 620) (≥ 30) (≥ 90) (≥ 32)	s1 420 680 42 120 70	(≥ 380) (≥ 620) (≥ 30) (80) (≥ 32)	s2 420 (≥ 3 680 (≥ 6 43 (≥ 120 (≥ 70 (≥	380) 520) 30) 80) 32)
Operating	g Data							
	re-drying if n 250 - 300 °C electrode ide FOX NIBAS FOX NICr 70	ecessary: , min. 2 h ntification: 70/20 resp			ø mm 2.5 3.2 4.0 5.0	L mm 300 300 350 400	amps A 40 - 70 70 - 105 90 - 125 120 - 160	=+

Base Materials

2.4816 Ni Cr 15 Fe, 2.4817 LC-NiCr 15 Fe, Alloy 600, Alloy 600 L

nickel and nickel allovs, low-temperature steels up to 5 % Ni-steels, unalloved and alloved, high-temperature, creep resisting, high-alloy Cr- and CrNiMo-steels particularly for joint welding of dissimilar steels, and nickel to steel combinations; also recommended for Alloy 800.

Approvals and Certificates

TÜV-D (4697.), TÜV-A (442), Statoil, UDT, LTSS, VUZ, SEPROS, (FOX NiCr 70 Nb; TÜV-D (0889.), KTA 1408 1 (8039.00))

Same Alloy Filler Metals

GTAW rod: NIBAS 70/20-IG

* product name in Germany

GMAW solid wire: NIBAS 70/20-IG GMAW flux cored wire: NIBAS 70/20-FD SAW comb · NIBAS 70/20-UP/BB 444 ENISO 14172-2003: DIN 1736: AWS A5.11-97: E Ni 6059(NiCr23Mo16) EL-NiCr22Mo16 ENiCrMo-13 BÖHLER FOX NIBAS C 24

SMAW stick electrode, nickel base

Description

Basic coated NiCrMo electrode for highest corrosion requirements and welding of the Ni base steel grades, e.g. UNS N06059, N06022, 2.4605, 2.4602 as well as for joining these grades with low alloyed and stainless steels. Also suitable for surfacing on low-alloyed steels. It is employed primarily for welding components in environmental plants and plants for chemical processes with highly corrosive media. Excellent resistance against pitting and crevice corrosion and chloride-induced stress corrosion cracking. In addition to its exceptional resistance to contaminated oxidating mineral acids, acetic acids and acetic anhydrides, hot contaminated sulphuric- and phosphoric acid. The electrode can be welded in all positions except verticaldown. Stable arc, easy slag removal. The special composition of the coating prevents the precipitation of intermetallic phases.

Typical Composition of All-weld Metal								
wt-%	C ≤ 0.02	Si ≤ 0.2	Mn 0.5	Cr 22.5	Mo 15.5	Ni bal.	Fe 1	
Mechanical Properties of All-weld Metal								
(*) yield strem tensile stre elongation impact wo	gth R₀ N/mn ength R _m N/r A (L₀=5d₀) S rk ISO-V KV reated as-v	n²: mm²: %: / J velded	+20 °C:	u ≥ 450 ≥ 720 ≥ 30 ≥ 75				
Operating Data								

->	re-drying: if necessary: 250-300 °C, min. 2 h	ø mm 2.5	L mm 250	amps A 50-70	=+
→	electrode identification: FOX NIBAS C 24 ENICrMo-13	3.2 4.0	300 350	70-100 90-130	•

The interpass temperature of 150 °C and a max. weaving width 2.5 x diameter of the electrode core wire should not be exceeded.

Base Materials

NiCr21Mo14W (2.4602), NiMo16Cr16Ti (2.4610), NiMo16Cr15W (2.4819), NiCr23Mo16AI (2.4605), X2CrNiMnMoNbN25-18-5-4 (1.4565), Alloy 59, UNS N06059, N06022, ASTM B575, B626 joint welds of listed materials with low alloy and stainless steels

Approvals and Certificates

TÜV-D (10513.), CL

Same Alloy Filler Metals

GTAW rod:	NIBAS C 24-IG
GMAW solid wire:	NIBAS C 24-IG
SAW combination:	NIBAS C 24-UP/BB 444

ΕN	ISO	14172:
DIN	l 173	6:
AW	S 5.1	11:

E Ni 6617 (NiCr21Co12Mo) EL NiCr21Co12 Mo ENiCrCoMo-1 BÖHLER FOX NIBAS 617

SMAW stick electrode, nickel base

Description

Basic coated nickel base electrode is suitable for joining high-temperature and similar nickelbase alloys, heat resistant austenitic and cast alloys, such as 2.4663 (NiCr21Co12Mo), 2.4851 (NiCr23Fe), 1.4876 (X10 NiCrAIT 32 20), 1.4859 (GX 10 NiCrANb 32 20). The weld metal is resistant to hot-cracking and is used for service temperatures up to +100 °C. Scale-resistance up to +1100 °C, high temperature resistant up to 1000 °C. High resistance to hot gases in oxidizing and carburized atmospheres, e.g. gas turbines, ethylene production plants. BÖHLER FOX NIBAS 617 can be welded in all positions except vertical-down. It has a stable arc. Easy slag removal.

Typical Composition of All-weld Metal										
wt-%	C 0.06	Si 0.7	Mn 0.1	Cr 21	Mo 9	Ni bal.	Co 11	Fe 1	Al 0.7	⊤i 0.3
Mechanical Properties of All-weld Metal										
(*) U yield strength \mathbb{R}_* N/mm ² : ≥ 450 tensile strength \mathbb{R}_* N/mm ² : ≥ 700 elongation A (L=5de) %: ≥ 35 impact work ISO-V KV J ≥ 100										
Operating Date										
Operating Data										
ſ	*	re-drying 250-300 electrode FOX NIB	if neces °C, min. identific AS 617	sary: 2h ation: ENiCrC	¢ CoMo-1	2.5 3.2 4.0	L mm 250 300 350	a	mps A 40-55 70-90 90-110	=+
Base Materials										
X10NiCrAITi32-20 (1.4876) NiCr23Fe (2.4851) GX10NiCrNb32-20 (1.4859) NiCr23Co12Mo (2.4663) Alloy 617, UNS N06617										
Appr	ovals	and Co	ertific	ates						
TÜV-D	(applied)								
Orange allow Filler Matele										

Same-alloy Filler Metals GTAW rod: NIBAS 617-IG GMAW solid wire: NIBAS 617-IG SAW combination: NIBAS 617-UP/BB 444
DIN 1736: EN ISO 14172:2003:

AWS 5.11-97:

EL NiMo15Cr15W E Ni 6276 (NiCr15Mo15Fe6W4) ENiCrMo-4 BÖHLER FOX NIBAS C 276

SMAW stick electrode, nickel base

Description

Basic coated nickel base electrode for welding of similar alloyed Ni base steel grades, e.g.N10276, 2.4819, NiMo16Cr15 W as well as for joining these grades with low alloyed and stainless steels. Also suitable for surfacing on low-alloyed steels. It is employed primarily for welding components in plants for chemical processes with highly corrosive media, but also for surfacing press tools, punches etc. which operate at high temperatures. In addition to its exceptional resistance to contaminated mineral acids, chlorine-contaminated media, and chloride containing media, it resists strong oxidisers such as ferric and cupric chlorides and is one of the few materials which will resist wet chlorine gas. The electrode can be welded in all positions except vertical-down. Stable arc, easy slag removal.

For avoidance of intermetallic precipitation the electrode should be welded with lowest possible heat input and minimum interpass temperature.

Typical Composition of All-weld Metal

wt-%	C	Si	Mn	Cr	Mo	Ni	W	Fe
	< 0.02	< 0.2	0.6	16.5	16.5	bal.	4	5

Mechanical Properties of All-weld Metal

(*)	u
yield strength R _e N/mm ² :	≥ 450
tensile strength R _m N/mm ² :	≥ 720
elongation A (Lo=5d ₀) %:	≥ 30
imact work ISO-V KV-I	> 70
Impact work ISO-V KV J	≥ 70

(*) u untreated, as-welded

Operating Data

re-drying if necessary: 250-300 °C, min. 2-3 h electrode identification: FOX NIBAS C 276 ENICrMo-4	ømm 2.5 3.2 4 0	L mm 250 300 350	amps A 50-70 70-100 90-130	=+
FOX NIDAS C 2/0 LINICIMU"4	4.0	330	30-130	

The interpass temperature of 150 $^{\circ}$ C and a max. weaving width 2.5 x diameter of the electrode core wire should not be exceeded.

Base Materials

NiMo16Cr15W (2.4819), Alloy C-276, UNS N10276, B575, B626 joint welds of listed materials with low alloy and stainless steels

Approvals and Certificates

TÜV-D (10511.), CL

GTAW rod:	NIBAS C 276-IG
GMAW solid wire:	NIBAS C276-IG
SAW combination:	NIBAS C276-UP/BB 444

DIN EN ISO 14172:

DIN 1736: AWS 5.11: E Ni 4060 (NiCu30Mn3Ti) EL-NiCu30Mn ENiCu7 BÖHLER FOX NIBAS 400

> SMAW stick electrode nickel-copper

Description

Basic coated NiCu electrode for joining and surfacing of nickel-copper alloys and of nickel-copper-clad steels. Particularly suited for the following materials: Alloy 400, N04400, 2.4360 NiCu30Fe, 2.4375 NiCu30AI. It is also used for joining different materials, such as steel to copper and copper alloys, steel to nickel-copper alloys. Excellent corrosion resistance to chloride induced stress corrosion cracking and a wide range of marine and chemical requirements. These materials are employed in high-grade apparatus construction, primarily for the chemical and petrochemical industries. A special application field is the fabrication of seawater evaporation plants and marine equipment.

Typical Composition of All-weld Metal									
wt-%	C < 0.05	Si 0.7	Mn 3	Ni bal.	Cu 29	Fe 1	Ti 0.7	AI 0.3	
Mechan	Mechanical Properties of All-weld Metal								
(*) yield streng tensile stre elongation impact wor	gth R₀ N/mr ngth R _m N/r A (L₀=5d₀) ⁰ k ISO-V K\	n²: mm²: %: / J		u ≥ 300 ≥ 450 ≥ 30 ≥ 80					
(*) u untr	reated, as-v	velded							
Operati	ng Data								
	re-dryi 200 °C electro FOX N	ng if neces , min. 2h de identifi IBAS 400	ssary: cation: ENiCu-7	ø mm 2.5 3.2 4.0	L n 30 35 35	nm 00 50 50	amps A 55-70 75-110 90-130	=+	
Base Materials									
NiCu30Fe (2.4360), NiCu30Al (2.4375) UNS N04400, N05500, nickel copper alloys, Alloy 400, ASTM B 127, B 165									

Approvals and Certificates

TÜV-D (10512.), ABS, GL, CL

GTAW rod:	NIBAS 400-IG
GMAW solid wire:	NIBAS 400-IG

ENISO18274:2004: S Ni6625

DIN 1736: AWS A5.14-97: W.Nr.:

(NiCr22Mo9Nb) SG-NiCr 21 Mo 9 Nb ERNiCrMo-3 2.4831

BÖHLER NIBAS 625-IG, NiCr 625-IG*

GTAW rod, nickel base

Description

GTAW rod for high-quality joint welding of high-molybdenum nickel-base alloys (e.g. Inconel 625 and Incoloy 825) as well as of CrNiMo steels with high Mo-content (e.g. "6Mo" steels). Additionally this brand is recommended for high-temperature or creep resisting, heat resisting and cryogenic materials, for low-alloy problem steels and joining dissimilar materials.

Can be used for pressure vessel fabrication for service temperatures from -196 °C to +550 °C, otherwise up to scaling resistance limit of +1200 °C (S-free atmosphere. Due to the weld metal embrittlement between +600 - 850 °C, this temperature range should be avoided. Highly resistant to hot cracking: furthermore. C-diffusion at high temperatures, or during heat treatment of dissimilar steels is largely inhibited.

Extremely resistant to stress corrosion cracking and pitting corrosion (PREN 52). Resistant to thermal shocks, stainless, fully austenitic, Low coefficient of thermal expansion (between C-steels and austenitic CrNi (Mo) steel). TIG-rod and deposit satisfy the highest quality standards.

Typical Composition of Welding Rod

	0	0:	14.	0	N.C.	14.	N.U.	E
	C	51	ivin	Cr	INI	IVIO	IND	⊢e
wt-%	≤ 0.02	0.1	0.1	21.5	≥ 60.0	9.0	3.6	≤ 2.0

Mechanical Properties of All-weld Metal

(*)		u	
yield strength R _e N/mm ² :		540	(≥ 460)
tensile strength Rm N/mm2:		800	(≥ 740)
elongation A ($L_0 = 5d_0$) %:		38	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	160	(≥ 120)
	- 196 °C:	130	(≥ 100)
(*)	abialding gas	A	` '

(*) u untreated, as-welded – shielding gas Argon

Operating Data

f t
└ →

shielding gases: 100 % Argon ø mm Ar + He mixture cases rod marking: front 2.4831 back: EBNiCrMo-3

Base materials

2,4856 NiCr 22 Mo 9 Nb. 2,4858 NiCr 21 Mo. 2,4816 NiCr 15 Fe. 1,4583 X10CrNiMoNb18-12. 1.4876 X 10 NiCrAITi 32 20 H, 1.4876 X 10 NiCrAITi 32 20, 1.4529 X1NiCrMoCuN25-20-7, X 2 CrNiMoCuN 20 18 6, 2.4641 NiCr 21 Mo 6 Cu joint welds of listed materials with non alloy and low alloy steels, e.g P265GH, P285NH, P295GH, 16Mo3, S355N, X8Ni9, ASTM A 553 Gr.1, Alloy 600, Alloy 625, Alloy 800 (H), 9 % Ni-steels

1.6

2.0

24

Approvals and Certificates

TÜV-D (4324.), TÜV-A (436), Statoil, SEPROZ (NiCr 625-IG; TÜV-D (3938.))

SMAW stick electrode:	FOX NIBAS 625	GMAW solid wir	e:	NIBAS 625-IG
*product name in Germany		GMAW flux core	ed wire:	NIBAS 625-FD
		SAW comb.:	NIBAS	625-UP/BB 444

BÖHLER NIBAS 70/20-IG, NiCr 70 Nb-IG*

ENISO18274:2004: S Ni6082 (NiCr20Mn3Nb) DIN 1736: SG-NiCr 20 Nb AWS A5.14-97: ERNiCr3 W.Nr.: 2.4806

GTAW rod, nickel base

Description

GTAW rod for welding of nickel-base alloys, high-temperature and creep resisting steels, heat resisting and cryogenic materials, low-alloyed problem steels and dissimilar joints. Ferritic-austenitic joints for service temperatures above + 300 °C or for applications where a post weld heat treatment is required

Suitable in pressure vessel fabrication from -196 °C to +550 °C, otherwise resistant to scaling up to +1200 °C (S-free atmosphere). Not susceptible to embrittlement, C-diffusion at elevated temperatures largely inhibited.

Resistant to thermal shocks, corrosion resistant, fully austenitic, low coefficient of thermal expansion, between the coefficient values of C-steel and austenitic CrNi (Mo)-steel.

Both the TIG-rod and the weld deposit satisfy highest quality requirements.

Typical Composition of Welding Rod

					-			
	С	Si	Mn	Cr	Ni	Ti	Nb	Fe
wt-%	≤ 0.03	0.1	3.0	20.0	> 67	+	2.5	≤ 1.7

Mechanical Properties of All-weld Metal

(*)		u	
vield strength R _a N/mm ² :		440	(≥ 400)
tensile strength R _m N/mm ² :		680	(≥ 620)́
elongation A ($L_0 = 5d_0$) %:		42	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	190	(≥ 150)
•	- 196 °C:	100	(≥ 32)
(*)	a la la la la la sura a la		· · ·

(*) u untreated, as-welded – shielding gas Argon

Operating Data

t →	shielding gases: 100 % Argon Ar + He mixture gases	ø mm 1.6
' →	rod marking:	2.0
	front: 2.4806	2.4
	back: ERNiCr-3	

Base Materials

2.4816 Ni Cr 15 Fe, 2.4817 LC-NiCr 15 Fe, Alloy 600, Alloy 600 L. nickel and nickel alloys, low-temperature steels up to 5 % Ni-steels, unalloyed and alloyed, high-temperature, creep resisting, high-alloy Cr- and CrNiMo-steels particularly for joint welding of dissimilar steels, and nickel to steel combinations; also recommended for Alloy 800.

Approvals and Certificates

TÜV-D (4328.), TÜV-A (434), Statoil, SEPROS (NiCr 70 Nb-IG TÜV-D (0891.), KTA 1408 1 (8035.00))

Same Alloy Filler Metals

SMAW stick electrode: FOX NIBAS 70/20 *product name in Germany GMAW solid wire: NIBAS 70/20-IG GMAW flux cored wire: NIBAS 70/20-FD SAW comb.: NIBAS 70/20-UP/BB 444 EN ISO 18274-2004

DIN 1736: AWS 5.14-97: W.Nr.:

S Ni 6059 (NiCr23Mo16) SG-NiCr23Mo16 ERNiCrMo-13 2.4607

GTAW rod, nickel base

Description

GTAW rod for highest corrosion requirements and welding of the Ni base steel grades, e.g. UNS N06059, N06022, 2.4605, 2.4602 as well as for joining these grades with low alloyed and stainless steels. Also suitable for surfacing on low-alloyed steels.. It is employed primarily for welding components in environmental plants and plants for chemical processes with highly corrosive media. Excellent resistance against pitting and crevice corrosion and chloride-induced stress corrosion cracking. In addition to its exceptional resistance to contaminated oxidating mineral acids, acetic acids and acetic anhydrides, hot contaminated sulphuric- and phosphoric acid. Weld with possibly low heat input and low interpass temperature.

Typical (Typical Composition of Welding Rod								
wt-%	C 0.01	Si 0.1	Mn < 0.5	Cr 23	Mo 16	Ni bal.	Fe < 1		
Mechani	Mechanical Properties of All-weld Metal								
(*) u yield strength \mathbb{R}_{n} N/mm ² : \geq 450 tensile strength \mathbb{R}_{m} N/mm ² : \geq 700 elongation A (L=560) %: \geq 35 impact work ISO-V KV J \geq 120 (*) u untreated, as-welded – shielding gas Argon									
Operating Data									
	shield 100 % Ar + rod m front:	ding gases % Argon He mixtur harking: 2 4607	: e gases		Ø 1 2 2 3	mm .6 .0 .4		=-	

Base Materials

NiCr21Mo14W (2.4602), NiMo16Cr16Ti (2.4610), NiMo16Cr15W (2.4819), NiCr23Mo16AI (2.4605), X2 CrNiMnMoNbN25-18-5-4 (1.4565), Alloy 59, UNS, N06059; N06022, B575, B626 joint welds of listed materials with low alloy and stainless steels

Approvals and Certificates

TÜV-D (10523.), CL

Same Allov Filler Metals

SMAW:	FOX NIBAS C 24
GMAW solid wire:	NIBAS C24-IG
SAW combination:	NIBAS C24-UP/BB 444

back: EBNiCrMo-13

DIN 1736: AWS 5.14-97: W.Nr.: S Ni 6617 (NiCr22Co12 Mo) SG-NiCr22Co12Mo9 ERNiCrCoMo-1 2.4627

GTAW rod, nickel base

Description

GTAW rod for joining high-temperature and similar nickel-base alloys, heat resistant austentic and cast alloys, such as 2.4663 (NiCr21Co12MO), 2.4851 (NiCr23Fe), 1.4876 (X10 NiCrAITi 32 20), 1.4859 (GX 10 NiCrNb 32 20). The weld metal is resistant to hot-cracking and is used for service temperatures up to +1100 °C. Scale-resistance up to +1100 °C, high temperature resistant up to 1000 °C. High resistance to hot gases in oxidizing and carburized atmospheres, e.g. gas turbines, ethylene production plants.

Typical Composition of Welding Rod										
wt-%	C 0.05	Si 0.1	Mn 0.1	Cr 21.5	Mo 9	Ni bal.	Co 11	Al 1	Ti 0.5	Fe 1
Mecl	nanica	l Prop	perties	of Al	l-weld	Metal				
(*) u yield strength R _* N/mm ² : ≥ 450 tensile strength R _m N/mm ² : ≥ 700 elongation A (L=5d) %: ≥ 30 impact work ISO-V KV J ≥ 60 (*) u untreated, as-welded – shielding gas Argon Operating Data										
shielding gases: 100 % Argon / Ar + He mixture gases rod marking: front: + 2.4627 back: ERNiCrCoMo-1							ø mm 2.0 2.4			=-
Base Materials										
X10Ni NiCr23	x10NiCrtaTi32-20 (1.4876) NiCrt23Fe (2.4851)									

GX10NiCrNb32-20 (1.4859) NiCr23Co12Mo (2.4663) Alloy 617, UNS N06617

Approvals and Certificates

TÜV-D (applied)

SMAW:	FOX NIBAS 617
GMAW wire:	NIBAS 617-IG
SAW combination:	NIBAS 617-UP/BB 444

DIN 1736: AWS 5.14-97: W.Nr.: S Ni 6276 (NiCr15Mo16Fe6W4) SG-NiMo16Cr16W ERNiCrMo-4 2.4886

GTAW rod, nickel base

Description

GTAW rod for welding of similar alloyed Ni base steel grades, e.g. N10276, 2.4819, NiMo16Cr15 W as well as for joining these grades with low alloyed and stainless steels. Also suitable for surfacing on low-alloyed steels. steels. It is employed primarily for welding components in plants for chemical processes with highly corrosive media, but also for surfacing press tools, punches etc. which operate at high temperatures. In addition to its exceptional resistance to contaminated mineral acids, chlorine-contaminated media, and chloride containing media, it resists strong oxidisers such as ferric and cupric chlorides and is one of the few materials which will resist wet chlorine gas. Weld with possibly low heat input and low interpass temperature in order to avoid intermetallic precipitations.

Typical	Typical Composition of Welding Rod								
wt-%	C < 0.01	Si 0.1	Cr 16	Mo 16	Ni bal.	⊤ 3.5	Fe 6	∨ 0.2	
Mechan	Mechanical Properties of All-weld Metal								
(*) u yield strength R _* N/mm ² : ≥ 450 tensile strength R _* N/mm ² : ≥ 750 elongation A (L=5d6) %: ≥ 30 impact work ISO-V KV J ≥ 90									
(*) <i>u untr</i>	eated, as-v	velded – s	shielding ga	as Argon					
Operati	ng Data								
shielding gases: 100 % Argon Ar + He mixture gases rod marking: front: +2.4886 back: ERNICrNbo-4				øn 2. 2.	nm 0 4		=-		
Base Materials									
NiMo16Cr1 Alloy C-276 joint welds	VIIM016Cr15W (2.4819), Alloy C-276, UNS N10276, B575, B626 oint welds of listed materials with low alloy and stainless steels								

Approvals and Certificates

TÜV-D (10521.), CL

SMAW:	FOX NIBAS C 276
GMAW solid wire:	NIBAS C276-IG
SAW combination:	NIBAS C276-UP/BB 444

DIN 1736: AWS 5.14-97: W.Nr.: S Ni 4060 (NiCu30Mn3Ti) SG-NiCu30Mn3Ti ERNiCu7 2.4377

GTAW rod, nickel copper

Description

GTAW rod for joining and surfacing of nickel-copper alloys and of nickel-copper-clad steels. Particularly suited for the following materials: alloy 400, N04400, 2.4360 NiCu30Fe, 2.4375 NiCu30AI. It is also used for joining different materials, such as steel to copper and copper alloys, steel to nickel-copper alloys. Excellent corrosion resistance to chloride induced stress corrosion cracking and a wide range of marine and chemical requirements. These materials are employed in high-grade apparatus construction, primarily for the chemical and petrochemical industries. A special application field is the fabrication of seawater evaporation plants and marine equipment.

Typical Composition of Welding Rod								
wt-%	C < 0.02	Si 0.3	Mn 3.2	Ni bal.	Cu 29	Ti 2.4	Fe 1	Al < 1.0
Mechar	nical Pro	perties	of All-	weld Me	tal			
(*) U yield strength R _* N/mm ² : ≥ 300 tensile strength R _m N/mm ² : ≥ 500 elongation A (L=560) %: ≥ 35 impact work ISO-V KV J ≥ 150								
(*) <i>u unt</i>	reated, as-v	velded – s	shielding g	as Argon				
Operati	ng Data							
ĺ	shielding gases: 100 % Argon / Ar + He mixture gases rod marking: front: ☆2.4377 back: ERNiCu7				øn es 1. 2. 2.	nm 6 0 4		=-
Base Materials								
NiCu30Fe UNS N044 nickel cop	VICu30Fe (2.4360), NICu30AI (2.4375) VINS N04400, N05500, nickel copper alloys, Alloy 400, ASTM B 127, B 165							

Approvals and Certificates

TÜV-D (10519.), ABS, GL, CL

SMAW:	FOX NIBAS 400
GMAW solid wire:	NIBAS 400-IG

ENISO18274.2004 S Ni6625

DIN 1736: AWS A5.14-97: W Nr ·

(NiCr22Mo9Nb) SG-NiCr 21 Mo 9 Nb ERNiCrMo-3 2 4831

BOHLER NIBAS 625-IG, NiCr 625-IG*

Fe

GMAW solid wire, nickel base

Description

GMAW wire for high-guality joint welding of nickel-base alloys like Inconel 625 and Incolov 825 as well as of CrNiMo stainless steels with high Mo-content (e.g. "6Mo" steels). Additionally it is recommended for hightemperature or creep resisting, heat resisting and cryogenic materials, joining of dissimilar steels, and also for problem steels.

Can be used for pressure vessel fabrication for service temperatures in the -196 °C to +550 °C range, otherwise up to scaling resistance limit of +1200°C (S-free atmosphere). Due to the weld metal embrittlement between +600 - 850 °C, this temperature range should be avoided. Highly resistant to hot cracking: furthermore. C-diffusion at high service temperatures or during post weld heat treatment of dissimilar steels is largely inhibited.

Extremely resistant to stress corrosion cracking and pitting (PREN 52). Resistant to thermal shocks, fully austenitic. Low coefficient of thermal expansion (between C-steels and austenitic CrNi (Mo) steel). Wire and weld metal satisfy highest quality standards.

> Mo Nb

Typical Composition of Solid Wire Si

wt-%

$\leq 0.02 \leq 0.2$ ≤ 0.3 21.5 ≥ 60.0 9.0 3.6 ≤ 2.0 Mechanical Properties of All-weld Metal

meenamear roperties of All-weid metal						
(*)		u				
vield strength R _e N/mm ² :		510	(≥ 460)			
tensile strength Rm N/mm ² :		780	(≥ 740			
elongation A (L ₀ = 5d ₀) %:		40	(≥ 25			
impact work ISO-V KV J	+ 20 °C:	130	(≥ 100 [°]			

Mn Cr

t work ISO-V	KV J	+ 20 °C:	130	(≥ 100)
		- 196 °C:	80	(> 32)

(*) u untreated, as-welded – shielding gas Argon + 40 % Helium

Operating Data

С

shielding gases: Argon + 40% He Ar + He + small amounts of active gas	ø mm 1.0 1.2	=+
Welding with puls technic will be advantageous.		

Base Materials

2.4856 NiCr 22 Mo 9 Nb, 2.4858 NiCr 21 Mo, 2.4816 NiCr 15 Fe, 1.4583 X10CrNiMoNb18-12, 1.4876 X 10 NiCrAITi 32 20 H, 1.4876 X 10 NiCrAITi 32 20, 1.4529 X1NiCrMoCuN25-20-7 X 2 CrNiMoCuN 20 18 6, 2.4641 NiCr 21 Mo 6 Cu joint welds of listed materials with non alloy and low alloy steels, e.g P265GH, P285NH, P295GH, 16Mo3, S355N, X8Ni9, ASTM A 553 Gr.1, Alloy 600, Alloy 625, Alloy 800, 9 % Ni-steels

Approvals and Certificates

TÜV-D (4323.), TÜV-A (437), Statoil, UDT, SEPROZ (NiCr 625-IG: TÜV-D (3937.))

Same Allov Filler Metals

SMAW stick electrode: FOX NIBAS 625

* product name in Germanv

GTAW rod: NIBAS 625-IG GMAW flux cored wire: NIBAS 625-FD SAW comb NIBAS 625-UP/BB 444

BÖHLER NIBAS 70/20-IG, NiCr 70 Nb-IG*

ENISO18274:2004: S Ni6082 (NiCr20Mn3Nb) DIN 1736: SG-NiCr 20 Nb AWS A5.14-97: ERNiCr-3 W.Nr.: 2.4806

GMAW solid wire, nickel base

Description

Special GMAW wire for welding of nickel-base alloys, high-temperature and creep resisting steels, heat resisting and cryogenic materials, low-alloyed problem steels and dissimilar joints. Ferritic-austenitic joints for service temperatures above +300 °C or for applications where a post weld heat treatment is required. Suitable for pressure vessel fabrication for the service temperature range -196 °C to +550°C, otherwise resistant to scaling up to +1200 °C (S-free atmosphere).

Not susceptible to embrittlement, C-diffusion at elevated temperatures largely inhibited. Resistant to thermal shocks, corrosion resistant, fully austenitic. Low coefficient of thermal expansion (between C-steels and austenitic CrNi (Mo) steel).

Both the wire and the deposit satisfy the highest quality requirements.

Typical Composition of Solid Wire

wt-%	C	Si	Mn	Cr	Ni	Ti	Nb	Fe
	≤ 0.03	≤ 0.3	3.0	20.0	≥ 67	+	2.5	≤ 1.7
	- 0.00		0.0			•		

Mechanical Properties of All-weld Metal

(*)		u	
yield strength R _e N/mm ² :		420	(≥ 400)
tensile strength R _m N/mm ² :		680	(≥ 620)
elongation $A(L_0 = 5d_0)$ %:		40	(≥ 35)
impact work ISO-V KV J	+ 20 °C:	160	(≥ 150)
	- 196 °C:	80	(≥ 32)
			10 0/ 11 1

(*) u untreated, as-welded – shielding gas Argon + 40 % Helium

Operating Data

shielding gases: Argon + 40 % He	ø mm 0.8	=+
Ar + He + small quantities active gas	1.0	
	12	

Welding with puls technic will be advantageous.

Base Materials

2.4816 Ni Cr 15 Fe, 2.4817 LC-NiCr 15 Fe, Alloy 600, Alloy 600 L nickel and nickel alloys, low-temperature steels up to X8Ni9, unalloyed and alloyed, high-temperature, creep resisting, high-alloy Cr- and CrNiMo-steels particularly for joint welding of dissimilar steels, and nickel to steel combinations; also recommended for Alloy 800 (H).

Approvals and Certificates

TÜV-D (4327.), TÜV-A (435), Statoil, UDT, SEPROZ, (NiCr 70 Nb-IG TÜV-D (0890.))

Same Alloy Filler Metals

SMAW stick electrode: FOX NIBAS 70/20 GMAW flux cored wire: NIBAS 70/20-FD * product name in Germany GTAW rod: NIBAS 70/20-IG SAW comb.: NIBAS 70/20-UP / BB 444

DIN 1736: AWS 5.14-97: W.Nr.: S Ni 6059 (NiCr23Mo16) SG-NiCr23Mo16 ERNiCrMo-13 2.4607

BÖHLER NIBAS C 24-IG

GMAW solid wire nickel base

Description

GMAW wire for highest corrosion requirements and welding of the Ni base steel grades, e.g. UNS N06059, N06022, 2.4605, 2.4602 as well as for joining these grades with low alloyed and stainless steels. Also suitable for surfacing on low-alloyed steels. It is employed primarily for welding components in environmental plants and plants for chemical processes with highly corrosive media. Excellent resistance against pitting and crevice corrosion and chloride-induced stress corrosion cracking. In addition to its exceptional resistance to contaminated oxidating mineral acids, acetic acids and acetic anhydrides, hot contaminated sulphuric- and phosphoric acid. Weld with possibly low heat input and low interpass temperature.

Typical	Typical Composition of Solid Wire								
wt-%	C < 0.01	Si 0.1	Mn < 0.5	Cr 23	Mo 16	Ni bal.	Fe < 1		
Mechan	ical Pro	perties	of All-w	eld Me	tal				
() <i>u</i> unu		velueu – s	silielulity yas	s Aigon					
Operati	Operating Data								
ţ_,	shieldii 100 % M 11 +	ng gases: Argon • 28 % He	9		øn 1. 1.	nm 0 2		=+	

Base Materials

NiCr21Mo14W (2.4602), NiMo16Cr16Ti (2.4610), NiMo16Cr15W (2.4819), NiCr23Mo16Al (2.4605), X2 CrNiMnMoNbN25-18-5-4 (1.4565), Alloy 59, UNS, N06059; N06022, B575, B626 joint welds of listed materials with low alloy and stainless steels

Approvals and Certificates

TÜV-D (10522.), CL

SMAW:	FOX NIBAS C 24
GTAW rod:	NIBAS C24-IG
SAW combination:	NIBAS C24-UP/BB 444

DIN 1736: AWS 5.14-97: W.Nr.: S Ni 6617 (NiCr22Co12 Mo) SG-NiCr22Co12Mo9 ERNiCrCoMo-1 2.4627

GMAW solid wire nickel base

Description

GMAW wire for joining high-temperature and similar nickel-base alloys, heat resistant austenitic and cast alloys, such as 2.4663 (NiCr21Co12Mo), 2.4851 (NiCr23Fe), 1.4876 (X10 NiCrAITi 32 20), 1.4859 (GX 10 NiCrNb 32 20). The weld metal is resistant to hot-cracking and is used for service temperatures up to +1100 °C. Scale-resistance up to +1100 °C, high temperature resistant up to 1000 °C. High resistance to hot gases in oxidizing and carburized atmospheres, e.g. gas turbines, ethylene production plants.

Typical Composition of Solid Wire										
wt-%	C 0.05	Si 0.1	Mn 0.1	Cr 21.5	Mo 9	Ni bal.	Co 11	Al 1	Ti 0.5	Fe 1
Mech	nanica	Prop	erties	of All	-weld	Metal				
Oper	ating I	Data								
1		shielding gases: 100 % Argon M 11 + 28 % He Ar + 30 % He + 0.5 % CO₂				ø mm 1.0 1.2			=+	
Base	Mater	ials								
X10NiCrAITi32-20 (1.4876) NiCr23Fe (2.4851) GX10NiCrNb32-20 (1.4859) NiCr23Co12Mo (2.4663) Alloy 617, UNS N06617										
Appr	ovals	and C	ertific	ates						

SMAW:	FOX NIBAS 617
GTAW rod:	NIBAS 617-IG
SAW combination:	NIBAS 617-UP/BB 444

DIN 1736: EN ISO 18274:2004:

AWS 5.14-97: W.Nr.: SG-NiMo16Cr16W S Ni 6276 (NiCr15Mo16Fe6W4) ERNiCrMo-4 2.4886 BÖHLER NIBAS C 276-IG

> GMAW solid wire nickel base

Description

GMAW wire for welding of similar alloyed Ni base steel grades, e.g.1N0276, 2.4819, NiMo16Cr15 W as well as for joining these grades with low alloyed and stainless steels and surfacing on low-alloyed steels. It is employed primarily for welding components in plants for chemical processes with highly corrosive media, but also for surfacing press tools, punches etc. which operate at high temperatures. In addition to its exceptional resistance to contaminated mineral acids, chlorine-contaminated media, and chloride containing media, it resists strong oxidisers such as ferric and cupric chlorides and is one of the few materials which will resist wet chlorine gas. Weld with possibly low heat input and low interpass temperature in order to avoid intermetallic precipitations.

Typical Composition of Solid Wire										
wt-%	C < 0.01	Si 0.1	Cr 16	Mo 16	Ni bal.	⊤ 3.5	Fe 6	∨ 0.2		
Mechan	ical Pro	operties	of All-	weld Me	tal					
(*) u yield strength R _* N/mm ² : ≥ 450 tensile strength R _* N/mm ² : ≥ 750 elongation A (L=5d) %: ≥ 30 impact work ISO-V KV J ≥ 90 (*) u untreated, as-welded – shielding gas Argon										
Operati	ng Data									
	shield 100 % M 11	ing gases: Argon + 28 % He	2		øn 1.	nm 2		=+		
Base M	Base Materials									
NiMo16Cr	15W (2.481	19), 0276 B57	5 B626							

Alloy C-276, UNS N10276, B575, B626 joint welds of listed materials with low alloy and stainless steels

Approvals and Certificates

TÜV-D (10520.), CL

SMAW:	FOX NIBAS C 276
GTAW rod:	NIBAS C276-IG
SAW combination:	NIBAS C276-UP/BB 444

DIN 1736: AWS 5.14-97: W.Nr.: S Ni 4060 (NiCu30Mn3Ti) SG-NiCu30Mn3Ti ERNiCu7 2.4377

GMAW solid wire nickel copper

Description

GMAW wire for joining and surfacing of nickel-copper alloys and of nickel-copper-clad steels. Particularly suited for the following materials: alloy 400, N04400, 2.4360 NiCu30Fe, 2.4375 NiCu30AI. It is also used for joining different materials, such as steel to copper and copper alloys, steel to nickel-copper alloys. Excellent corrosion resistance to chloride induced stress corrosion cracking and a wide range of marine and chemical requirements. These materials are employed in high-grade apparatus construction, primarily for the chemical and petrochemical industries. A special application field is the fabrication of seawater evaporation plants and marine equipment.

Typical Composition of Solid Wire									
wt-%	C < 0.02	Si 0.3	Mn 3.2	Ni bal.	Cu 29	Ti 2.4	Fe 1	Al < 1.0	
Mechan	ical Pro	perties	of All-	weld Me	tal				
(*) yield streng tensile strei elongation impact work (*) <i>u untr</i>	gth R∘ N/mi ngth R _™ N/ A (L∘=5d∘) k ISO-V K\ reated, as-i	m²: mm²: %: / J <i>welded</i> – :	shielding ga	u ≥ 300 ≥ 500 ≥ 35 ≥ 150 as Argon					
Operati	ng Data								
t_↓	shieldi 100 % M 11 -	ng gases Argon • 28 % He			ør 1 1	nm .0 .2		=+	
Base Ma	Base Materials								

NiCu30Fe (2.4360), NiCu30AI (2.4375) UNS N04400, N05500, nickel copper alloys, Alloy 400, ASTM B 127, B 165

Approvals and Certificates

TÜV-D (10518.), ABS, GL, CL

Same Alloy Filler Metals

SMAW: FOX NIBAS 400 GTAW rod: NIBAS 400-IG

BÖHLER NIBAS 70/20-FD

ENISO 14172:2003: Typ Ni 6082 (NiCr20Mn3Nb) AWS A5.34: ENiCr-3TO-4

GMAW flux cored wire, nickel base

Description

Rutile flux cored welding wire with basic elements, especially designed for downhand and horizontal welding positions. The easy operation and the high rate of deposition of Böhler NIBAS 70/20-FD leads to high productivity, with excellent operating characteristic, self releasing slag, almost no spatter formation and temper discoloration, smooth weld finish, good side wall wetting and safe penetration. Beside considerable savings in time and money and little demand for cleaning and pickling, Böhler also guarantees a high quality level and a reduction of welding defects.

Suitable for high quality weld joints of nickelbase alloys, high temperature and creep resisting materials, scaling resistant and low-temperature steels, dissimilar joints and difficult weldable steel grades. Ferritic-austenitic joints for service temperatures above +300 °C or for applications where a post weld heat treatment is required.

Suitable for pressure vessel fabrication for the service temperature range -196 °C to +550 °C, otherwise resistant to scaling up to +1200 °C (S-free atmosphere).

Not susceptible to embrittlement, C-diffusion at elevated temperatures largely inhibited. Resistant to thermal shocks, corrosion resistant, fully austenitic, low coefficient of thermal expansion.

Out of position weldability is limited, in special cases pulse arc welding shows advantages.

Typical Composition of All-weld Metal

wt-%

C Si Mn Cr Ni Nb Fe 0.03 0.4 3.2 20.0 ≥67.0 2.5 2.0

Mechanical Properties of All-weld Metal

(*)	u	
yield strength R _e N/mm ² :	400	(≥ 360)
tensile strength Rm N/mm2:	650	(≥ 600)
elongation A ($L_0 = 5d_0$) %:	39	(≥ 30)
impact work ISO-V KV J	+ 20 °C: 135	(≥ 110)́
•	- 196 °C: 110	(≥ 80)
(*)	a la la lalla an anna a	A

(*) u untreated, as-welded – shielding gas Argon + 20 % CO2

Operating Data

re-drying if necessary: Argon + 15-25 % CO2	ø mm 1.2	L mm 130 - 260	amps A 24 - 36
3	1.6	150 - 350	23 - 32
welding with standard GMAW-facilities p	ossible,		
slightly trailing torch position (angel appr	: 80 °).		
The gas flow should be 15 - 20 l/min.	,		

Base Materials

2.4816 Ni Cr 15 Fe, 2.4817 LC-NiCr 15 Fe, Alloy 600, Alloy 600 L

nickel and nickel alloys, low-temperature steels up to 5 % Ni-steels, unalloyed and alloyed, high-temperature, creep resisting, high-alloy Cr- and CrNiMo-steels particularly for joint welding of dissimilar steels, and nickel to steel combinations; also recommended for Alloy 800 (H).

Approvals and Certificates

TÜV-D (10298.)

Same Alloy Filler Metals

SMAW stick electrode: FOX NIBAS 70/20 GMAW solid wire: NIBAS 70/20-IG GTAW rod: NIBAS 70/20-IG

ENISO 14172:2003 AWS A5.34: Typ Ni 6625 (NiCr22Mo9Nb) ENiCrMo-3TO-4 BÖHLER NIBAS 625-FD

> GMAW flux cored wire nickel base

Description

Rutile flux cored for high-quality joint welding of nickel-base alloys like Alloy 625 and Alloy 825 as well as of CrNiMo stainless steels with high Mo-content (e.g. "6Mo" steels). Additionally it is recommended for high-temperature or creep resisting, heat resisting and cryogenic materials, joining of dissimilar steels, and also for problem steels. Can be used for pressure vessel fabrication for service temperatures in the -196 °C to +550 °C range, otherwise up to scaling resistance limit of +1200 °C (S-free atmosphere). Due to the weld metal embrittlement between 600-850 °C, this temperature range should be avoided. Highly resistant to hot cracking; furthermore, C-diffusion at high service temperatures or during post weld heat treatment of dissimilar steels is largely inhibited. Extremely resistant to stress corrosion cracking and pitting (PREv 52). Resistant to thermal shocks, fully austenitic. Low coefficient of thermal expansion (between C-steels and austenitic CrNi (Mo) steel). Out of position weldability is limited, in special cases pulse arc welding shows advantages.

Typical Composition of All-weld Metal

wt-%	C	Si	Mn	Cr	Mo	Ni	Nb	Fe
	0.05	0.4	0.4	22.0	8.5	≥ 60.0	3.3	< 5.0
	0.00	•••	•••		0.0		0.0	

Mechanical Properties of All-weld Metal

(*)		u
yield strength R _e N/mm ² :		490
tensile strength Rm N/mm2:		750
elongation A (L0=5d0) %:		30
impact work ISO-V KV J	+20 °C:	60
•	-196 °C:	47

(*) u untreated, as-welded – shielding gas Argon + 20 % CO2

Operating Data

S

5	->
î.	
1	-

hielding gases:	ø mm	Amperage	Voltage	
Argon + 15-25 % CO2	1.2	130-260	24-36	1=+

welding with standard GMAW-facilities possible, slightly trailing torch position (angel appr. 80 °), the gas flow should be 15-20 l/min

Base Materials

2.4856 NiCr 22 Mo 9 Nb, 2.4858 NiCr 21 Mo, 2.4816 NiCr 15 Fe, 1.4583 X10CrNiMoNb18-12, 1.4876 X 10 NiCrAITi 32 20 H, 1.4876 X 10 NiCrAITi 32 20, 1.4529 X1NiCrMoCuN25-20-7, X 2 CrNiMoCuN 20 18 6, 2.4641 NiCr 21 Mo 6 Cu, joint welds of listed materials with non alloy and low alloy steels, e.g P265GH, P285NH, P295GH, 16Mo3, S355N, X8Ni9, ASTM A 553 Gr.1, Alloy 600, Alloy 625, Alloy 800

Approvals and Certificates

Same Alloy Filler Metals

SMAW stick electrode: FOX NIBAS 625 GTAW rod: NIBAS 625-IG GMAW solid wire: NIBAS 625-IG

BÖHLER NIBAS 70/20-UP/BB 444

EN ISO 18274:2004: AWS 5.14-97: Flux: DIN EN 760:1996:

Wire: DIN 1736:

> (NiCr20Mn3Nb) ER NiCr-3 SA-FB 2 AC

UP-NiCr20Nb

S Ni 6082

SAW wire / flux-combination nickel base

Description

For SAW wire flux combination welding of Ni base alloy metals and special metals if the use of wire electrodes with high Ni content is requested. The weld metals show excellent mechanical properties with high hot cracking resistance. It is applicable for chemical apparatus construction on high temperature metals as well as in low temperature sections up to -196 °C. BB 444 is an agglomerated fluoride basic welding flux with high basic slag characteristics.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Ni	Nb	Fe	Ti
SAW wire wt-% all-weld metal %	0.010	0.15	3.2	20.5	bal.	2.6	<2.0	0.35
	0.012	0.25	3.0	20.0	bal.	2.2	0.8	0.15

Mechanical Properties of All-weld Metal

(*)		u
vield strength Re N/mm ² :		370
tensile strength Rm N/mm ² :		600
elongation A (L0=5do) %:		40
impact work ISO-V KV J	+20 °C:	120
•	-196 °C:	100

(*) u untreated, as-welded

Operating Data

-

Redrying of sub arc flux: 400-450 °C/2 h

ø mm 2.4 =±

Preheat and interpass temp. as required by the base metal

Base Materials

2:4816 Ni Cr 15 Fe, 2:4817 LC-NiCr 15 Fe, Alloy 600, Alloy 600 L, UNS N06600, ASTM B168 nickel and nickel alloys, low-temperature steels up to 5 % Ni-steels, unalloyed and alloyed, high-temperature, creep resisting, high-alloy Cr- and CrNiMo-steels particularly for joint welding of dissimilar steels, and nickel to steel combinations; also recommended for Alloy 800

Approvals and Certificates

TÜV-D (applied)

SMAW:	FOX NIBAS 70/20
GTAW rod:	NIBAS 70/20-IG
GMAW solid wire:	NIBAS 70/20-IG
GMAW flux cored wire:	NIBAS 70/20-FD

Wire DIN 1736: EN ISO18274:2004: AWS 5.14-97: Flux: DIN EN760-1996-SA-FB 2 AC

UP-NiCr21Mo9Nb S Ni 6625 (NiCr22Mo9Nb) ERNiCrMo-3

SAW wire / flux-combination nickel base

NIBAS 625-UP/BB 444

BÖHLER

Description

For SAW wire and flux combination, suitable for welding of the 6 % Mo superaustenitic grades S31254. N 08926. N 08367 and the matching alloy 625. Weld metal meet highest guality and corrosion requirements. Extremely resistant to stress corrosion cracking and pitting. The pitting resistance equivalent is >52. BB 444 is an applomerated fluoride basic welding flux with high basic slag characteristics.

Typical Cor	nposition	of	Solid	Wire	and	All-	weld	Metal
-------------	-----------	----	-------	------	-----	------	------	-------

	С	Si	Mn	Cr	Мо	Ni	Nb	Fe
SAW wire wt-%	0.010	0.10	0.2	22.0 21.5	9.0 8.5	bal. bal	3.6	<1.5 04

Mechanical Properties of All-weld Metal

(*)		u
yield strength Re N/mm ² :		450
tensile strength Rm N/mm2:		720
elongation A (Lo=5do) %:		40
impact work ISO-V KV J	+20 °C:	130
•	-196 °C:	70

(*) u untreated, as-welded

Operating Data

-		

Redrving of sub arc flux: ø mm 400-450 °C/2 h 24 Preheat and interpass temp, as required by the base metal

=±

Base Materials

2,4856 NiCr 22 Mo 9 Nb. 2,4858 NiCr 21 Mo. 2,4816 NiCr 15 Fe. 1,4583 X10CrNiMoNb18-12. 1.4876 X 10 NiCrAITi 32 20 H. 1.4876 X 10 NiCrAITi 32 20, 1.4529 X1NiCrMoCuN25-20-7. X 2 CrNiMoCuN 20 18 6, 2,4641 NiCr 21 Mo 6 Cu: joint welds of listed materials with non alloy and low alloy steels, e.g P265GH, P285NH, P295GH, 16Mo3, S355N, X8Ni9, ASTM A 553 Gr.1, B443, B446, UNS N06625 Allov 600, Allov 625, Allov 800, 9 % Ni-steels

Approvals and Certificates

TÜV-D (applied)

SMAW:	FOX NIBAS 625	GMAW solid wire:	NIBAS 625-IG
GTAW rod:	NIBAS 625-IG	GMAW flux cored wire:	NIBAS 625-FD

Wire: EN ISO18274:2004: DIN 1736: AWS 5.14-97: W.Nr.: Flux: DIN EN760:1996:

S Ni 6059 (NiCr23Mo16) SG-Ni Cr23 Mo16 ERNiCrMo-13 2.4607

SA-FB 2 AC

SAW wire / flux-combination, nickel base

NIBAS C 24-UP/BB 444

BÖHLER

Description

For SAW wire and flux combination, suitable for highest corrosion requirements and welding of the Ni base steel grades, e.g. UNS N06059, N06022, 2.4605, 2.4602 as well as for joining these grades with low alloyed and stainless steels. Also suitable for surfacing on low-alloyed steels.. It is employed primarily for welding components in environmental plants and plants for chemical processes with highly corrosive media. Excellent resistance against pitting and crevice corrosion and chloride-induced stress corrosion cracking. In addition to its exceptional resistance to contaminated oxidating mineral acids, acetic acids and acetic anhydrides, hot contaminated sulphuric- and phosphoric acid. Weld with possibly low heat input and low interpass temperature. BB 444 is an agglomerated fluoride basic welding flux with high basic slag characteristics.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Мо	Ni	Fe
SAW wire wt-%	< 0.012	< 0.10	< 0.5	23.0	15.5	bal.	< 1.5
all-weld metal %	0.020	0.20	0.25	22.0	15.5	bal.	0.25

Mechanical Properties of All-weld Metal

(*)		u
vield strength Re N/mm ² :		480
tensile strength Rm N/mm ² :		720
elongation A (Lo=5do) %:		38
impact work ISO-V KV J	+20 °C:	80
•	-196 °C:	50

(*) u untreated, as-welded

Operating Data

	_

Redrying of sub arc flux: 400-450 °C/2 h

ø mm 2.0

=±

Base Materials

NiCr21Mo14W (2.4602), NiMo16Cr16Ti (2.4610), NiMo16Cr15W (2.4819), NiCr23Mo16Al (2.4605), X2CrNiMnMoNbN25-18-5-4 (1.4565), Alloy 59, UNS, N06059; N06022, B575, B626 joint welds of listed materials with low alloy and stainless steels

Approvals and Certificates

SMAW:	FOX NIBAS C 24
GTAW rod:	NIBAS C 24-IG
GMAW solid wire:	NIBAS C 24-IG

Wire: EN ISO18274:2004: DIN 1736: AWS 5.14-97: W.Nr.: Flux: DIN EN 760-1996-

S Ni 6617 (NiCr22Co12 Mo) SG-NiCr22Co12Mo9 NIBAS 617-UP/BB 444 ERNiCrCoMo-1 2.4627

SA-FB 2 AC

SAW wire / flux-combination. nickel base

BÖHLER

Description

For SAW wire flux combination for joining high-temperature and similar nickel-base alloys, heat resistant austenitic and cast alloys, such as 2.4663 (NiCr21Co12Mo), 2.4851 (NiCr23Fe), 1.4876 (X10 NiCrAITi 32 20), 1.4859 (GX 10 NiCrNb 32 20). The weld metal is resistant to hotcracking and is used for service temperatures up to +1100 °C. Scale-resistance up to +1100 °C, high temperature resistant up to 1000 °C. High resistance to hot gases in oxidizing and carburized atmospheres, e.g. gas turbines, ethylene production plants.

BB 444 is an applomerated fluoride basic welding flux with high basic slag characteristics.

Typical Composition of Solid Wire and All-weld Metal

	С	Si	Mn	Cr	Мо	Ni	Ti	Co	AI	Fe
SAW wire wt-%	< 0.06	< 0.20	< 0.20	20.5	8.8	bal.	0.5	10.4	1.0	< 1
all-weld metal %	< 0.06	< 0.40	< 0.30	20.0	8.8	bal.	0.25	10.0	0.8	< 1

Mechanical Properties of All-weld Metal

(*)	u
vield strength Re N/mm ² :	> 420
tensile strength Rm N/mm₂:	> 700
elongation A (Lo=5do) %:	> 35
impact work ISO-V KV J	> 80
(*) u untreated, as-welded	

Operating Data

Redrving of sub arc flux: ø mm 400-450 °C/2 h 2.0 Preheat and interpass temp. as required by the base metal

Base Materials

X10NiCrAlTi32-20 (1.4876) NiCr23Fe (2.4851) GX10NiCrNb32-20 (1.4859) NiCr23Co12Mo (2.4663) Allov 617, UNS N06617

Approvals and Certificates

SMAW:	FOX NIBAS 617
GTAW rod:	NIBAS 617-IG
GMAW solid wire:	NIBAS 617-IG

Wire: EN ISO18274:2004: DIN 1736: AWS 5.14-97: W.Nr.: Flux: DIN EN760:1996: S Ni 6276 (NiCr15Mo16Fe6W4) BÖHLER SG-NiMo16Cr16W NIBAS C 276-UP/BB 444 2 4886

SAW wire / flux-combination, nickel base

Description

For SAW wire and flux combination, suitable for welding of similar alloyed Ni base steel grades, e.g. N10276, 2.4819, NiMo16Cr15 W as well as for joining these grades with low alloyed and stainless steels and surfacing on low-alloyed steels. It is employed primarily for welding components in plants for chemical processes with highly corrosive media, but also for surfacing press tools, punches etc. which operate at high temperatures. In addition to its exceptional resistance to contaminated mineral acids, chlorine-contaminated media, and chloride containing media, it resists strong oxidisers such as ferric and cupric chlorides and is one of the few materials which will resist wet chlorine gas. Weld with possibly low heat input and low interpass temperature in order to avoid intermetallic precipitations.

BB 444 is an agglomerated fluoride basic welding flux with high basic slag characteristics.

Typical Composition of Solid Wire and All-weld Metal

	C	Si	Mn	Cr	Mo	Ni	т	Fe
SAW wire wt-%	< 0.012	< 0.10	< 0.5	15.5	16.0	bal.	3.8	< 7
all-weld metal %	< 0.012	0.15	< 0.4	15.0	16.0	bal.	3.3	5.5

Mechanical Properties of All-weld Metal

SA-FB 2 AC

(*)		u
vield strength R _e N/mm ² :		420
tensile strength Rm N/mm2:		710
elongation A (L0=5d0) %:		40
impact work ISO-V KV J	+20 °C:	80
	-196 °C:	70

(*) u untreated, as-welded

Operating Data

Redrying of sub arc flux:ø mm400-450 °C/2 h2.4Preheat and interpass temp. as required by the base metal

Base Materials

NiMo16Cr15W (2.4819), Alloy C-276, UNS N10276, B575, B626 joint welds of listed materials with low alloy and stainless steels

Approvals and Certificates

Same Alloy Filler Metals

SMAW: FOX NIBAS C 276 GTAW rod: NIBAS C 276-IG GMAW solid wire: NIBAS C 276-IG

Notes

Product Information

2.10. NON FERROUS ALLOYS

Contents

OVERVIEW	351
SMAW STICK ELECTRODES	352
GTAW RODS	353

Overview – Standard Classifications

Böhler	ENISO / D	DIN	AWS							
SMAW stick elect	SMAW stick electrodes									
FOX CuNi30Fe	DIN 1733:	EL-CuNi 30 Mn	AWS 5.6: ECuNi							
GTAW rods										
CuNi30Fe-IG	ENISO14640:	S Cu 7158 (CuNi30)	AWS A5.7-04: ERCuNi							
ER Ti 2-IG	-		AWS A5.16-04: ERTi2							

Overview – Typical Chemical Composition

Böhler	С	Si	Mn	Cr	Ni	Mo	Nb	Ti	Fe	Co	Та	AI	
SMAW stick el	ectrode	es											
FOX CuNi30Fe	0.03	0.3	1.2		30.0				0.6				Cu bal.
07414													
GIAW rods													
CuNi30Fe-IG	< 0.05		0.8		30.0			<0.5	0.6				Cu bal.
ER Ti 2-IG	< 0.03							bal.	<0.2				0<0.1
													H<0.008
													14<0.02

DIN 1733: AWS 5.6: EL-CuNi30Mn ECuNi BÖHLER FOX CuNi 30Fe

> SMAW stick electrode copper-nickel

Description

CuNi base electrode for joining and surfacing of similar alloyed base metals with up to 30 % Nickel, as well as for non ferrous alloys and steels of different nature. Due to the excellent resistance to sea water the electrode is best suitable for offshore applications, oil refineries, seawater desalination plants, ship building and also for chemical and food industry. The electrode can be operated in all positions except vertical down.

Typical Composition of All-weld Metal

	С	Si	Mn	Ni	Fe	Cu
wt-%	0.03	0.3	1.2	30	0.6	bal.

Mechanical Properties of All-weld Metal

(*)	u
yield strength R _e N/mm ² :	≥ 240
tensile strength R _m N/mm ² :	≥ 390
elongation A (L $_{2}=5d_{0}$) %:	≥ 30
impact work ISO-V KV J	≥ 80

(*) u untreated, as-welded

Operating Data

→ →	re-drying if necessary: – electrode identification: EOX CUNI 30Ee ECUNI	ø mm 2.5 3.2	L mm 300 350	amps A 60-80 80-105 110-130	=+
	FOX CUIVE SOFE ECUIVE	4.0	350	110-130	

Base Materials

Copper nickel alloys with up to 30 % nickel CuNi 10 Fe 1 Mn (2.0872), CuNi20Fe (2.0878), CuNi30Fe 2.0882) UNS C 71500, C70600

Approvals and Certificates

TÜV-D (10515.), GL, CL

Same Alloy Filler Metals

GTAW rod: CuNi 30Fe-IG

EN 14640:2005: AWS A 5.7-04 W.Nr.: S Cu 7158 (CuNi30) ERCuNi 2.0837 BÖHLER CuNi 30Fe-IG

GTAW rod, CuNi-alloys

Description

GTAW rod for joining and surfacing of similar alloyed base metals with up to 30 % Nickel, as well as for non ferrous alloys and steels of different nature. Due to the excellent resistance to sea water, it is best suitable for offshore applications, oil refineries, seawater desalination plants, ship building and also for chemical and food industry.

Typical Composition of Welding Rod											
wt-%	C < 0.05	Mn 0.8	Ni 30	Fe 0.6	⊺i < 0.5	Cu bal.					
Mechan	Mechanical Properties of All-weld Metal										
(*) yield streng tensile stren elongation	ıth R₀ N/mm ngth R _∞ N/m A (L₀=5d₀) %	²: im²: s:	н	u ≥ 200 ≥ 360 ≥ 30 B 120							
(*) <i>u unti</i>	reated, as-w	relded – sl	nielding gas	Argon							

Operating Data

shielding gas 100 % Argor rod marking: front: - 2.08 back: ERCut	ømm 1.6 2.0 37 2.4	=-
--	--------------------------------	----

Base Materials

Copper nickel alloys with up to 30 % nickel CuNi10Fe1Mn (2.0872), CuNi20Fe (2.0878), CuNi30Fe (2.0882) UNS C71500, C70600

Approvals and Certificates

TÜV-D (10517.), GL, CL

Same Alloy Filler Metals

SMAW stick electrode: FOX CuNi 30 Fe

AWS A5.16-04: UNS: W.Nr.:

BÖHLER ER Ti 2-IG

GTAW rod, Titanium

Description

GTAW rod for welding of pure Titan and Titan alloys with similar chemical composition. Titanium can be tungsten arc welded employing techniques similar to those used for welding of stainless steel. However, Titanium requires a greater cleanliness and the use of auxiliary gas shielding to protect the molten puddleand cooling weld zone from atmospheric contamination.

Typical Composition of Welding Rod												
wt-%	С < 0.03	Ti Bal.	Fe < 0.2	0 < 0.10	H < 0.008	N < 0.02						
Mechan	Mechanical Properties of All-weld Metal											
(*) yield streng tensile stre elongation impact work (*) <i>u untr</i> * <i>depend</i>	*) u ield strength R₂ N/mm ² : 295* ansile strength R₂ N/mm ² : 500* iongation A (L₂=5d₀) %: 42* mpact work ISO-V KV J +20 °C: 76* *) u untreated, as-welded – shielding gas 100 % Argon depend of the pollutants in the weld metal											
Operatio	ng Data											
	shield 100% rod m front:	ing gases: Argon arking: ERTi2			ø n 1. 2. 2.	nm 6 0 4		=-				

Base Materials

Pure Titan and Titan alloys with a similar composition. ASTM Grade 1-4 UNS R50400H

Approvals and Certificates

2.11. Sub-arc Welding Fluxes

Objectives

This section contains a brief description of the characteristic features of subarc welding fluxes from BÖHLER Welding.

Basically the flux has decisive effect on the result of welding operations. Its influence on the melting characteristics and various other physical properties such as viscosity, surface tension, density, thermal expansion, and conductivity in turn has a considerable bearing on the appearance of the bead surface and the slag removability.

Another major consideration here is the influence which the flux exerts through the metallurgical reaction on the chemical composition, and thus also on the mechanical properties of the deposit.

Contents

OVERVIEW	.356
WELDING FLUXES FOR UNALLOYED AND LOW-ALLOYED SAW-WIRES	.357
WELDING FLUXES FOR HIGH-ALLOYED STAINLESS STEEL SAW-WIRES	.361
WELDING FLUXES FOR HIGH-ALLOYED CREEP RESISTANT SAW-WIRES .	.363

Böhler	EN	AWS
Sub-arc Welding	Flux	
BB 24	EN 760: SA FB 1 65 DC H5	-
BB 25	EN 760: SA FB 1 68 AC H5	-
BB 33 M	EN 760: SA AR 1 97 AC	SAW fluxes are not specified
BF 16	EN 760: SF MS 1 78 AC	according to AWS-standards
BB 202	EN 760: SA FB 2 DC	-
BB 430	EN 760: SA FB 1 55 AC	-
BB 444	EN 760: SA FB 2	-
BB 910	EN 760: SA FB 2 55 DC	-

Overview – Standard Classifications

Overview – Typical Chemical Composition

Böhler	SiO ₂ +	CaO+	CaF ₂	Al ₂ O ₃ +	Al ₂ O ₃ +	FeO	K ₂ O+
	TiO₂	MgO		MnO	CaO		Na ₂ O
SAW Welding Flux							
BB 24	15	37	25	19	-	-	3
BB 25	15	29.5	25	23.5	-	-	-
BB 33 M	27	5	5	54	-	-	-
BF 16	44 (SiO2)	13	3	38	-	1	-
BB 202	10	-	50	-	38 (Al ₂ O ₃)	-	-
BB 203	20	26	32	18 (Al ₂ O ₃)	-	-	-
BB 430	15	35	26	21	-	-	-
BB 444	4 (SiO ₂)	55	-	30 (Al ₂ O ₃)	-	9 (F-)	2
BB 910	14	32	31	18	-	-	-

EN 760: SA FB 1 65 DC H5

BÖHLER BB 24

SAW flux, fluoride-basic type

Description

BÖHLER BB 24 is an agglomerated welding flux of the fluoride-basic type. It is characterised by its neutral metallurgical behaviour. When used in combination with suitable wire electrodes the weld metal displays high toughness properties at low/subzero temperatures. The flux is designed for joining and surfacing applications on general-purpose structural steels, fine-grained high strength and low temperature steels, and high-temperature steel grades. BOHLER BB 24 is a hydrogen-controlled welding flux with hydrogen contents of maximum 5 ml/100 g weld deposit.

Composition of Sub-arc Welding Flux

flux consumption:

wt-%	SiO ₂ +TiO ₂ 15	CaO+MgO 37	Al ₂ O ₃ +MnO 19	CaF ² 25	K2O+Na2O 3	
Proper	ties and Ope	rating Data				
+	basicity acc. bulk density grain size ac	Boniczewski: : c. EN 760:	2.6 1.0 kg/dm³ 0.3 - 2.0 mm			=±

1.0 kg flux per kg wire

Base Materials

mild steels, high temperature and creep resistant steels, cryogenic steels, fine-grained steels

maximum amperage: 800 A. re-drying: 300 - 350 °C, 2 h - 10 h

Typical Composition of All-weld Metal with different Wires

Böhler SAW wires	С	Si	Mn	Cr	Ni	Мо	V	W
Bohler EMS 2	0.07	0.25	1.05					
Böhler EMS 3	0.08	0.30	1.50					
Böhler EMS 2 Mo	0.08	0.25	1.15			0.45		
Böhler EMS 2 CrMo	0.08	0.25	1.0	1.0		0.45		
Böhler CM 2-UP	0.07	0.25	0.8	2.3		0.95		
Böhler CM 5-UP	0.05	0.50	0.75	5.5		0.55		
Böhler 20 MVW-UP	0.16	0.3	0.78	10.3	0.4	0.85	0.25	0.45
Böhler 3 NiMo1-UP	0.08	0.45	1.55		0.95	0.55		
Böhler 3 NiCrMo 2.5-U	JP 0.06	0.3	1.5	0.5	2.2	0.50		
Böhler Ni 2-UP	0.07	0.25	1.05		2.2			

Designation	wire class. according EN	classification for wir according EN 756	e flux/combination according AWS 5.17 / 5.23
BÖHLER EMS 2	S 2	S 38 4 FB S2	F 7 A 8-EM12K / F 48 A 6-EM12K
BOHLER EMS 3	53	S 42 4 FB S3	F / A 4-EH10K / F 48 A 4-EH10K
BOHLER 3 NIM01-UP	S Z 3NI1MO	S 50 4 FB S3NI1MO	F9A4-EF3(mod)-F3/F62A4-EF3(mod.)-F3
BUHLER 3 NICTIMO 2.5-UP	S Z 3INIZOTIVIO	S 69 6 FB S3INIZCIIVIO	F11A8-EM4(mod)-M4/F76A6-EM4(mod)-M4
BOHLER NI 2-UP	S 2INIZ	5 46 6 FB 52INI2	F8A8-ENI2-NI2 / F55A6-ENI2-NI2
BÖHLER EMS 2 CrMo	S CrMo1	- 5 40 4 FD 52IVIU	F 8 P 4-EB2-B2 / F 55 P 4-EB2-B2
BÖHLER CM 2-UP	S CrMo2	-	F 9 P 2-EB3-B3 / F 55 P 0-EB3-B3
BÖHLER CM 5-UP	S CrMo5	-	F 9 P Z-EB6-B6 / F 62 P Z-EB6-B6
BOHLER 20 MVW-UP	S CrMoWV12	·-	·-

Approvals and Certificates

DB (51.014.02), ÖBB; Approval is available for BÖHLER BB 24 together with the BÖHLER-wires: TÜV-D: EMS 2, EMS 3, EMS 2 Mo, EMS 2 CrMo, CM 2-UP, 3 NiMo 1-UP, 20 MVW-UP; UDT: EMS 2, EMS 2 Mo, EMS 2 CrMo, CM 2-UP, CM 5-UP; Ni2-UP; 3NiCrMo2,5-UP, 3NiMo1-UP EN 760: SA FB 1 68 AC H5

BÖHLER BB 25

SAW flux, fluoride-basic type

Description

BÖHLER BB 25 is an agglomerated basic flux suitable for welding of mild and low alloyed steels with good weld metal impact values at low temperatures. Suitable for single and multipass technique.

The flux is active and shows some pickup of manganese and silicon. BÖHLER BB 25 is a hydrogen-controlled welding flux with hydrogen contents of maximum 5 ml/100 g weld deposit.

Composition of Sub-arc Welding Flux

wt-%

SiO₂+TiO₂ 15

CaO+MgO **29.5** Al₂O₃+MnO (23.5

CaF² 25

Properties and Operating Data

basicity acc. Boniczewski: bulk density: grain size acc. EN 760: flux consumption:

2.2 1.0 kg/dm³ 0.2 - 2.0 mm 1.0 kg flux per kg wire =±

maximum amperage: 800 A re-drying: 300 – 350 °C, 2 h – 10 h

Base Materials

mild steels, high temperature steels, fine-grained steels

Typical Composition of All-weld Metal with different Wires

Böhler SAW-Wires	С	Si	Mn	Cr	Mo
Böhler EMS 2	0.07	0.4	1.45		
Böhler EMS 3	0.06	0.4	1.90		
Böhler EMS 2 Mo	0.07	0.4	1.50		0.5
Böhler EMS 2 CrMo	0.07	0.4	1.35	1	0.5

Designation	wire class.	classification for wir	re flux/combination
	according EN	according EN 756	according AWS 5.17 / 5.23
BÖHLER EMS 2	S 2	S 42 4 FB S2	F 7 A 4-EM12K / F 48 A 4-EM12K
BÖHLER EMS 3	S 3	S 42 3 FB S3	F 7 A 3-EH10K / F 48 A 2-EH10K
BÖHLER EMS 2 Mo	S 2 Mo	S 46 3 FB S2Mo	F 8 A 4-EA2-A2 / F 55 A 4-EA2-A2
BÖHLER EMS 2 CrMo	S CrMo 1	-	F 8 P 4-EB2-B2 / F 55 P 4-EB2-B2

Approvals and Certificates

Approval is available for BÖHLER BB 25 together with the BÖHLER-wires: TÜV-D: EMS 2 Mo, EMS 2 CrMo; TÜV-A: EMS 2, EMS 2 Mo, EMS 2 CrMo; UDT: EMS 2, EMS 2 Mo, EMS 2 CrMo; ABS: EMS 2 CrMo EN 760:

SA AR 1 97 AC

BÖHLER BB 33 M

SAW flux, aluminium-rutile-type

Description

BÖHLER BB 33 M is an agglomerated welding flux. It is a aluminium-rutile-type suited for highspeed welding of mild and low-alloyed steels.

It produces smooth welding beads even at travel speeds higher than 1.5 m/min.

Composition of Sub-arc Welding Flux

wt-%

Al ₂ O ₃ +MnO	SiO ₂ +TiO ₂	CaO+MqO
54	27	5 [°]

CaF₂

Properties and Operating Data

basicity acc. Boniczewski: bulk density: grain size acc. EN 760: flux consumption: 0.6 1.4 kg/dm³ 0.2 - 2.0 mm 1.3 kg flux per kg wire

maximum amperage: 800 A re-drying: 275 - 325 °C, 2 h - 4 h

Base Materials

mild steels and low alloy steels

Typical Composition of All-weld Metal with different Wires

Böhler SAW-Wires	С	Si	Mn	Mo
Böhler EMS 2	0.08	0.7	1.3	-
Böhler EMS 3	0.08	0.8	1.7	_
Böhler EMS 2 Mo	0.07	0.8	1.5	0.5

Designation	wire class.	classification for wir	e flux/combination
	according EN	according EN 756	according AWS 5.17 / 5.23
BÖHLER EMS 2	S 2	S 46 0 AR S2	F 7 A Z-EM12K / F 48 A 0-EM12K
BÖHLER EMS 3	S 3	S 50 0 AR S3	F 7 A Z-EH10K / F 48 A 0-EH10K
BÖHLER EMS 2 Mo	S 2 Mo	S 46 Z AR S2Mo	F 8 A Z-EA2-A2(mod) F 55 A 0-EA2-A2(mod)

Approvals and Certificates

DB (51.014.01), ÖBB Approval is available for BÖHLER BB 33 M together with BÖHLER-wires. **TÜV-D:** EMS 2, EMS 2 Mo. **TÜV-A:** EMS 2, EMS 2 Mo. **UDT:** EMS 2 EN 760: SF MS 1 78 AC

BÖHLER BF 16

SAW flux, manganese-silicate-type

Description

BÖHLER BF 16 is a fused manganese-silicate welding flux with acid characteristic. It is very homogeneous and not susceptible to moisture. The welding flux provides smooth beads together with a good slag detachability.

Its metallurgical behaviour shows a slight pick up of manganese and silicon.

It is suited for joint welds of mild steel constructural work of thinner walled (< 20 mm) components as well as for hardfacing applications and allows a high current carrying capacity on both AC and DC.

Composition of Sub-arc Welding Flux

	SiO ₂	CaO+MgO	Al ₂ O ₃ +MnO	CaF2	FeO
wt-%	44	13 Ŭ	38	3	1

Properties and Operating Data

basicity acc. Boniczewski: bulk density: grain size acc. EN 760: flux consumption: 0.7 1.6 kg/dm³ 0.2 - 2.0 mm 1.1 - 1.4 kg flux per kg wire

maximum amperage: 1300 A re-drying: 250 – 350 °C, 1 h – 10 h

Base Materials

mild steels

Typical Composition of All-weld Metal with different Wires

Böhler SAW-Wires	С	Si	Mn
Böhler EMS 2	0.04	0.5	1.3
Böhler EMS 3	0.04	0.5	1.7

Designation	wire class.	classification for wir	e flux/combination
	according EN	according EN 756	according AWS 5.17 / 5.23
BÖHLER EMS 2	S 2	S 38 0 MS S2	F 6 A 0-EM12K / F 43 A 2-EM12K
BÖHLER EMS 3	S 3	S 38 0 MS S3	F 6 A 0-EH10K / F 43 A 3-EH10K

Approvals and Certificates

Approval is available for BÖHLER BF 16 together with BÖHLER-wires. TÜV-A: EMS 2, EMS 2 Mo. UDT: EMS 2

BÖHLER BB 202

SAW flux, fluoride-basic type

=+

Description

BÖHLER BB 202 is an agglomerated fluoride-basic flux for single and multipass welding of Crsteels and non stabilised and stabilised austenitic CrNi(Mo)-steels as well as ferritic-austenitic Duplex-steels. The flux BB 202 produces well contoured and smooth welding beads, easy slag removal without any slag residues and good welding characteristics even for fillet welds are very much appreciated by users. It offers an especially low flux consumption.

The weld deposits show high purity and good mechanical properties.

Composition of Sub-arc Welding Flux

	SiO ₂ +TiO ₂	Al ₂ O ₃	CaF2
wt-%	10	38	50

Properties and Operating Data

•	basicity acc. Boniczewski: bulk density: grain size acc. EN 760: flux consumption:	2.3 1.0 kg/dm ³ 2 - 12 (0.2 - 1.2 mm) 0.7 kg flux per kg wire
	maximum amperage: 800 A re-drying: 300 – 350 °C, 2 h -	- 10 h

Base Materials

Cr-steels and unstabilised or stabilised austenitic CrNi(Mo)-steels as well as austenitic-ferritic duplex steels.

Typical Composition of All-weld Metal with different Wires

Böblor SAM/Miros	C	Ci	Mn	Cr	NIi	Mo	Nb	CII	N
Doniel SAW-Wiles	0	31	IVIII	UI	INI	1010	IND .	ou	IN I
Böhler CN 18/11-UP	0.04	0.55	1.2	18.4	9.3				
DULL FAO O LID				10.0					
Bonler EAS 2-UP	0.02	0.60	1.3	19.8	9.8				
Böblor SAS 2-LID	0.045	0 65	12	10.2	05		0 50		
DUNIEL SAS 2-OF	0.045	0.05	1.5	19.5	9.5		0.50		
Böhler FAS 4 M-LIP	0.02	0 60	13	18.3	122	27			
	0.02	0.00		10.0					
Böhler SAS 4-UP	0.025	0.65	1.3	18.8	11.4	2.7	0.45		
DELLA ON OOK NUTD	0.045	0	4 0	00 5	~ ~	0.4			0 4 4
Bonier CN 22/9 N-UP	0.015	0.55	1.3	22.5	8.9	3.1			0.14
Dähler CN 00/10 LID	0.015	0.05	10	00.4	10.1				
DUILIEL OIN 23/12-UP	0.015	0.05	1.3	∠3.4	13.1				

Designation	class. for wire	classification for wire flux/combination					
	acc. EN 12072	according EN	according AWS 5.9				
BÖHLER CN 18/11-UP	S 19 9 H	-	(ER19-10H)				
BÖHLER EAS 2-UP	S 19 9 L	-	(ER308L)				
BÖHLER SAS 2-UP	S 19 9 Nb	-	(ER347)				
BÖHLER EAS 4 M-UP	S 19 12 3 L	-	(ER316L)				
BÖHLER SAS 4-UP	S 19 12 3 Nb	-	(ER318)				
BÖHLER CN 22/9 N-UP	S 22 9 3 NL	-	(ER2209)				
BÖHLER CN 23/12-UP	S 23 12 L	-	(ER309L)				

Approvals and Certificates

Approval is available for BÖHLER BB 202 together with the following BÖHLER-wires: **TÚV-D**: EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP; **TÚV-A**: SAS 2-UP, SAS 4-UP, CN 20/25 M-UP, CN 22/9 N-UP; **ABS**: CN 22/9 N-UP; **GL**: CN 22/9 N-UP; **CL**: CN 22/9 N-UP; **LR**: CN 22/9 N-UP; **DIV**: CN 22/9 N-UP, CN 23/12-UP; **UDT**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UDT**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UDT**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UDT**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UDT**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UDT**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UDT**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UD**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UD**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UD**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 22/9 N-UP, CN 23/12-UP; **UD**: CN 18/11-UP, EAS 2-UP, EAS 4 M-UP, SAS 2-UP, SAS 4-UP, CN 23/14, CN 23/14, CN 24/14, CN 24/14 EN 760: SA FB 2 DC

BÖHLER BB 203

SAW flux, fluoride-basic type

Description

BÖHLER BB 203 is an agglomerated fluoride-basic flux with high basicity for joint welding of soft martensitic CrNi-steels and austenitic CrNi(Mo)-steels especially for thick walled components with high restraint and where low hydrogen contents are important.

BÖHLER BB 203 produces well contoured and smooth welding beads. It offers an especially low flux consumption. Beside a good slag detachability the flux features good fillet weld capabilities. The weld deposits show high purity and good mechanical properties.

Composition of Sub-arc Welding Flux

	SiO ₂ +TiO ₂	CaO+MgO	Al ₂ O ₃	CaF ₂
wt-%	20	26	18	32

Properties and Operating Data

basicity acc. Boniczewski: bulk density: grain size acc. EN 760: flux consumption:

2.7 1.0 kg/dm³ 2 - 12 (0.2 - 1.25 mm) 0.8 kg flux per kg wire

maximum amperage: 800 A re-drying: 300 - 350 °C, 2 h - 10 h

Base Materials

soft-martensitic Cr-Ni-steels and unstabilised or stabilised austenitic CrNi(Mo)-steels as well as high corrosion resistant fully austenitic Cr-Ni-Mo-steels

Typical Composition of All-weld Metal with different Wires

Böhler SAW-Wires	С	Si	Mn	Cr	Ni	Mo	Nb	Cu	Ν
Böhler CN 13/4-UP	0.025	0.75	0.6	12.1	4.7	0.5			
Böhler ASN 5-UP	0.02	0.2	4.5	18.5	16.3	4.0			0.14
Böhler A 7 CN-UP	0.08	0.9	6.8	18.5	8.8				

Designation	class. for wire	classification for wire flux/combination				
	acc. EN 12072	according EN	according AWS 5.9			
BÖHLER CN 13/4-UP	S 13 4	-	(ER410NiMo mod.)			
BÖHLER ASN 5-UP	S 18 16 5 NL	-	(ER317LN mod.)			
BÖHLER A 7CN-UP	S 18 8 Mn	-	(ER307 mod.)			

Approvals and Certificates

Approval is available for BÖHLER BB 203 together with BÖHLER-wires. **TÜV-D:** EAS 2-UP, EAS4 M-UP, SAS2-UP, SAS 4-UP, CN 22/9 N-UP, CN 20/25 M-UP; **UDT:** A 7 CN-UP, ASN 5-UP, CN 13/4-UP, **SEPROS:** CN 13/4-UP, CN 20/25 M-UP; EN 760: 1996: SA FB 1 55 AC

BÖHLER BB 430

SAW flux fluoride-basic type

Description

BÖHLER BB 430 is a basic agglomerated welding flux with high basicity, for welding high temperature and creep resistant steels. It is characterised by its neutral metallurgical behaviour. When used in combination with suitable wire electrodes the weld metal displays high toughness properties at low/subzero temperatures, even after step-cooling heat treatment

Composition of Sub-arc Welding Flux

wt-%

SiO2+TiO2 CaO+MgO Al2O3+MnO CaF2 % 15 35 21 26

Properties and Operating Data

basicity acc. Boniczewski: bulk density: grain size acc. EN 760: flux consumption: maximum amperage: re-drying: 3.4 1.0 kg/dm³ 0.3 - 1.6 mm 1.0 kg flux per kg wire 800 A 300 - 350 °C / 2h

=+

Base Materials

HCM2S (P23/T23 acc. to ASTM A213 code case 2199) 7CrMoVTiB10-10, P24 acc. to ASTM A 213(Draft)

Typical Composition of All-weld Metal with different Wires

BÖHLER SAW wires	С	Si	Mn	Cr	Мо	V	Т	Nb	Ti	Ν	В
BÖHLER P 23-UP	0.05	0.27	0.9	2.05		0.22	1.7	0.05		0.01	
BÖHLER P 24-UP	0.06	0.20	0.7	2.2	1.0	0.22		0.007	0.027		< 0.003

Designation	wire classif	ication.
Designation	acc. EN	acc. AWS
BÖHLER P 23-UP	S ZCrWV2	EG
BÖHLER P 24-UP	S ZCrWV2	EG

Approvals and Certificates

TÜV-D-for combination BÖHLER BB 430 together with the following BÖHLER-wires: P 23-UP, P 24-UP
BÖHLER BB 444

SAW flux fluoride-basic type

Description

BÖHLER BB 444 is a highly basic agglomerated welding flux, designed for welding and cladding of NiCr(Mo) allovs. Highly resistant against hot cracking thanks to its low level of Si pick up.

Typical Analysis of Sub-arc Welding Flux

wt-%

SiO₂ CaO+MgO Al2O3 K2O+Na2O 55 30 2

F-۵

Properties and Operating Data

basicity acc. Boniczewski: bulk density: grain size acc. EN 760: flux consumption: maximum amperage: re-drvina:

5.1 1.0 ka/dm³ 0.4 -1.4 mm 1.0 ka flux per ka wire 800 Ă 300 - 400 °C / 1h - 2h

Base Materials

nickel and nickel allovs

Typical Composition of All-weld Metal with different wires

BÖHLER SAW wires	С	Si	Mn	Cr	Мо	Ni	Nb	Ti	Т	Co	Fe
BÖHLER NIBAS 70/20-UP	0.010	0.25	3.1	20.0		bal.	2.2				0.8
BÖHLER NIBAS 625-UP	0.015	0.25	0.2	21.5	8.5	bal.	3.3	0.10			0.4
BÖHLER NIBAS C 24-UP	0.020	0.20	0.25	22.0	15.5	bal.					0.25
BOHLER NIBAS 617-UP	<0,06	<0,40	<0.30	20.0	8.8	bal.		0.25		10.0	<1,0
BOHLER NIBAS C 276-UP	<0.015	0.13	0.41	15.0	16.0	bal.			3.3		5.5

wire classification. Designation acc. EN acc. AWS BÖHLER NIBAS 70/20-UP ERNiCr-3 SNi 6082 (NiCr20Mn3Nb) BÖHLER NIBAS 625UP SNi 6625 (NiCr22Mo9Nb) FRNiCrMo-3 BÖHLER NIBAS C 24-UP SNi 6059 (NiCr23Mo16) ERNiCrMo-13 BÖHLER NIBAS 617-UP ERNiCrCoMo-1 S Ni 6617 (NiCr22Co12 Mo) BÔHI FR NIBAS C 276-UP SNi 6276 (NiCr15Mo16Fe6W4) FRNiCrMo-4

Approvals and Certificates

TÜV-D-for combination BÖHLER BB 444 together with the following BÖHLER-wires: NIBAS 70/20-UP NIBAS 625-UP

Same Allov Filler Metals

EN 760 SA FB 2 55 DC 8

BÖHLER BB 910

SAW flux, fluoride-basic type

Description

BÖHLER BB 910 is an agglomerated fluoride-basic special welding flux with high basicity for multipass welding of creep resistant 9 % Cr-steels like P91/T91/P92/T92. The metallurgical behaviour concerning Si and Mn is neutral.

The flux BB 910 produces well contoured and smooth welding beads with good slag release as well as appropriate weld metal ductility and impact behaviour after tempering.

BÖHLER BB 910 is a hydrogen-controlled welding flux with hydrogen contents of maximum 5 ml/100 g weld deposit.

Composition of Sub-arc Welding Flux

w	-%	

SiO₂+TiO₂

14

CaO+MgO 32

Ca_{F₂} 31

Properties and Operating Data

basicity acc. Boniczewski: bulk density: grain size ácc. EN 760: flux consumption:

2.9 1.0 ka/dm3 0.3 - 2.0 mm 1.0 kg flux per kg wire

 Al_2O_3+MnO

18

= 🛨

maximum amperage: 800 A re-drvina: 300 - 350 °C. 2 h - 10 h

Base Materials

high creep resistant 9 %Cr-steels like grade P91/T91, and NF616

Typical Composition of All-weld Metal with different Wires

Böhler SAW-Wires	С	Si	Mn	Cr	Ni	Мо	V	Nb	W	Ν
Böhler C 9 MV-UP	0.11	0.30	0.6	9.0	0.7	0.80	0.2	0.05		
Böhler P 92-UP	0.09	0.45	0.4	8.6	0.6	0.35	0.2	0.04	1.50	

Designation	class. for wire acc. EN 12070	classification for wi according EN	re flux/combination according AWS 5.23
BÖHLER C 9 MV-UP	S CrMo91	-	F 9 P Z-EB9-B9 / F 62 P Z-EB9-B9
BÖHLER P 92-UP	S Z CrMo92		-

Approvals and Certificates

Approval is available for BÖHLER BB 910 together with the BÖHLER-wires: ÜV-D: C 9 MV-UP. P 92-UP: CL: C9MV-UP: UDT: C9 MV-UP. P92-UP: SEPROS: C9MV-UP

Selection Guide

3. Selection Guide

Contents
3.1 WELDING CONSUMABLES
FOR THE OFFSHORE INDUSTRY
WELDING CONSUMABLES
FOR THE CHEMICAL AND PETROCHEMICAL INDUSTRY4
WELDING CONSUMABLES
FOR THERMAL POWER PLANTS
WELDING CONSUMABLES
FOR HYDRO POWER10
3.2 SELECTION TABLES
BASE MATERIAL ORIENTED SELECTION
3.3 PROCESS-BASED SELECTION OF CONSUMABLES
3.4 MATERIAL-BASED SELECTION OF CONSUMABLES
3.5 WELDING TECHNOLOGY DETAILS

3.1 SELECTION GUIDE FOR THE OFFSHORE INDUSTRY

	س ک م	Mild steels Re < 380 MPa	API Pipe steels	High strength steels Ra > 300 MPa S	Stainless steels Martensitic 13C-4VI
	aase metal UNS/ASTM AISVAPI	A106.Gr.B	API 51.X52 API X56.X65 API X60.X65 API X70	420-5460 500 XISI 4130 6690Q	31600
	SMAW	FOX EV 50	FOX EV PIPE FOX BVD 85 FOX BVD 85 FOX BVD 85 FOX EVD 90 M FOX EVD 66 FOX EVD 66 FOX EVD 70 MPE FOX EVD 90	FOX EV 60 FOX EV 65 FOX NIMO 100 FOX EV 85	FOX CN 13/4 Supra FOX CN 13/4 Supra FOX EAS 4 M A FOX EAS 4 M FOX FFB.A FOX FFB.A
Wel	FCAW	Ti 52 W-FD HL 51-FD	ті 52 м.FD Ті 60-FD	Ti 60-FD	CN 13/4-MC EAS 4 PW-FD EAS 4M-FD
ding processes	GTAW	EML 5	EML 5 1 S2 Ni 1 S2 Ni	EML 5 I 52 Ni I 52 Ni (Roor pass only)	CN 13/4-IG EAS 4M-IG FFB-IG
	GMAW		SG 3-P SG 3-P (max, X60) K-Nova Ni K-Nova Ni K-Nova Ni	K-Nova Ni K-Nova Ni Nimo 1-IG NiCm02.5-IG	CN 13/4-MC CN 13/4-IG CN 13/4-MC (F) EAS 4M-IG (S) EAS 4 MC FFB-IG
	SAW	EMS 2 + BB 400	EMS 2 + 88 400 EMS 2 + 88 400	3NIM0I-UP + B8 420TTR 3NIM0I-UP + B8 420TTR 3NIM0I-UP + B8 420TTR 3NIM0I-UP + B8 420TTR 88 420TTRC	EAS 4M-UP + BB 431

		CN 22/9N-UP + BB 431		CN 23/12-UP + BB 431			
CN 20/25M-IG (Si)	NIBAS 625-IG	CN 22/9N-IG	CN 25/9 CuT-IG	CN 23/12-IG CN 23/12-MC NIBAS 625-IG NIBAS C 24-IG	NIBAS 625-IG NIBAS C 24-IG NIBAS C 276-IG NIBAS 400-IG NIBAS 7020-IG NIBAS 7020-IG CN 21/33 Mn-IG		
CN 20/25M-IG	NIBAS 625-IG	CN 22/9N-IG	CN 25/9 CuT-IG	CN 23/12-IG NIBAS 625-IG NIBAS C 24-IG	NIBAS 625-IG NIBAS C 24-IG NIBAS C 276-IG NIBAS 400-IG NIBAS 70/20-IG CN 21/33 Mn-IG	CuNi 30Fe-IG	ER Ti 2
	NIBAS 625-FD	CN 22/9 PW-FD CN 22/9 N-FD		CN 23/12 PW-FD CN 23/12Mo PW-FD NIBAS 625 FD	NIBAS 625-FD NIBAS 70/20-FD		
FOX CN 20/25M-A FOX CN 20/25M	FOX NIBAS 625	FOX CN 22/9 N FOX CN 22/9 N-B	FOX CN 25/9 CuT	FOX CN 23/12-A FOX CN 23/12Mo-A FOX NIBAS 625 FOX NIBAS C 24	FOX NIBAS 625 FOX NIBAS C 24 FOX NIBAS C 24 FOX NIBAS C 276 FOX NIBAS 400 FOX NIBAS 400 FOX NIBAS 70/20	FOX CuNi 30Fe	
N08904	S31254 N08926 N08367	S31803 S32205	\$32550 \$32750 \$32760		N06625 N06039 N10276 N04400 N06600 N06600	C70600 C71500	R50400
904	Type 6 Mo	Duplex 22Cr	Superduplex 25 Cr	Dissimilar joints	Nickel base alloys Alby 25 Alby 276 Aby 276 Aby 276 Alby 200804T	Non ferrous alloys Copper base alloys CuAN 90-10 Cu-N 70-30	Titanium Ti grade 2

3.1 SELECTION GUIDE FOR THE CHEMICAL AND PETROCHEMICAL INDUSTRY

			Wel	ding processes			
	Base metals AIS/UNS/ASTM	SMAW	FCAW	GTAW	GMAW	SAW	Page
High temperature and creep resistant steels							
0,5Mo	P/T1	FOX DMO TI, Kb		DMO-IG	DMO-IG	EMS 2Mo+BB 24	
1Cr 0.5Mo	P/T11	FOX DCMS Ti, Kb		DCMS-IG	DCMS-IG	EMS 2CrMo+BB 24	
0,5Cr 1Mo +V	1	FOX DMV 83Kb		DMV 83-IG	DMV 83-IG		
21/4Cr 1Mo	P/T22	FOX CM 2Kb		CM 2-IG	CM 2-IG	CM 2-UP+BB 24	
2 ^{1/4} Cr 1Mo (mod.)	P/T23	FOX P 23		P 23-IG		P 23-UP+BB 430	
	P/T24	FOX P 24		P 24-IG		P 24-UP+BB 430	
5Cr 0,5Mo	P/T5	FOX CM 5 Kb		CM 5-IG	CM 5-IG	CM 5-UP+BB 24	
9Cr 1Mo	P/T9	FOX CM 9 Kb		CM 9-IG			
9Cr 1Mo +V(W)	P/T91	FOX C 9 MV		C 9 MV-IG	C 9 MV-IG, C 9 MV-MC	C 9 MV-UP+BB 910	
	P/T911	FOX C 9 MVW		C 9 MWV-IG			
	P/T92	FOX P 92		P 92-IG		P 92-UP+BB 910	
12Cr 1Mo +VW	1	FOX 20 MVW		20 MVW-IG		20 MVW-UP+BB 24	
18Cr 11Ni	304H	FOX CN 18/11		CN 18/11-IG	CN 18/11-IG	CN 18/11-UP+BB 202	
	321H	FOX E 308 H	E 308 H-FD	ER 308 H-IG			
			E 308 H PW-FD				
18Cr 10Ni +Nb	347H	FOX E 347 H					
ļ							
Justimess steels Austenitic							
19Cr 9Ni L	304L	FOX EAS 2	EAS 2-FD	EAS 2-IG	EAS 2-IG (SI)	EAS 2-UP+BB 202	
		FOX EAS 2-A	EAS 2 PW-FD		EAS 2-MC		
		FOX EAS 2-VD					
19Cr 9Ni 3Mo L	316L	FOX EAS 4 M	EAS 4 M-FD	EAS 4 M-IG	EAS 4 M-IG (Si)	EAS 4 M-UP+BB 202	
		FOX EAS 4 M-A	EAS 4 PW-FD		EAS 4 M-MC		
		FOX EAS 4 M-VD					
		FOX EAS 4 M-TS					
19Cr 13Ni 4Mo L	317L	FOX E 317L	E 317L-FD			ASN 5 SY-UP+BB 202	
			E 317L PW-FD				
18Cr 16Ni 5Mo NL	317LN	FOX ASN 5		ASN 5-IG	ASN 5-IG (SI)	ASN 5-UP+BB 203	
		FOX ASN 5-A					

R0XXM 400 R0XXM 400 <thr0xxm 400<="" th=""> <thr0xxm 400<="" th=""> <thr< th=""><th>FOX CN 25/9 CuT</th></thr<></thr0xxm></thr0xxm>	FOX CN 25/9 CuT
SAS 4FD SAS 4FD SAS 4FD SAS 4FD SAS 4FD SAS 2FD SAS 2FD SAS 2FD SAS 2FD SAS 2FD SAS 2FD SAS 2FD SAS 2FD SAS 4FG SAS 4FG SAS 4FG SAS 2FG SAS 4FG SAS 4FG	5
AM 400-15 SAS 41:0 SAS 41:0 S SAS 41:0 S S	01-779 FWV-FD
AM 40-IG 5.85 41G (8) 5.85 41G (8) 5.82 21G (8) 5.82 21G (8) CN 2025 M1G (8) 5.82 404 G 5.82 400 G 5.82 400 G 5.82 400 G 5.82 400 G 5.82 400 G 5.82 400 G	CN 25/9 CuT-IG
, , , , , , , , , , , , , , , , , , ,	CN 25/9 CuT-IG
45 4. UP+8B 202 45 2. UP+8B 202 50 134-UP+8B 203 50 134-UP+8B 203	

3.1 SELECTION GUIDE FOR THE CHEMICAL AND PETROCHEMICAL INDUSTRY

			Wel	ding processes			
	Base metal Als/UNS/ASTM	SMAW	FCAW	GTAW	GMAW	SAW	Page
Special applications							
18Cr 8Ni Mn		FOX A 7 FOX A 7-A	A 7-FD A 7 PW-FD	A 7 CN-IG	A 7-IG A 7-MC	A 7 CN-UP+BB 203	
20Cr 10Ni 3Mo	Dissimilar joints,	FOX CN 19/9 M		CN 19/9 M-IG	CN 19/9 M-IG		
79CL IZNI L	corrosion resistant claddings	FUX CN 23/12-A	CN 23/12 PW-FD	CN 23/12-10	CN 23/12-MC	CN 23/12-UF+BB 202	
23Cr 12Ni 2Mo L	3	FOX CN 23/12 Mo-A	CN 23/12 Mo-FD				
24Cr 13Ni L	Duffor human	FOX CN 24/13	CN 23/12 MO PW-FU				
24Cr 13Ni NbL	DUITER MYERS	FOX CN 24/13 Nb					
29Cr 9Ni	Problem steels	FOX CN 29/9 FOX CN 29/9-A					
19Cr 14Ni Si	Against nitric acid	FOX EAS 2 SI		EASN 2 SI-IG			
25Cr 22Ni 2Mo NL	UREA plant engineering	FOX EASN 25 M		EASN 25 M-IG			
Low temperature							
	1 -0 cov	14 1 0 0 0 1		0.1410	014		
2.5NI 19Cr 9Ni L	A633 Gr. E 304L	FOX EAS 2	EAS 2-FD	2.5 NI-IG EAS 2-IG	2.5 Ni-IG EAS 2-IG (Si)	NI 2-UP+BB 24 EAS 2-UP+BB 202	
			EAS 2 PW-FD				
iNe	K81340	FOX NIBAS 60/15	EAS 2 PW-FD (LF) NIBAS 625-FD	NIBAS 625-IG	NIBAS 625-IG	NIBAS 625-UP+BB 444	
Heat resistant							
25Cr 4Ni	327	FOX FA		FA-IG	FA-IG		
22Cr 12Ni	309	FOXFF		FF-IG	FF-IG		
2C- 2041	310	FOX FF-A					
	010	FOX FFB-A		2	2		
21Cr 33Ni Mn	N08810 / 800H	FOX CN 21/33 Mn		CN 21/33 Mn-IG	CN 21/33 Mn-IG		

	NIBAS 7020-UP-88 444 NIBAS 7020-UP-88 444 NIBAS 655-UP-88 444 NIBAS C 2726-UP-88 444 NIBAS 6 70-UP-88 444 NIBAS 6 70-UP-88 444	
CN 25/35 Nb-IG CN 35/45 Nb-IG	NIBAS 70/20-IG NIBAS 72/20-IG NIBAS 22-1G NIBAS C 27-6IG NIBAS C 24-IG NIBAS 67-4G NIBAS 67-4G	ER 11 24G
CN 25/35 Nb-IG CN 35/45 Nb-IG	NIBAS 70/20-IG NIBAS 72/20-IG NIBAS 22/51/G NIBAS C 274-IG NIBAS 400-IG NIBAS 677-IG NIBAS 677-IG	Conil 396-16 Conil 396-16 ER 11 24.6 ER 11 24.6
	NIBAS 70/20-FD NIBAS 625-FD	
FOX CN 25/35 Nb FOX CN 35/45 Nb	FOX NIBAS 70'15 FOX NIBAS 70'20 FOX NIBAS 625 FOX NIBAS 627 FOX NIBAS C 276 FOX NIBAS C 24 FOX NIBAS C 24	FOX CuNI 30Fe FOX CuNI 30Fe
1 1	N06600 N06600 N06625 N106256 N10276 N10607 N04400 N06617	C70600 C7500 R50400
25Cr 35Ni Nb 35Cr 45Ni Nb	Nickel base alloys Aley 600 Aley 600 Aley 726 Aley 726 Aley 750 Aley 607 Aley 607	Non-ferrous alloys

3.1 SELECTION GUIDE FOR THERMAL POWER PLANTS

			Wel	ding processes			
	Base metals AISI/UNS/ASTM	SMAW	FOAW	GTAW	GMAW	SAW	Page
Mild steels Re 5 380 MPa	SA106A+B	FOX EV 50	Ti S2-FD	EMK 6	EMK 6	EMS 2+BB 24	
High strength steels Re < 500 MPa	SA508CL2	FOX EV 65			NiMo 1-IG	3 NIMo 1-UP+BB 24	
High Temperature and creep resistant steels							
0,5Mo	P/T1	FOX DMO TI, Kb	(DMO)	DMO-IG	DMO-IG	EMS 2Mo+BB 24	
1Cr 0,5Mo	P/T11	FOX DCMS Ti, Kb	(DCMS)	DCMS-IG	DCMS-IG	EMS 2 CrMo+BB 24	
1.25Cr 1Mo+V	1	FOX DCMV		0.00000	0.00000		
2.25Cr 11/10 +V	- Р/Т22	FOX CM 2Kb		UMV 83-1G CM 2-1G	DMV 83-1G CM 2-1G	CM 2-UP+BB 24	
2.25Cr 1Mo (mod.)	P/T23	FOX P 23		P 23-IG		P 23-UP+BB 430	
	P/T24	FOX P 24		P 24-IG		P 24-UP+BB 430	
5Cr 0,5Mo	P/T5	FOX CM 5Kb		CM 5-IG	CM 5-IG	CM 5-UP+BB 24	
9Cr 1Mo	P/T9	FOX CM 9Kb		C M 9-IG			
9Cr 1Mo +V(W)	P/T91	FOX C 9 MV		C 9 MV-IG	C 9 MV-IG, C 9 MV-MC	C 9 MV-UP+BB 910	
	1	FOX C 9 MVW		C 9 MWV-IG			
	P/T92	FOX P 92		P 92-IG		P 92-UP+BB 910	
12Cr 1Mo +VW	1	FOX 20 MVW		20 MVW-IG		20 MVW-UP+BB 24	
18Cr 11Ni	304H	FOX CN 18/11		CN 18/11-IG	CN 18/11-IG	CN 18/11-UP+BB 202	
		FOX E 308 H	E 308 H-FD	ER 308 H-IG			
			E 308 H PW-FD				
18Cr 10Ni +Nb	347H	FOX E 347 H					

	A 7 CN-UP+BB 203									NIBAS 70/20-UP+BB 444	NIBAS 625-UP+BB 444	NIBAS 617.JP+BB 444
	A 7-IG A 7-MC		FA-IG	FF-IG	01 03	2	CN 21/33 Mn-IG			NIBAS 70/20-IG	NIBAS 625-IG	NIBAS 617-IG
	A 7 CN-IG		FA-IG	FF-IG	01 03	2	CN 21/33 Mn-IG			NIBAS 70/20-IG	NIBAS 625-IG	NIBAS 617-IG
	A 7-FD A 7 PW-FD									NIBAS 70/20-FD	NIBAS 625-FD	
	FOX A 7 FOX A 7-A		FOX FA	FOXFF	FOX FF-A	FOX FFB-A	FOX CN 21/33 Mn		FOX NIBAS 70/15	FOX NIBAS 70/20	FOX NIBAS 625	FOX NIBAS 617
	dissimilar joints, repair and mainterance		327	309	210	010	N08800		N06600	N06600	N06625	N06617
Special applications	18Cr 8Ni Mn	Heat resistant	25Cr 4Ni	22Cr 12Ni	25Cr 2001		21Cr 33Ni Mn	Nickel base alloys	Alley 800	Alloy 600	Alloy 625	Alloy 617

3.1 SELECTION GUIDE FOR HYDRO POWER PLANTS

			Wel	ding processes			
	Base metals AIS/UNS/ASTM	SMAW	FCAW	GTAW	GMAW	SAW	Page
API Pipe steels							
Ra ≤ 450 MPa Ra ≤ 555 MPa	X42-X65 X70, X80 X80	FOX BVD 85 FOX BVD 90 FOX BVD 100					
High strength steels							
Re ≤ 500 MPa Po < 200 MPa	A302 Gr.A-D	FOX EV 65			NiMo 1-IG	3NiMo 1-UP+BB 24	
Re ≤ 690 MPa	USS-TT	FOX EV 85			X 70-IG	3NiCrMo 2.5-UP+BB 24	
Stainless steels Soft martensitic 13Cr 4Ni	CA6NM	FOX CN 13/4			CN 13/4-MC		
		FOX CN 13/4 SUPRA		CN 13/4-IG	CN 13/4-MC (F) CN 13/4-IG	CN 13/4-UP+BB 203	
16Cr 6Ni Mo	ī	FOX CN 16/6 M-HD					
Austenitic 19Cr 9Ni 3Mo L	316L	FOX EAS 4 M	EAS 4 M-FD	EAS 4 M-IG	EAS 4 M-IG (Si)	EAS 4 M-UP+BB 202	
		FOX EAS 4 M-A FOX EAS 4 M-TS	EAS 4 PW-FD		EAS 4 M-MC		
Special applications							
18Cr 8Ni Mn	dissimilar joints.	FOX A 7	A 7 -FD	A 7 CN-IG	A 7-IG	A 7 CN-UP+BB 203	
	repair and	FOX A 7-A	A 7 PW-FD		A 7-MC		
23Cr 12Ni L	maintenance	FOX CN 23/12-A	CN 23/12-FD	CN 23/12-IG	CN 23/12-IG	CN 23/12-UP+BB 202	
23Cr 12Ni 2Mo L		FOX CN 23/12 Mo-A	CN 23/12 PW-FD CN 23/12 Mo-FD		CN 23/12-MC		
			CN 23/12 Mo PW-FD				

3.2. Selection Tables base material oriented selection

Overview

The selection range provided from the materials science point of view attempts to respond to the behaviour of the base metal and matches the welding parameters and the temperature input to this behaviour although choosing from the selection tables provides quicker and more direct access to the appropriate filler metals.

However, it has to be noted that this section does not go into detail about the welding technology used for processing the filler metals listed. The appropriate subsection of the next chapter or the individual data sheets of the filler metals themselves should be referred to for this.

Contents

3.2.1. HIGH TEMPERATURE STEELS	.14
3.2.2. CREEP-RESISTANT STEELS	.16
3.2.3. DISSIMILAR WELDS WITH HIGH TEMPERATURE STEELS	.18
3.2.4. FERRITIC CHROMIUM STEELS	.22
3.2.5. CHEMICAL RESISTANT STEELS	.24
3.2.6. HEAT RESISTANT STEELS	.30

3.2.1 High Temperature Steels

Stick Electrodes for High Temperature Steels

Material Group	W-No.	ASTM AISI UNS	Service Tempe- rature up to °C	FOX DMO Kb	FOX DMO TI	FOX EV 65	FOX EV 70 Mo	FOX DCMS Kb	FOX DCMS Ti	FOX DCMV	DOX DMV 83 Kb	FOX CM 2 Kb	FOX CM 5 Kb	FOX CM 9 Kb	
boiler, plate and	1.0405	A 106, Gr. A	500	х	X										
tube steels	1.0461	A 516, Gr. 55	400	х	x										
	1.0481	A 106, Gr. C	500	х	X										
	1.0482	A 515, Gr. 70	500	х	X	х	Х								
	1.5415	A 335, Gr. P1	530	х	X										
	1.7335	A 335, Gr. P11, P12	560					Х	Х						
	1.7715	A 405, Gr. P24	560								X				
	1.7380	A 335, Gr. P22	590									Х			
high temperature	1.0619	A 216, Gr. WCA-C	450	Х											
cast steels	1.5419	A 217, Gr. WC1	500	х			Х								
	1.7357	A 217, Gr. WC6	550					Х							
	1.7706	I 21610	550							X	(x)				
	1.7379	A 217, Gr. WC9	600									Х			
high pressure	1.7218	A 519, Gr. 4130	300					Х							
hydrogen-resistant	1.7273		400									Х			
steels	1.7362	A 335, Gr. P5	600										Х		
	1.7386	A 335, Gr. P9	600											Х	
special grades for	1.6368		500	Х		Х	Х								
high temperature	1.6311	A 508, Cl. 3	550	х		Х									
application	1.7733	A 389. Gr. C 23	550								X				
	1.8070	A 389, Gr. C 24	550							X	(x)				
	1.7375		590									Х			
special grades for	1.6369		375			Х	Х								
reactor construction	1.6310	A 533, Gr. BCI.1	375			Х									
caustic cracking	1.0407		-	Х				Х							
resistant steels	1.0569		-	Х				Х							

(x) limited suitability for application

Material Group	W-No.	ASTM AISI UNS	Service Tempe- rature up to °C	DMO-IG	DCMS-IG	DMV 83-IG	CM 2-IG	CM 5-IG	CM 9-IG	EMS 2 Mo	EMS 2 CrMo	CM 2-UP	CM 5-UP	OMO	DCMS	CM2	
boiler, plate and	1.0405	A 106, Gr. A	500	Х						Х				Х			
tube steels	1.0461	A 516, Gr. 55	400	Х						Х				Х			
	1.0481	A 106, Gr. C	500	Х						Х				Х			
	1.0482	A 515, Gr. 70	500	Х						Х				х			
	1.5415	A 335, Gr. P1	530	Х						х				х			
	1.7335	A 335, Gr. P11, P12	560		Х						Х				Х		
	1.7715	A 405, Gr. P24	560			X											
	1.7380	A 335, Gr. P22	590				Х					Х				х	
high temperature	1.0619	A 216, Gr. WCA-C	450	Х						Х							
cast steels	1.5419	A 217, Gr. WC1	500	Х						Х							
	1.7357	A 217, Gr. WC6	550		Х						Х						
	1.7706	I 21610	550			(x)											
	1.7379	A 217, Gr. WC9	600				Х					Х					
high pressure	1.7218	A 519, Gr. 4130	300		Х						Х						
hydrogen-resistant	1.7273		400				Х					Х					
steels	1.7362	A 335, Gr. P5	600					Х					Х				
	1.7386	A 335, Gr. P9	600						Х								
special grades for	1.6368		500	Х						(x)							
high temperature	1.6311	A 508, CI. 3	550	Х						(x)							
application	1.7733	A 389. Gr. C 23	550			Х						(x)					
	1.8070	A 389, Gr. C 24	550			(x)											
	1.7375		590				Х										
special grades for	1.6369		375	Х													
reactor construction	1.6310	A 533, Gr. BCI.1	375	Х													
caustic cracking	1.0407		-	Х	Х												
resistant steels	1.0569		-	Х	Х												

(x) limited suitability for application

3.2.2 Creep-resistant Steels

Stick Electrodes for Creep-resistant Steels

Material Group	W-No.	ASTM AISI UNS	Service Tempe- rature up to °C	FOX 20 MVW	FOX C 9 MV	FOX C 9 MVW	FOX P 92	FOX CN 18/11	FOX E 308 H	FOX CN 16/13	FOX NIBAS 70/20	FOX NIBAS 70/15	
high temperature	1.4922	-	600	Х							(X) ²	(X) ²	
and creep resistant	1.4923	-	580	Х							(X) ²	(X) ²	
steels	1.4926	-	600	х							(X)2	(X) ²	
	1.4931	-	600	х							(X)2	(X) ²	
	1.4935	-	580	х							(X)2	(X) ²	
	-	A 335, Gr. P91	650		х						(X)2	(X) ²	
	-	A 335, Gr. P911	650			х					(X)2	(X)2	
	-	A 335, Gr. P92	650				Х			(X) ²	(X) ²		
creep-resistant	1.4948	304 H	700					Х	Х		(x)	(x)	
austenitic steels	1.4949	304 N	700					Х	Х		(x)	(x)	
	1.4941	-	700					Х	Х		(x)	(x)	
	1.4919	316 H	700							(X)1	(x)	(x)	
	1.4910		750							(X)1	(x)	(x)	
	1.4961	TP 347 H	750							Х	(x)	(x)	
	1.4981		750							(X)1	(x)	(x)	
	1.4988	-	650							(X)1	(x)	(x)	
nickel-base alloys	1.4958	-	700								(x)	(x)	
	1.4959	-	1000								(x)	(x)	

X = same or similar alloyed filler metals

(x) = dissimilar alloyed filler metals

¹ = weld metal contains no molybdenum, corrosion resistance requirements have to be checked

² = strength values of weld metal are lower than base material

Material Group	W-No.	ASTM AISI UNS	Service Tempe- ratur up to °C	20 MVW-IG	C 9 MV-IG	C 9 MVW-IG	P 92-IG	CN 18/11-IG	ER 308 H-IG	CN 16/13-IG	E 308 H-FD, E 308 H PW-FD	NIBAS 70/20-IG	NIBAS 70/20-FD	20 MVW-UP*	C 9 MV-UP*	P 92-UP*	
high temperature	1.4922	-	600	Х								(x) ²	Х			
and creep resistant	1.4923	-	580	Х								(х) ²	Х			
steels	1.4926	-	600	Х								(x) ²	Х			
	1.4931	-	600	Х								(X) ²	Х			
	1.4935	-	580	Х								(x) ²	Х			
	-	A 335, Gr. P91	650		Х							(х) ²		Х		
	-	A 335, Gr. P911	650			Х						(x) ²				
	-	A 335, Gr. P92	650				Х					(х) ²			Х	
creep-resistant	1.4948	304 H	700					Х	Х		X	(x	:)				
austenitic	1.4949	304 N	700					Х	Х		Х	(x	:)				
steels	1.4941	-	700					Х	Х		Х	(x	:)				
	1.4919	316 H	700							(X) ¹		()	()				
	1.4910	-	750							(X)1		()	()				
	1.4961	TP 347 H	750							х		()	()				
	1.4981	-	750							(X)1		()	()				
	1.4988	-	650							(X)1		()	()				
nickel-base alloys	1.4958	-	700									()	()				
	1.4959	-	1000									()	()				

GTAW Rods, GMAW and SAW Wires for Creep-resistant Steels

X = same or similar alloyed filler metals

(x) = dissimilar alloyed filler metals

1 = weld metal contains no molybdenum, corrosion resistance requirements have to be checked

² = strength values of weld metal are lower than base material

* suitable sub-arc welding fluxes can be found in the data sheets of SAW wire

3.2.3 Dissimilar Welds with High Temperature Steels

Recommendations for suitable filler metals and optimum heat treatment

Base Mater	ial Combination		Filler Metals ¹⁾		Annealing
Duse mater		Stick Electrodes	GTAW/GMAW	SAW	temp.2) °C
P235G1TH	16Mo3	FOX SPEM	EML 5	EMS 2	530-600
P255G1TH		FOX EV 47	EMK 6	EMS 3	
		FOX EV 50	EMK 7 – EMK 8	EMS 2 Mo	
		FOX DMO Kb or Ti	DMO-IG		
			DMO Kb-FD, DMO Ti-FD		
P295GH	16Mo3	FOX EV 47	EML 5	EMS 2	530-580
		FOX EV 50	EMK 6	EMS 3	
		FOX DMO Kb or Ti	EMK 7 - EMK 8		
			DMO-IG		
			DMO Kb-FD, DMO Ti-FD		
P310GH	16Mo3	FOX DMO Kb or Ti	EML 5	EMS 3	530-580
			EMK 6	EMS 2 Mo	
			EMK 7 – EMK 8		
			DMO-IG		
			DMO Kb-FD, DMO Ti-FD		
P235G1TH	13CrMo4-5	FOX EV 47	EML 5		540-600
P255G1TH		FOX EV 50	EMK 6		
		FOX DMO Kb or Ti	EMK 7 – EMK 8		
			DMO-IG		
			DMO Kb-FD, DMO Ti-FD		
16Mo3	13CrMo4-5	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	550-620
			DMO Kb-FD, DMO Ti-FD		
16Mo3	10CrMo9-10	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	570-620
			DMO Kb-FD, DMO Ti-FD		
13CrMo4-5	10CrMo9-10	FOX DCMS Kb	DCMS-IG	(EMS 2 CrMo)	650-720
			DCMS Kb-FD		
14MoV6-3	13CrMo4-5	FOX DCMS Kb	DCMS-IG	EMS 2 CrMo	680-720
			DCMS Kb-FD		
14MoV6-3	10CrMo9-10	FOX CM 2 Kb	CM 2-IG	(CM 2-UP)	690-730
			CM 2 Kb-FD		
14MoV6-3	X20CrMoV12-1	FOX DMV 83 Kb	DMV 83-IG		670-720
		FOX 20 MVW	20 MVW-IG		

Selection Tables

Recommendations for suitable filler metals and optimum heat treatment (continued)

Base Materia	d Combination		Filler Metals ¹⁾		Annealing
Duoto matoria		Stick Electrodes	GTAW/GMAW	SAW	temp.2) °C
10CrMo9-10	X20CrMoV12-1	FOX CM 2 Kb or	CM 2-IG or	(CM 2-UP)	700-750
		FOX NIBAS 70/20 or	NIBAS 70/20-IG or		
		FOX NiCr 70 Nb	NiCr 70 Nb-IG		
		FOX DMV 83 Kb	DMV 83-IG		680-730
		FOX 20 MVW	20 MVW-IG	20 MVW-UP	700-750
17 MnMoV 74	P235G1TH	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	530-590
	P255G1TH		DMO Kb-FD, DMO Ti-FD		
	16Mo3				
15 NiCuMoNb 5	13CrMo4-5				
11 NiMoV 53	P235G1TH	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	530-590
	P255G1TH		DMO Kb-FD, DMO Ti-FD		
	16Mo3				
	13CrMo4-5				
20MnMoNi4-5	P235G1TH	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	550-600
	P255G1TH		DMO Kb-FD, DMO Ti-FD		
	16Mo3				
	13CrMo4-5	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	530-590
			DMO Kb-FD, DMO Ti-FD		
		FOX DCMS Kb	DCMS-IG		
			DCMS Kb-FD	MS 2 CrMo	
15 MnMoNiV 53	P235G1TH	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	530-590
	P255G1TH		DMO Kb-FD, DMO Ti-FD		
	16Mo3				
	13CrMo4-5				
22 NiMoCr 37	P235G1TH	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	580-640
	P255G1TH		DMO Kb-FD, DMO Ti-FD		
	16Mo3				
	13CrMo4-5				
GP240GH	P235G1TH	FOX EV 47 or	EML 5	EMS 2	560-620
	P255G1TH	FOX EV 50	EMK 6	EMS 3	
			EMK 7		
	16Mo3	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	560-620
			DMO Kb-FD, DMO Ti-FD		
22Mo4	16Mo3	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	560-620
			DMO Kb-FD, DMO Ti-FD		
	13CrMo4-5	FOX DMO Kb or Ti	DMO-IG	EMS 2 Mo	560-620
		FOX DCMS Kb	DCMS-IG	EMS 2 CrMo	
22Mo4	21 CrMoV 511	FOX DCMS Kb	DCMS-IG	EMS 2 CrMo	650-720
			DCMS Kb-FD		

Selection Guide

Recommendations for suitable filler metals and optimum heat treatment (continued)

Base Materia	I Combination		Filler Metals ¹⁾		Annealing
		Stick Electrodes	GTAW/GMAW	SAW	temp.2) °C
G17CrMo5-5	16Mo3	FOX DMO Kb	DMO-IG	EMS 2 Mo	640-700
			DMO Kb-FD, DMO Ti-FD		
	13CrMo4-5	FOX DCMS Kb	DCMS-IG	EMS 2 CrMo	640-700
	10CrMo9-10		DCMS Kb-FD		
	14MoV6-3				670-720
G17CrMoV5-11	13CrMo4-5	FOX DCMS Kb	DCMS-IG	EMS 2 CrMo	650-730
			DCMS Kb-FD		
	10CrMo9-10	FOX CM 2 Kb	CM 2-IG	CM 2-UP	670-720
			CM 2 Kb-FD		
	14MoV6-3	FOX DMV 83 Kb	DMV 83-IG	(CM 2-UP)	680-730
		FOX CM 2 Kb	CM 2-IG		
			CM 2 Kb-FD		
	21CrMoV5-1-1	FOX DMV 83 Kb	DMV 83-IG		
	X8CrNiNb16-13	FOX NIBAS 70/20	NIBAS 70/20-IG		
		FOX NiCr 70 Nb	NiCr 70 Nb-IG		
	X20CrMoV12-1	FOX DMV 83 Kb	DMV 83-IG		
		FOX 20 MVW	20 MVW-IG		
		FOX NiCr 70 Nb	NiCr 70 Nb-IG		
		FOX NIBAS 70/20	NIBAS 70/20-IG		
GX22CrMoV12-1	14MoV6-3	FOX CM 2-IG	DMV 83-IG		670-730
		FOX NIBAS 70/20	NIBAS 70/20-IG		
		FOX NiCr 70 Nb	NiCr 70 Nb-IG		
	14MoV6-3	FOX DMV 83 Kb	DMV 83-IG		680-730
		FOX NIBAS 70/20	NIBAS 70/20-IG		
		FOX NiCr 70 Nb	NiCr 70 Nb-IG		
	21CrMoV5-1-1	FOX DMV 83 Kb	20 MVW-IG		670-730
		FOX NIBAS 70/20	NIBAS 70/20-IG		
		FOX NiCr 70 Nb	NiCr 70 Nb-IG		
	X20CrMoV12-1	FOX 20 MVW			
		FOX NIBAS 70/20	NIBAS 70/20-IG		
		FOX NiCr 70 Nb	NiCr 70 Nb-IG		
	X8CrNiNb16-13	FOX NiCr 70 Nb	NiCr 70 Nb-IG		
		FOX NIBAS 70/20	NIBAS 70/20-IG		

 Use subject with reservations. Before selection please consult your next BÖHLER representative and give exact description of service conditions and requirements.

- ¹⁾ The material recommendations have been chosen in a way to ensure that the relevant filler metal is lower alloy ed and thus tougher than the base metal.
- ^a The annealing temperatures have been chosen in a way to ensure that the lowest Ac1 temperature of the two materials involved is not exceeded. The annealing time depends on the relevant work piece thickness; it has to be at least 15 minutes for thicknesses of 15 mm, at least 30 minutes for thicknesses of 15-20 mm and at least 60 minutes for thicknesses above 30 mm. For work pieces of low thicknesses a medium annealing time should be chosen, whereas in thick-walled components the surface should be reach a temperature within the upper range.

3.2.4 Ferritic Chromium Steels

Stick Electrodes for Ferritic Chromium Steels

W-No.	material designation	ASTM AISI UNS	FOX KW 10	FOX SKWA	FOX SKWAM	FOX A7, -A	FOX CN 19/9 M	FOX CN 23/12-A	FOX CN 23/12 Mo-A	FOX CN 29/9, -A	FOX EAS 2, -A, -VD	FOX EAS 4M, -A, -TS, -VD	FOX SAS 2, -A	FOX SAS 4, -A	FOX NIBAS 70/20	FOX NICr 70 Nb		
1.4000	X6Cr13	403	(x)	(x)		х		х		х	х		х					
1,4001	X7Cr14	429	(x)	(x)		х		Х		Х	х		Х					
1.4002	X6CrAl13	405	(x)	(x)		х									3	X		
1.4003	X2CrNi12					х					х							
1.4006	X12Cr13	410	(x)	(x)		х		Х		х	х		х					
1.4008	GX8CrNi13	CA 15	(x)	(x)		х		Х		х	х		х					
1.4016	X6Cr17	430		(x)		х		Х		Х	Х		X					
1.4021	X20Cr13	420	(x)	(x)		х		х		х	х		X					
1.4024	X15Cr13	410	(x)	(x)		х		Х		х	х		х					
1.4027	GX20Cr14	A 217				х		Х		х)	<		
1.4034	X46Cr13					х		Х		Х)	<		
1.4057	X17CrNi16-2	431		X	(x)	х		Х		х	х		Х	х				
1.4059	GX22CrNi17	A 743		X	(x)	х		Х		х	х		х	х				
1.4113	X6CrMo17-1	434			(x)		х		X			X		х				
1.4120	X20CrMo13				(x)		X		X			X		х				
1.4120	GX20CrMo13				(x)		х		X			х		х				
1.4122	X39CrMo17-1				х		х		X			Х		х				
1.4122	GX35CrMo17-1				х		Х		Х			Х		х				

W-No.	material designation	ASTM AISI UNS	KW 10-IG	KWA-IG	SKWA-IG	SKWAM-IG	A7-IG/A7CN-IG, A7 (PW)-FD	CN 19/9 M-IG	CN 23/12-IG	CN 23/12-FD, PW-FD	EAS 2-IG, -IG (Si)	EAS 2-FD, PW-FD	EAS 4 M-IG, -IG (Si)	EAS 4 M-FD, PW-FD	SAS 2-IG, -IG (SI)	SAS 2-FD, PW-FD	SAS 4-IG, -IG (SI)	SAS 4-FD, PW-FD	NIBAS 70/20-IG	NIBAS 70-20 FD
1.4000	X6Cr13	403	(x)	(x)	(x)		Х		X	Х	Х	Х			Х	Х				
1,4001	X7Cr14	429	(x)	(x)	(x)		х		х	Х	х	х			х	х				
1.4002	X6CrAl13	405	(x)	(x)	(x)		X												Х	х
1.4003	X2CrNi12						х				X	х								
1.4006	X12Cr13	410	(x)	(x)	(x)		X				X	X			х	X				
1.4008	GX8CrNi13	CA 15	(x)	(x)	(x)		х				х	х			х	х				
1.4016	X6Cr17	430			(x)		X				X	X			Х	X				
1.4021	X20Cr13	420	(x)	(x)			Х				X	х			Х	х				
1.4024	X15Cr13	410	(x)	(x)			X				X	X			х	X			х	х
1.4027	GX20Cr14	A 217					х												х	х
1.4034	X46Cr13						X												Х	х
1.4057	X17CrNi16-2	431			Х	(x)	Х													
1.4059	GX22CrNi17	A 743			х	(x)	X													
1.4113	X6CrMo17-1	434			х	(x)		Х					х	х			х	х		
1.4120	X20CrMo13					(x)		Х					X	х			х	X		
1.4120	GX20CrMo13					(x)		Х					х	х			х	х		
1.4122	X39CrMo17-1					х		Х					X	х			х	х		
1.4122	GX35CrMo17-1					х		Х					х	х			х	х		

3.2.5 Chemical Resistant Steels

Stick Electrodes for Chemical Resistant Steels

W-No.	material designation	ASTM AISI UNS	FOX AM 400	FOX ASN 5, -A	FOX CN 13/4, (-Supra)	FOX CN 20/25 M, -A	FOX CN 22/9 N, -B	FOX EAS 2, -A, -VD	FOX EAS 2 Si	FOX EAS 4M, -A, -TS, -VD	FOX NIBAS 625	FOX NICr 625	FOX SAS 2, -A	FOX SAS 4, -A	FOX SKWA		
1.3952	X2CrNiMoN18-14-3		х														
1.3964	X2CrNiMnMoNNb21-16-5-3	S20910	х														
1.4301	X5CrNi18-10	304						х					(x)				
1.4303	X4CrNi18-12	305						х					(x)				
1.4306	X2CrNi19-11	304L						х					(x)				
1.4308	GX5CrNi19-10							х					(x)				
1.4311	X2CrNiN18-10	304LN						Х					(x)				
1.4312	GX10CrNi18-8							х					(x)				
1.4313	X3CrNiMo13-4	S41500			х												
1.4317	G-X 4CrNi 13-4				х												
1.4361	X1CrNiSi18-15-4								х								
1.4401	X5CrNiMo17-12-2	316								х				(x)			
1.4404	X2CrNiMo17-12-2	316L								Х				(x)			
1.4406	X2CrNiMoN17-11-2	316L		(x)						Х				(x)			
1.4407	GX5CrNiMo13-4	CAGNM			х												
1.4408	GX5CrNiMo19-11-2									х				(x)			
1.4409	GX2CrNiMo19-11-2									Х				(x)			
1.4429	X2CrNiMoN17-13-3	316LN		(x)						Х				(x)			
1.4435	X2CrNiMo18-14-3	317L		(x)						х				(x)			
1.4436	X3CrNiMo17-13-3	S31600		(x)						х				(x)			
1.4437	GX6CrNiMo18-12	S31600		(x)						Х				(x)			
1.4438	X2CrNiMo18-15-4	S31703		(x)		(x)											
1.4439	X2CrNiMoN17-13-5	S 31726	(x)	(x)		(x)											
1.4446	GX2CrNiMoN17-13-4			(x)		(x)											
1.4448	GX6CrNiMo17-13			(x)		(x)											
1.4462	X2CrNiMoN22-5-3	S31803					х										
1.4500	GX7NiCrMoCuNb25-20					х											
1.4505	X4NiCrMoCuNb20-18-2					(x)											
1.4506	X5NiCrMoCuTi20-18					(x)											
1.4510	X3CrTi17	430 Ti											(x)		Х		

Stick Electrodes for Chemical Resistant Steels (continued).

W-No.	material designation	ASTM AISI UNS	FOX AM 400	FOX ASN 5, -A	FOX CN 13/4, (-Supra)	FOX CN 20/25 M, -A	FOX CN 22/9 N, -B	FOX EAS 2, -A, -VD	FOX EAS 2 SI	FOX EAS 4M, -A, -TS, -VD	FOX NIBAS 625	FOX NICr 625	FOX SAS 2, -A	FOX SAS 4, -A	FOX SKWA		
1.4511	X3CrNb17	430 Cb											(x)		х		
1.4512	X2CrTi12	S40900						(x)							(x)		
1.4529	X1NiCrMoCuN25-20-7	N08925									х	Х					
1.4531	GX2NiCrMoCuN20-18					(x)											
1.4536	GX2NiCrMoCuN25-20					х					(x)	(x)					
1.4539	X1NiCrMoCu25-20-5	N08904				х					(x)	(x)					
1.4541	X6CrNiTi18-10	321						(x)					х				
1.4550	X6CrNiNb18-10	347						(x)					х				
1.4552	GX5CrNiNb19-11	CF8C						(x)					х				
1.4558	X2NiCrAlTi32-20	B407									(x)	(x)					
1.4571	X6CrNiMoTi17-12-2	316 Ti								(x)				х			
1.4577	X3CrNiMoTi25-25	S31640				(x)											
1.4580	X6CrNiMoNb17-12-2	316 Cb								(x)				х			
1.4581	GX5CrNiMoNb19-11-2									(x)				х			
1.4583	X10CrNiMoNb18-12	316 Cb												х			
1.4585	GX7CrNiMoCuNb18-18					(x)											
1.4586	X5NiCrMoCuNb22-18					(x)											
2.4856	NiCr22Mo9Nb	N06625									х	х					
2.4858	NiCr21Mo	N08825									(x)	(x)					

W-No.	material designation	ASTM AISI UNS	AM 400-IG	ASN 5-IG, -IG(SI)	E 317L-FD, E 317L PW-FD	CN 13/4-IG, CN 13/4-MC	CN 20/25M-IG, -IG(SI)	CN 22/9N-IG	CN 22/9 N-FD, PW-FD	EAS 2-FD, -PW-FD	EAS 2-IG, -IG(SI)	EASN 2 Si-IG	EAS 4M-IG, -IG(SI)	EAS 4 M-FD, PW-FD	NIBAS 625-IG, NICr 625-IG	SAS 2-IG, -IG(Si), -FD, PW-FD	SAS 4-IG, -IG(Si), -FD, PW-FD	SKWA-IG	
1.3952	X2CrNiMoN18-14-3		Х																
1.3964	X2CrNiMnMoNNb21-16-5-3	S20910	х																
1.4301	X5CrNi18-10	304								х	X					(x)			
1.4303	X4CrNi18-12	305								х	X					(x)			
1.4306	X2CrNi19-11	304L								х	X					(x)			
1.4308	GX5CrNi19-10									х	X					(x)			
1.4311	X2CrNiN18-10	304LN								х	X					(x)			
1.4312	GX10CrNi18-8									х	х					(x)			
1.4313	X3CrNiMo13-4	S41500				X													
1.4361	X1CrNiSi18-15-4											Х							
1.4401	X5CrNiMo17-12-2	316											х	Х			(x)		
1.4404	X2CrNiMo17-12-2	316L											Х	Х			(x)		
1.4406	X2CrNiMoN17-11-2	316L		(x)									х	Х			(x)		
1.4407	GX5CrNiMo13-4	CAGNM				Х													
1.4408	GX5CrNiMo19-11-2												х	Х			(x)		
1.4409	GX2CrNiMo19-11-2												х	х			(x)		
1.4429	X2CrNiMoN17-13-3	316LN		(x)	х								х	Х			(x)		
1.4435	X2CrNiMo18-14-3	317L		(x)	х								х	х			(x)		
1.4436	X3CrNiMo17-13-3	S31600		(x)	х								Х	х			(x)		
1.4437	GX6CrNiMo18-12	S31600		(x)									Х	Х			(x)		
1.4438	X2CrNiMo18-15-4	S31703		х	х		(x)												
1.4439	X2CrNiMoN17-13-5	S 31726		х			(x)												
1.4446	GX2CrNiMoN17-13-4			х			(x)												
1.4448	GX6CrNiMo17-13			х			(x)												
1.4462	X2CrNiMoN22-5-3	S31803						X	Х										
1.4500	GX7NiCrMoCuNb25-20						(x)												
1.4505	X4NiCrMoCuNb20-18-2						(x)												
1.4506	X5NiCrMoCuTi20-18						(x)												
1.4510	X3CrTi17	430 Ti														(x)		х	
1.4511	X3CrNb17	430 Cb														(x)		х	
1.4512	X2CrTi12	S40900									(x)							(x)	
1.4529	X1NiCrMoCuN25-20-7	N08925													Х				

W-No.	material designation	ASTM AISI UNS	AM 400-IG	ASN 5-IG, -IG(Si)	CN 13/4-IG, CN 13/4-MC	CN 20/25M-IG, -IG(SI)	CN 22/9N-IG, -FD, PW-FD	EAS 2-FD, PW-FD	EAS 2-1G, -1G(SI)	EASN 2 Si-IG	EAS 4M-IG, -IG(SI)	EAS 4 M-FD, PW-FD	NIBAS 625-IG	NiCr 625-IG	SAS 2-IG, -IG(SI)	SAS 2-FD, PW-FD	SAS 4-IG, -IG(SI)	SAS 4-FD, PW-FD	SKWA-IG
1.4531	GX2NiCrMoCuN20-18					(x)													
1.4536	GX2NiCrMoCuN25-20					Х							(:	x)					
1.4539	X1NiCrMoCu25-20-5	N08904				X							(:	x)					
1.4541	X6CrNiTi18-10	321						(x)	(x)						х	Х			
1.4550	X6CrNiNb18-10	347						(x)	(x)						Х	Х			
1.4552	GX5CrNiNb19-11	CF8C						(x)	(x)						х	Х			
1.4558	X2NiCrAlTi32-20	B407											(:	x)					
1.4571	X6CrNiMoTi17-12-2	316 Ti									(x)	(x)					х	х	
1.4577	X3CrNiMoTi25-25	S31640				(x)													
1.4580	X6CrNiMoNb17-12-2	316 Cb									(x)	(x)					х	х	
1.4581	GX5CrNiMoNb19-11-2										(x)	(x)					Х	х	
1.4583	X10CrNiMoNb18-12	316 Cb									(x)	(x)					х	х	
1.4585	GX7CrNiMoCuNb18-18					(x)													
1.4586	X5NiCrMoCuNb22-18					(x)													
2.4856	NiCr22Mo9Nb	N06625											2	x					
2.4858	NiCr21Mo	N08825											2	x					

GTAW Rods, GMAW Wires for Chemical Resistant Steels (continued)

-

Sub-arc	Wire/Flux	Combination	is for	Ch	emi	cal	Re	sist	ant	Ste	eels	;
				_						_		ľ

W-No	material designation	ASTM AISI UNS	ASN 5-UP/BB 203	CN 13/4-UP/BB 203	CN 20/25M-UP/BB 203	CN 22/9N-UP/BB 203	EAS 2-UP/BB 202	EAS 4M-UP/BB 202	SAS 2-UP/BB 202	SAS 4-UP/BB 202
1.3952	X2CrNiMoN18-14-3		(x)							
1.3964	X2CrNiMnMoNNb21-16-5-3	S20910			(x)					
1.4301	X5CrNi18-10	304					X		(x)	
1.4303	X4CrNi18-12	305					X		(x)	
1.4306	X2CrNi19-11	304L					X		(x)	
1.4308	GX5CrNi19-10						х		(x)	
1.4311	X2CrNiN18-10	304LN					X		(x)	
1.4312	GX10CrNi18-8						X		(x)	
1.4313	X3CrNiMo13-4	S41500		X						
1.4401	X5CrNiMo17-12-2	316						Х		(x)
1.4404	X2CrNiMo17-12-2	316L						X		(x)
1.4406	X2CrNiMoN17-11-2	316L	(x)					Х		(x)
1.4407	GX5CrNiMo13-4	CAGNM		Х						
1.4408	GX5CrNiMo19-11-2							Х		(x)
1.4409	GX2CrNiMo19-11-2							X		(x)
1.4429	X2CrNiMoN17-13-3	316LN	(x)					Х		(x)
1.4435	X2CrNiMo18-14-3	317L	(x)					X		(x)
1.4436	X3CrNiMo17-13-3	S31600	(x)					х		(x)
1.4437	GX6CrNiMo18-12	S31600	(x)					X		(x)
1.4438	X2CrNiMo18-15-4	S31703	Х		(x)					
1.4439	X2CrNiMoN17-13-5	S 31726	Х		(x)					
1.4446	GX2CrNiMoN17-13-4		Х		(x)					
1.4448	GX6CrNiMo17-13		Х		(x)					
1.4462	X2CrNiMoN22-5-3	S31803				Х				
1.4500	GX7NiCrMoCuNb25-20				Х					
1.4505	X4NiCrMoCuNb20-18-2				(x)					
1.4506	X5NiCrMoCuTi20-18				(x)					
1.4510	X3CrTi17	430 Ti							(x)	
1.4511	X3CrNb17	430 Cb							(x)	
1.4512	X2CrTi12	S40900							(x)	
1.4529	X1NiCrMoCuN25-20-7	N08925			(x)					

W-No.	material designation	ASTM AISI UNS	ASN 5-UP/BB 203	CN 13/4-UP/BB 203	CN 20/25M-UP/BB 203	CN 22/9N-UP/BB 203	EAS 2-UP/BB 202	EAS 4M-UP/BB 202	SAS 2-UP/BB 202	SAS 4-UP/BB 202
1.4531	GX2NiCrMoCuN20-18				(x)					
1.4536	GX2NiCrMoCuN25-20				х					
1.4539	X1NiCrMoCu25-20-5	N08904			х					
1.4541	X6CrNiTi18-10	321					х		(x)	
1.4550	X6CrNiNb18-10	347					х		(x)	
1.4552	GX5CrNiNb19-11	CF 8 C					(x)			х
1.4571	X6CrNiMoTi17-12-2	316 Ti						(x)		х
1.4577	X3CrNiMoTi25-25	S31640			(x)					
1.4580	X6CrNiMoNb17-12-2	316 Cb						(x)		х
1.4581	GX5CrNiMoNb19-11-2							(x)		Х
1.4583	X10CrNiMoNb18-12	316 Cb								Х
1.4585	GX7CrNiMoCuNb18-18				(x)					
1.4586	X5NiCrMoCuNb22-18				(x)					

Sub-arc Wire/Flux Combinations for Chemical Resistant Steels (continued)

3.2.6 Heat Resistant Steels

Stick Electrodes for Heat Resistant Steels

Material Group	W-No	ASTM AISI UNS	Service Tempe- rature up to °C	FOX FA	FOX FF, -A	FOX FFB, -A	FOX SAS 2, -A	FOX A 7, -A	FOX NIBAS 70/20	FOX NICr 70 NB	FOX NIBAS 70/15 FOX NICr 70/15	
heat resistant steels	1.4710 ²		850	(x)	(X)1			(X)1				
	1.4712		850	(x)	(X)1			(X)1				
	1.4713		800	(x)	(X)1			(X)1				
	1.4724	405	850	(x)	(X)1			(X)1				
	1.4729 ²		900	(x)	(X)1				(x)1	(X)1	
	1.4740 ²		950	(x)	(X)1				(x)1	(X)1	
	1.4742	430	1050	(x)	(X)1							
	1.4745 ²		1050	(x)		(X)1			(x)1	(X)1	
	1.4762	446	1200	х		(X)1						
	1.4821	327	1100	х		(X)1						
	1.4822 ²		1100	х		(X)1						
	1.4825	A 297, Gr. CF20	800		(x)		Х³	(x)				
	1.4826	A 297, Gr. HF	950		х	(x)						
	1.4828	309	1050		х	(X)1						
	1.4832		1000		х	(x)			(x	:)	(x)	
	1.4837	A 297, Gr. HH	1150			х			(x	:)	(x)	
	1.4841	314, 310	1150			Х						
	1.4845	310	1050			Х						
	1.4861		1200						(x	:)	(x)	
	1.4864	330	1100						(x	:)	(x)	
	1.4865	330	1120						(x	:)	(x)	
	1.4876	B163	1150						(x	:)	(x)	
	1.4878	321	800				X³	(x)				
	1.0569		-	Х	х							

X = same or similar alloyed filler metal

(x) = dissimilar or higher alloyed filler metal (please check the service requirements)

¹ = austenitic weld deposit with higher ductility; application in sulphur-containing environment or similar-colour requirement demands the usage of similar alloyed welding consumables

² = weldability of base material is limited

 $^{\rm s}$ = in the case of service temperatures above 400°C FOX CN 18/11, FOX E 308 H or FOX NIBAS 70/20 has to be used

Material Group	W-No.	ASTM AISI UNS	Service Tempe- rature up to °C	EA-IG	EF-IG	FFB-IG	SAS 2-IG, -IG (SI)	SAS 2-FD, PW-FD	A7 CN-IG	A 7-IG, -FD, PW-FD	NIBAS 70/20-IG	NIBAS 70/20-FD
heat resistant steels	1.4710 ²		850	(x)	$(X)^1$				(X)1	(X)1		
	1.4712		850	(x)	(X) ¹				(X)1	(X)1		
	1.4713		800	(x)	(X)1				(X)1	(X)1		
	1.4724	405	850	(x)	(X) ¹				(X)1	(X)1		
	1.4729 ²		900	(x)	$(X)^1$						$(X)^1$	$(\mathbf{X})^1$
	1.4740 ²		950	(x)	(X) ¹						(X) ¹	$(\mathbf{X})^1$
	1.4742	430	1050	(x)	$(X)^1$							
	1.4745 ²		1050	(x)		(X) ¹					(X) ¹	$(\mathbf{X})^1$
	1.4762	446	1200	Х		(X)1						
	1.4821	327	1100	х		(X)1						
	1.4822 ²		1100	Х		(X)1						
	1.4825	A 297, Gr. CF20	800		(x)		Х³	Х³	(x)	(x)		
	1.4826	A 297, Gr. HF	950		х	(x)						
	1.4828	309	1050		х	(X)1						
	1.4832		1000		х	(x)					(x)	(x)
	1.4837	A 297, Gr. HH	1150			х					(x)	(x)
	1.4841	314, 310	1150			Х						
	1.4845	310	1050			х						
	1.4861		1200								(x)	(x)
	1.4864	330	1100								(x)	(x)
	1.4865	330	1120								(x)	(x)
	1.4876	B163	1150								(x)	(x)
	1.4878	321	800				Х³	Х³	(x)	(x)		
	1.0569		-	Х	х							

X = same or similar alloyed filler metal

(x) = dissimilar or higher alloyed filler metal (please check the service requirements)

¹ = austenitic weld deposit with higher ductility; application in sulphur-containing environment or similar-colour requirement demands the usage of similar alloyed welding consumables

² = weldability of base material is limited

 $^{\rm 3}$ = in the case of service temperatures above 400°C CN 18/11-IG, ER 308 H-IG, E 308 H-FD, E 308 H PW-FD or NIBAS 70/20IG has to be used
Notes

3.3. Process-based Selection of Consumables

Overview

The choice of welding process is a significant point in the construction of an economic weld. This section therefore attempts to characterise briefly the various welding procedures pointing out the most important advantages and disadvantages.

Content

3.3.1	MANUAL METAL ARC WELDING
	WITH COVERED ELECTRODES
3.3.2	GAS SHIELDED TUNGSTEN ARC WELDING (TIG-PROCESS)36
3.3.3	GAS SHIELDED METAL ARC WELDING (MIG/MAG-PROCESS)37
3.3.4	GAS SHIELDED METAL ARC WELDING
	WITH FLUX-CORED WIRES41
3.3.5	RECOMMENDATIONS FOR SUBMERGED ARC WELDING
	USING SOLID WIRES

3.3.1 Manual Metal Arc Welding with Covered Electrodes

In manual metal arc welding using coated stick electrodes, the coating assumes the function of a protective gas shield on one hand and of forming a slag on the other, thereby protecting the metal droplets transferred and the weld metal in turn against contact with atmospheric oxygen. Further functions of the coating are de-oxidation of the weld metal, increasing the metal recovery, offsetting burn-off and ensuring good flow behaviour.

In practical use there are three significant types of coating: rutile, basic and cellulose coated stick electrodes as well as mixtures of these.

Rutile-coated stick electrode (R)

This type of coating is the one most commonly used in practice. The reason for this is found in a series of *advantages* such as:

- · Easier handling for the welder
- · May be welded with direct and alternating current
- · Good starting and re-starting properties
- · Suitable for all welding positions depending on the type and thickness of coating
- · Good slag removal properties
- · Not susceptible to moisture (only applies however to non-alloy and low-alloy types)

The disadvantages of rutile-coated stick electrodes are:

- · Not suitable for thick-walled components (above 20-25 mm)
- · Low notch toughness at temperatures below zero
- Higher hydrogen contents (20 ml/100 g weld metal)
- Not suitable for high-carbon steels (C < 0.2 %)

Basic-coated stick electrode (B)

Basic-coated stick electrodes stand out for their excellent ductility properties above all in the low-temperature range. Other *advantages* are:

- Extremely low hydrogen content (< 5 ml/100 g)
- · Suitable for all wall thicknesses
- Also suitable for welding high-carbon steels (C > 0.2 %).

Disadvantages are:

- · Slightly more difficult handling for the welder
- · In part only weldable with direct current
- · Less favourable slag removal properties and rougher weld surface
- · Certain amount of susceptibility to moisture absorption

Cellulose-coated stick electrode (C)

This type of coating was specially developed for vertical-down welding of large pipes. An arc with high stability and intensity is generated due to the large proportion of cellulose in the coating. This ensures pore-free welds and reliable root fusion even at high welding speeds and larger electrode diameters.

The mechanical property values are comparable with those of the basic-coated stick electrodes. However, due to the organic constituents in the coating the hydrogen content of the weld metal is considerably higher (50 ml/100 g), therefore attention must be paid to good weldability of the parent metals and the welding technology must be suitably matched (pre-heating).

Mixed types (RC, RB)

In addition to these three important basic types there is a large number of so-called "mixed types" such as RC or RB coatings. The aim of these is to combine as many positive characteristics as possible in one stick electrode.

Coated stick electrodes are universally suitable in practically all materials with good weldability. The cost of equipment is relatively small although the economic profitability of this procedure is deemed poor due to the low deposition rate.

3.3.2 Gas Shielded Tungsten Arc Welding (TIG-Process)

In TIG welding an arc burning under the protection of an inert gas is used as the heat source. Pure tungsten rods or tungsten rods alloyed with cerium or thorium are used as the electrode.

The shielding gas consists of argon, helium or argon and helium mixtures with a minimum purity of 99.95 %. In this case the shielding gas fulfils several functions. It protects the highly heated tungsten electrode against oxidation by atmospheric oxygen, cools it down and enables the formation of a stable arc. At the same time the liquid weld pool and the filler wire burning off are also shielded from the ambient air.

During TIG welding the filler metal is introduced into the arc laterally at zero current. Rods approximately 1 m in length are used as filler metals for manual welding and wires coiled onto rolls are used for mechanised TIG welding.

C-Mn steels as well as low-alloy and high-alloy steels are welded almost exclusively with direct current and the negative pole on the electrode. From the following table it is possible to determine how high the load on the tungsten electrodes can be depending on diameter:

diameter of rod	ampe	erage
ø [mm]	(direct current pol	arity negative) [A]
	pure-tungsten electrode	thorium-coated electrodes
1.0	25 - 70	max. 80
1.6	50 - 110	15 - 150
2.4	80 - 160	50 - 220
3.2	120 - 220	80 - 320
4.0	150 - 300	120 - 400

The scope of application stretches from the welding of thin sheet metal in non-alloy to highalloy qualities and to high-grade root welding in thicker plates and tubes in the materials referred to previously.

3.3.3 Gas Shielded Metal Arc Welding (MIG/MAG-Process)

The MIG/MAG process is a mechanised gas-shielded weld in which a metal arc burns under shielding gas between the wire electrode carrying the current and the workpiece. The wire, which melts off in its own arc, is fed mechanically by a roller and serves as the electrode.

Argon, helium or mixtures of these gases are used as shielding gases in the MIG process. Shielding gases of argon with the addition of oxygen, helium with the addition of oxygen, carbon dioxide (CO₂) or mixtures of the gases mentioned are used in the MAG process. The shielding gas promotes the creation of a stable arc and protects the molten weld pool from coming into contact with the atmospheric air. The addition of oxygen to the shielding gases reduces the surface tension of the weld pool and leads to the formation of a flatter weld surface with good transitions to the weld edges. The transfer of metal in the arc also becomes finer.

Excessive alloying of the wire electrodes equalises the burn-off of the alloying elements which occurs. It is imperative that the welding area is free from draughts. At high welding speeds and rapid oscillation care must be taken to ensure complete shielding of the molten weld pool by using appropriate quantities of shielding gas and nozzle shapes.

Only direct current converters or rectifiers come into question as power sources with the positive pole mainly on the electrode. Although welding with the negative pole increases the metal deposition efficiency, droplet transfer is higher and the arc less steady. Welding is termed spray-arc and short-arc depending on the intensity of the arc voltage.

Spray-arc Welding

Welds using the spray arc are primarily fabricated with wires between 1.0 and 1.6 mm Æ and also to some extent with 0.8, 2.0 and 2.4 mm Æ. The main area of application is for normal joint welds in workpieces over 4 mm thick and in the field of weld surfacing.

The smaller wire diameters provide cost-effective benefits in spite of the higher wire price since the deposition efficiency increases noticeably at the same current intensity and arc voltage due to the wire electrode's higher specific current load (up to 300 A/mm²).

Mixed gases generally give rise to a finer droplet transfer and as a result improved stabilisation of the arc plus reduced spatter. It is also possible to reduce spatter by observing the lower limit values for the arc voltage.

The following table contains reference values for current intensities, wire feed and deposit efficiency using different wire diameters for carbon and low-alloy steels. Average values are selected for manual welding whilst the higher values are used for mechanised welding. The current intensity should be set 10-15% lower in the case of austenitic wire electrodes.

diameter of wire	amperage	voltage	wire feed	deposition rate
[mm]	[A]	[V]	[m/min]	[kg/h]
0.8	140 - 190	22 - 26	4.0 - 15.0	2.1 - 3.7
1.0	170 - 260	23 - 27	3.5 - 12.0	2.4 - 4.0
1.2	220 - 320	25 - 30	2.5 - 10.0	2.8 - 4.6
1.6	260 - 390	26 - 34	2.0 - 6.0	3.2 - 6.2
2.4	340 - 490	30 - 36	2.5 - 3.5	3.2 - 8.0
3.2	400 - 580	34 - 38	1.2 - 2.2	4.5 - 8.5

One extension of the application when welding using spray arc is welding with the addition of currentless cold wire. A second currentless wire Δ 1.6 mm or Δ 2.4 mm is fed into the arc from the side. The deposition rate is increased by up to 80 %; the burn-off losses and penetration are reduced considerably. This is an advantage for surfacing. This procedure has also established itself for filling large weld cross-sections.

Short-arc Welding

Short-arc welding is performed preferably using wires between 0.8 – 1.0 mm $\not\!\!E$ and also to some extent with 1.2 and 1.6 mm $\not\!\!E$. This process requires the use of appropriate power sources with adjustable open-circuit voltage and also to some extent with adjustable characteristic curve. Depending on the wire diameter the arc voltage lies between 14 and 22 Volt at current intensities of 60 to 220 A.

As a result of the considerably colder weld pool it is possible to fabricate perfect welds on thin metal sheets above 0.8 mm thick. This process is also used for root welding of larger wall thicknesses and for out-of-position welding due to the excellent gap bridging ability and the smooth formation of the back of the weld.

The following table contains reference values for current intensities, voltage, wire feed and deposition efficiency for the short-arc process.

diameter of wire	amperage	voltage	wire feed	deposition rate
[mm]	[A]	[V]	[m/min]	[kg/h]
0.8	60 - 130	15 - 17	2.9 - 13.0	0.7 - 2.9
1.0	70 - 160	16 - 19	2.4 - 7.8	0.9 - 2.9
1.2	100 - 180	17 - 20	2.1 - 5.4	1.1 - 2.9
1.6	150 - 210	19 - 22	1.7 - 4.5	1.6 - 2.4

Long-arc Welding

Droplet transfers where free transfers are mixed with short-circuit transfers are termed long-arc. The droplets are bigger than in the spray-arc. A long-arc occurs when welding with carbon dioxide or argon mixtures with over 20 % carbon dioxide. Higher spatter losses may occur since the droplet transfers take place partly under short-circuit.

In the upper operating range the long arc's scope of application is comparable with the spray arc. In many cases it can also be used for out-of-position welds in the lower to middle operating range. Above all vertical-down welds could be securely welded using the CO₂ arc. The resistance to pores and the certainty of penetration increases as the proportion of carbon dioxide in the shielding gas rises. The long-arc's area of application is basically restricted to the welding of non-alloy and lowalloy steels.

Pulsed-arc Welding

With the pulsed arc it is possible to achieve a short-circuit-free, low-spatter droplet detachment from the wire electrode. This is achieved even with low arc wattages that otherwise lead to short arcs (sometimes long arcs) and thus to short-circuiting with spatter formation.

The welding current has a pulse-shaped curve during where the following processes take place during welding:

- The arc burns at a low background current intensity and melts the wire electrode and the parent metal.
- An increased pulse current overlays the background current and detaches one or several droplets which transfer to the weld pool without short-circuit.
- •The current intensity drops back to background current intensity, the arc burns until the next pulse of current.
- •The number of droplets can be controlled selectively using the pulse frequency.

The pulsed arc technique enables the use of thicker and thus more easily fed wire electrodes. Depending on the application, thinner (above 2 mm) or thicker plates, root, filler or cover pass weld, out-of-position welding, it is possible to create the best possible setting parameters for spatter-free droplet transfer by altering the pulse frequency.

Argon-rich gas mixtures with no more than 18 % carbon dioxide are suitable as shielding gases. The particular advantages of the pulsed arc become apparent with aluminium, nickel and corrosion-resistant chrome or chrome-nickel (molybdenum) steels. It is also particularly suitable for welding high-tensile, fine-grain constructional steels or cryogenic steels due to selective heat input.

T.I.M.E. Process

The Transferred lonised Molten Energy process is understood to be a MAG welding procedure consisting essentially of a 4-constituent shielding gas, a matched set of equipment and a solid input of know-how. The most significant advantages of T.I.M.E. process are:

- · Further development of the MAG procedure
- Solid wire electrodes 0.8 to 1.2 mm Æ
- · Higher deposition efficiencies due to higher wire feed speeds
- · Improved mechanical property values due to lower oxidation
- · Favourable penetration
- · Good weld appearance
- · Very good positional welding capability
- · Low tendency to notch formation with good wetting of the weld edges

The shielding gas used for the T.I.M.E. process has a typical composition He 26.5 %, CO₂ 8.0 %, O₂ 0.5 % and Ar as the remainder. This combination of gases utilises the special properties of the individual gases (thermal conductivity in the arc, creators of a steady column of plasma, reduction of the surface tension, etc.).

This process uses an inverter type of power source which enables very accurate setting of the welding parameters and universal application even for other processes.

The solid wire electrodes BÖHLER EMK 6-T and BÖHLER EMK 8-T in Böhler Welding's range have been matched specifically to the T.I.M.E. process.

Feasibility studies show that this process offers financial advantages above all in fully-automated welds. A detailed time study may also render its application desirable for manual welding.

Shielding gases

The choice of shielding gases is determined by the alloy make-up of the materials to be welded and the demands made in respect of weld quality and absence of spatter.

Carbon dioxide (CO $_2$) is used primarily for the welding of non-alloy constructional steels and for anti-wear surfacing.

Mixed gases are favoured for use in the welding of non-alloy and low-alloy steels, such as hightemperature steels in boiler and pipeline construction. The high weld quality, good even penetration and extensive absence of spatter satisfy the requirements placed on high-quality welds.

Argon with the addition of 1-5 % oxygen or 2-3 % fractions of CO₂ is employed above all in the welding of high-alloy ferritic and austenitic filler metals. By comparison with mixed gases and carbon dioxide, the alloy losses during arc transfer are lower and the droplet transfer is very fine and virtually spatter-free.

Selection Guide

Classification of Shielding Gases according EN 439

short designati- on1)			C	omponen	its in vol-	%			
group	no.	oxi- dising	0	inert	He	de- oxidi- sing	slow- reacti- on	typical applications	remarks
R	1 2		02	bal.2) bal.2)	пе	>0-15 >15-35	IN2	WIG, plasma welding, plasma cutting, root formation	de-oxidising
I	1 2 3			100 bal.	100 >0-95			MIG; WIG, plasma welding, root formation	inert
M1	1 2 3 4	>0-5 >0-5 >0-5	>0-3 >0-3	bal. 2) bal. 2) bal. 2) bal. 2) bal. 2)		>0-5			slightly oxidising
M2	1 2 3 4	>5-25 >0-5 >5-25	>3-10 >3-10 >0-8	bal. 2) bal. 2) bal. 2) bal. 2) bal. 2)				MAG	
МЗ	1 2 3	>25-50 >5-50	>10-15 >8-15	bal. 2) bal. 2) bal. 2)					
с	1 2	100 bal.	>0-30						strong oxidising
F	1 2					>0-50	100 bal.	plasma cutting, root formation	slow reaction de-oxidising
¹⁾ if com	ponents	are adde	ed which	are not li	sted in th	is table t	he shield	ing gas has to be classifi	ed as

special gas using the leading character "S". ²⁾ Argon can be replaced by Helium up to 95 %.

3.3.4 Gas Shielded Metal Arc Welding with flux-cored Wires

The principle of the process is basically comparable with gas-shielded welding using solid wire electrodes. Although solid wire electrodes always display a similar metal deposition efficiency depending on the welding parameters selected, the welding characteristics and deposition efficiency, positional welding capability plus mechanical property values are greatly influenced by the powder core when using flux-cored wires.

As is the case for the coating of stick electrodes, the core controls de-oxidation, slag formation and stabilisation of the arc. In addition the quantity of flux and the cross-sectional area of the fluxcored tube are largely responsible for the level of deposition efficiency as well as currentcarrying capacity and in turn productivity.

With regard to this BÖHLER flux-cored electrodes exhibit particularly beneficial efficiency parameters for the user.

Advantages of MAG welding with flux-cored wire compared with MAG solid wire:

- · Higher deposit efficiency due to higher current density.
- Greater fabrication safety. The risk of lack-of-fusion defects is appreciably lower due to the flux-cored wire's broader arc and the improved penetration profile.
- Easier handling, easier parameter setting, large tolerance range of possible welding parameters in the low-spatter spray arc.
- Better accessibility with reduced weld preparation angle due to longer wire stickout of 15 to 25 mm.
- Smooth welds, good wetting of weld edges plus lowest possible spatter formation lead to a very low post-weld machining time.
- With high-alloy, slag-promoting flux-cored wires there are also considerable pickling savings since the weld surfaces are only slightly oxidised. In addition it is also possible to make use of the advantages gained due to the ability to use higher welding speeds by inputting less heat input resulting in less distortion.

	for a Ministry of the second		Flores A constal Million of
FIGINE OF ADDIICOTION	tor Non and LOW		
I IEIUS VI AUDIICEIIUII		ANOV DOTIELT	I IUA OUIEU WIIEA

Böhler product	type of filling	recommended fields of application
Ti 52-FD Ti 52 W-FD (mild steel)	rutile slag system	out-of-position welding up to an apmerage of 240 A (Ø 1.2 mm) for welding position vertical up mild steels
HL 51-FD (mild steel) HL 53-FD (0,9 % Ni)	metal powder without slag metal powder without slag	flat and horizontal position (PA, PB), fillet welds mechanised welding mild steels
Kb 52-FD (0.8 % Ni)	basic slag system	for all welding positions, for heavier walled or all welding positions, for heavier walled best mechanical property values-mild steels
DMO Kb-FD (0.5 % Mo)	basisches basic slag system	for all welding positions, for heavier walled components best mechanical property values high temperature steels, e.g. grade P265GH
DMO Ti-FD (0.5 % Mo)	rutile slag system	for all welding positions high temperature steels, e.g. grade P265GH

Additional products for production welds in high-temperature cast steel or for high-tensile welds are available on request.

	(I I' A II DOI II P	
-leids of Anniication	TOP HIGH ALLOV BUHI H	R FILLY CORED WIRES

for flat / horizontal welding positions	for out-of-position welding	recommended fields of application
BÖHLER E 308 H-FD	BÖHLER E 308 H PW-FD	CrNi-steels, 1.4948, 1.4878, AISI 304, 304H, 321, 321H, 347H
BÖHLER EAS 2-FD	BÖHLER EAS 2 PW-FD	CrNi-steels, e.g. 1.4301, 1.4306, 1.4308, 1.4541, 1.4550
BÖHLER SAS 2-FD	BÖHLER SAS 2 PW-FD	CrNi(Nb)-steels, e.g. 1.4541, 1.4546, 1.4550, 1.4552
BÖHLER EAS 4 M-FD	BÖHLER EAS 4 PW-FD	CrNiMo-steels, e.g. 1.4401, 1.4435, 1.4571
BÖHLER SAS 4-FD	BÖHLER SAS 4 PW-FD	CrNiMo(Nb)-steels, e.g. 1.4571, 1.4580, 1.4581, 1.4583
BÖHLER CN 22/9 N-FD	BÖHLER CN 22/9 PW-FD	Duplex-steels, e.g. 1.4462, 1.4362
BÖHLER A7-FD	BÖHLER A 7 PW-FD	for fabrication, repair and maintenance
BÖHLER CN 23/12-FD	BÖHLER CN 23/12 PW-FD	dissimilar welds, claddings without Mo
BÖHLER CN 23/12 Mo-FD	BÖHLER CN 23/12 Mo PW-FD	dissimilar welds, claddings with Mo
BÖHLER E 317L-FD	BÖHLER E 317 L PW-FD	CrNiMo-steels with 3-4 % Mo, e.g. 1.4438, 317L

Practical Tips for Welding Flux-cored Wires

The constant-voltage power source should be adequately dimensioned. Water-cooled torches and wire feed units with 4 smooth drive rollers are advisable for effective utilisation of the deposit efficiency advantages.

Welding is performed with direct current positive pole. The basic flux-cored wires and BÖHLER HL 53-FD are the only ones designed for negative pole.

Torch manipulation for slag-promoting wires is trailing. Metal powder wires may be keyhole welded like solid wires.

Care must also be taken in comparison to solid wires when setting higher wire feed speeds. The wire stickout for spray arc is 15 - 25 mm.

Suitable shielding gases are argon + 15-25 % CO₂ (15-18 l/min). Böhler Ti 52-FD may also be welded well using 100 % CO₂.

3.3.5 Recommendations for Submerged Arc Welding using Solid Wires

Submerged-arc welding requires a metallic filler metal (wire) and a non-metallic consumable, the welding flux.

The welding flux has a very large effect on the welding result. It has a significant effect on weld appearance and slag detachability as a result of the melting characteristics and various physical properties such as viscosity, surface tension, density, thermal expansion and electrical conductivity.

There is also a significant effect on the chemical composition of the weld metal and in turn on its mechanical property values resulting from the metallurgical reaction of the welding flux. Depending on the type of manufacture it is possible to differentiate between:

> Fused flux, code letter F (fused), e.a. BÖHLER BF 16. Manufactured by melting in the arc kiln: homogeneous, not susceptible to moisture, abrasion-proof, but very limited metallurgical reaction, high apparent density and poorer slag detachability.

Agglomerated flux, code letter A (agglomerated), e.g. BÖHLER BB 24. Manufactured by agglomeration and subsequent drying in the rotary kiln; very good metallurgical reaction, low apparent density, good slag detachabi lity, possibility of addition by alloying but susceptible to moisture and abrasion.

The welding fluxes are divided into acid, neutral and basic according to the degree of basicity. The degree of basicity is calculated from

Basic constituents (CaO, CaF₂, MgO, MnO)

Acid constituents (SiO₂, TiO₂, ZrO₂)

If B is less than 1 one speaks of an acid welding flux (acid constituents predominate), with a value between 1 and 1.2 it is a neutral welding flux, above this a basic welding flux, and above 2 a highly-basic welding flux.

According to the predominant main constituents they may be termed:

as manganese silicate types (MS), predominantly MnO and SiO2.

as calcium silicate types (CS), predominantly CaO, MgO and SiO2.

as aluminate-rutile types (AR), predominantly Al2O3 and TiO2.

as aluminate-basic (AB), predominantly Al2O3, CaO and MgO

and as fluoride-basic (FB) with the main constituents CaO, MgO, MnO and CaF2.

Each type of flux has different specific properties that must be taken into consideration when selecting them for practical use.

Selection Guide

3.4. Material based Selection of Consumables

Overview

The most important problem in selecting filler metals is correctly assessing the metallurgical behaviour of the metals to be welded. The whole welding technology, pre-heating and any post-weld heat treatments correspond with this.

This section attempts to discuss the most important welding-engineering aspects of different types of material groups in brief individual chapters. As far as possible a broad outline of the required welding technology is provided.

The last chapter of this section deals with the much more complex problems surrounding mixed-metal joints. Since a detailed treatment of this topic would take up a whole book, this chapter only contains brief references as to how various combinations of typical groups of materials should be dealt with.

Content

3.4.1 WELDABILITY OF STEELS46
3.4.2 MILD STEELS
3.4.3 COATED PLATES
3.4.4 REINFORCING STEELS
3.4.5 CASE-HARDENING AND NITRIDING STEELS
3.4.6 WELDING OF PIPELINES
3.4.7 HIGH-STRENGTH FINE-GRAIN CONSTRUCTIONAL STEELS
3.4.8 CRYOGENIC STEELS
3.4.9 HIGH-TEMPERATURE STEELS60
3.4.10 LOW-ALLOYED TEMPERED STEELS
3.4.11 COMPRESSED HYDROGEN-RESISTANT STEELS
3.4.12 STAINLESS STEELS
3.4.13 MARTENSITIC CHROMIUM STEELS
3.4.14 FERRITIC CHROMIUM STEELS
3.4.15 SOFT-MARTENSITIC CHROMIUM NICKEL STEELS
3.4.16 AUSTENITIC CR-NI(-MO)-STEELS
3.4.17 FERRITE DETERMINATION IN WELD DEPOSIT
3.4.18 HEAT RESISTANT STEELS
3.4.19 WELDING OF DISSIMILAR JOINTS

3.4.1 Weldability of Steels

On one hand the weldability of steels depends essentially on their tendency to hardening and the formation of brittle microstructures in the transition zones of welds as well as on their ability to absorb stresses on the other. Where steels with limited weldability are concerned, particularly those susceptible to stresses and/or a tendency to hardening, it is still possible in many cases to fabricate perfect welds by using an appropriate welding procedure (control of temperature, heat treatment).

Weldability of Mild Steels

With regard to the content of phosphorus and sulphur, weldability of non-alloy steels will usually be classified according to carbon content. Areas of the parent metal in the weld transition zones will be austentitised as a result of the heat generated during welding. Localised increases in hardness may occur inside these heat-affected zones as a consequence of rapid cooling. Therefore as a rule it is possible to weld non-alloy steels with carbon contents up to approx. Oz2 % without problems; with higher carbon contents it is necessary to preheat the parent metal or care must be taken to ensure correct control of heat in the welded sections so as to reduce the cooling rate during austenite transformation. However, it is not only carbon that determines the weldability of non-alloy steels. Problems during welding may also arise due to higher contents of hydrogen, nitrogen and oxygen and the presence of segregations. The wall thickness also plays an important role.

Weldability of Alloy Steels

Low-alloy Steels

Low-alloy steels often require proper control of heat prior to, during and after welding in order to achieve welds with the properties required. The chemical composition with regard to the type and quantity of alloying constituents and the microstructure has a significant effect. It is possible to improve the strength and ductility of high-tensile low-alloy steels by quenching and tempering. The total alloy content does not usually exceed 5 %. As a rule the carbon content lies between 0.2 and 0.6 %. Important alloying elements are chrome, nickel and molybdenum, as well as manganese, silicon and vanadium.

Their inclination towards the formation of martensite leads to greater stresses inside the component on cooling of the weld. The critical cooling rate is low and therefore it is possible for a hard microstructure to occur even on cooling in ambient air thus unfavourably changing the ductility of the weld. There is a high risk of hardness cracks in transition zones. Areas of pronounced softening may appear in the case of steels with limited resistance to tempering.

High-alloy Steels

High-alloy steels contain over 5 % of alloying elements. Stainless steels containing chrome and those containing both chrome and nickel as characteristic alloying elements represent a significant section of these steels.

Chromium steels are mainly divided into two grades with a ferritic or martensitic microstructure which exhibits limited weldability. The reason for this is the tendency towards grain growth in ferritic chrome steels and a tendency towards hardness increase in the heat-affected zones of chromebased martensitic steels.

By contrast the austenitic chromium-nickel (molybdenum) steels are classified as having good weldability. However, the corrosion resistance, hot crack resistance and ductility of these steels may deteriorate if fabricated unprofessionally. Consequently it is necessary to observe certain basic rules when welding stainless steels.

3.4.2 Mild Steels

These steels which conform to EN 10025 (DIN 17100) are determined by components which will be utilised essentially at ambient temperatures.

According to the regulations of EN 10027, Part 1 (Classification of Steels) the code letter

- 1. S Steels for general steel construction, or
- 2. E Machine-construction Steels

is set in front of the abbreviated designation followed by a number which refers to the minimum yield strength in N/mm2 given the lowest thickness manufactured. The yield strength ranges lie between 185 and 355 N/mm2 (~27 and 51 ksi) for steels classified "S" and between 295 and 360 N/mm2 (~43 and 52 ksi) for steels classified "E".

The ability to specify a specific maximum value of carbon equivalent (CET) on purchase orders may be considered an advantage from the weldability point of view. However, this applies only to steel grades "S 235" to "S 55". All other steels of this standard exhibit limited qualifications for welding. Steel grades such as these must be classified primarily as possessing "limited weldability", the fabrication process for which is left up to the manufacturer where the chemical composition is not defined at all.

Welding of Mild Steels

The weldability of steels diminishes as the carbon content rises due to the increase in hardness. Therefore steels with no guarantee of weldability must be treated specifically in order to avoid unacceptably high hardness. The ability to predict the tendency towards hardening, e.g. by calculation of the carbon equivalent, etc., is well known. As a rule of thumb it may be said that hardness increase in the transition zone should not exceed 350 Vickers units for non-alloy constructional steels and 400 Vickers units for alloy constructional steels.

Welding Technology for Mild Steels

- Filler metals must be selected with respect to the minimum requirements for the mechani cal properties of the parent metals.
- Steels with "guaranteed weldability" and wall thicknesses exceeding 30 mm (13/16") or 20 mm (3/4") must be preheated to 100 - 150 °C (210 - 300 °F) and basic-type filler metals must be used.
- Steels with "limited weldability" must be preheated in accordance with the carbon equiva lent; only rebaked basic filler metals are to be used.
- For rimmed steels avoid melting of segregation zones as far as possible and use basic filler metals as well.

Filler metals

The following section lists examples of suitable filler metals.

base material (example)	BÖHLER-product
S235J2G3 to S355J2G3	FOX OHV, FOX ETI, FOX EV 50, EMK6, EMS2/BF16, HL 51-FD

Dependency of Welding Procedure on Material Thickness

In addition, reference must be made to the fact that as the thickness of the component increases three-dimensional stresses caused by localised heating and cooling may reach the yield strength or may even exceed it when superimposed with operating loads. These stresses then lead to cold deformation, ageing and embrittlement. Therefore even steels with guaranteed weldability require preheating above certain wall thicknesses.

Typical wall thicknesses for good weldability are:

Selection Guide

tensile strength [N/mm ²]	thickness limit [mm]
up to 360	30
> 360 - 540	20

Larger wall thicknesses call for preheating to 100 - 150 °C (210 - 300 °F) in all cases.

Weldability of Rimmed Steels

According to EN 10025 and DIN 17100 respectively rimmed steels may also be welded. These steels show a pure and ductile shell zone ("bacon rind") which causes no problems during welding but contains a core rich in segregation with poor weldability. The core often exhibits significantly higher contents of carbon, phosphorus, sulphur, oxygen and manganese than the shell zone due to liquefaction phenomena on solidification (segregation in the ingot). One is confronted with a number of negative influences in respect of the segregated zone, such as increased tendency towards hardening, risk of brittle fracture, tendency to hot cracking and embittlement by ageing.

Given these facts the segregated zone exhibits lower ductility and poor weldability compared with the pure shell zone. The primary rule for welding rimmed steels is therefore not to fuse segregated zones if possible, which is a point that should be taken into account at the design stage. Rimmed steels with segregation will be welded in practice using basic-coated electrodes or using a combination of rutile and basic-coated electrodes (basic coated electrodes for the segregated zone, rutile type electrodes for root and cap layer).

Free-cutting Steels

Free-cutting steels are characterised by good machinability and good chip brittleness that are essentially achieved by means of higher sulphur contents coupled in part with lead and other elements. They allow high edge lives of the cutting tools at high cutting speeds during cutting on automatic high-speed machines and as a result produce finished parts with a very clean smooth surface.

The microstructure of free-cutting steels differs from that of other steels only due to the sulphidic inclusions introduced on purpose.

Welding of Free-cutting Steels

Similar considerations to those for the welding of unkilled steels apply to the welding of low-carbon free-cutting steels and consequently welding is possible to a limited extent. On the other hand the welding of higher-carbon steels must be considered difficult. In this case the tendency towards hot cracking is extremely high due to the higher contents of carbon and sulphur. Particular attention must be paid to poor penetration and stress-free welding.

The suitability of free-cutting steels for welding is very limited indeed. Free-cutting steels containing lead should not be welded due to the health hazards caused by leaded welding fume.

3.4.3 Coated Plates

Coating with Anti-corrosive Paints

Structures made of non-alloy steels may undergo substantial reductions in cross-section as a result of rusting. Material loss such as this may be counteracted by painting with effective anti-corrosion paint, which to some extent is carried out immediately after descaling (prefabrication priming) on hot-rolled products for economic reasons. Iron oxide-rich paints are most commonly used. This brings to light the problems associated with the weldability of plates coated with such paints.

Iron oxide-rich paints are readily weldable with regard to the TLV (threshold limit values in the workshop environment) and are not susceptible to porosity whereas zinc dust-rich paints may cause problems with the TLV as well as porosity. Butt welds are less prone to porosity than fillet welds. Whilst rutile coated electrodes such as BOHLER FOX OHV will generally deposit welds free of porosity, it is not always possible to guarantee this when using basic coated types. Wires with increased silicon content and fluxes with high MnO contents should be used for submerged-arc welding. Inert-gas welding using CO² as the shielding gas often leads to problems; this can be improved by adding a few percent of oxygen to the shielding gas.

Galvanised Plates

Hot galvanizing offers very effective protection of the steel surface against corrosive media.

When welding galvanized plates and sheet metal there is intense generation of fume depending on the type of electrode used due to the evaporation of zinc. Medium-thick rutile-coated electrodes, such as the FOX MSU type, may be used. These will not affect the mechanical properties. For double fillet welds with wall thicknesses above 10 mm (3/8") on all-round galvanized sheet metal it is necessary to maintain a gap of at least 1 mm (3/64") between the flange and web to avoid zincinduced cracking.

3.4.4 Reinforcing Steels

Concrete, the traditional material used for building, possesses high compressive strength but only low tensile strength. This means that a fracture in the structure is highly likely after applying only a relatively low load if a structure made purely of concrete is loaded for bend.

Steel rods are inserted in the concrete to increase the tensile strength of this construction material producing a composite structure which utilises both the excellent compressive strength of the concrete and the high tensile strength of the steel.

The various types of reinforcing steels differ from each other either due to their external form (varying surface shape) or processed form (e.g. as welded wire meshes) or both. The reinforcing steels, also known as armouring, are subdivided into the following types:

Rods of

- 1. hot-rolled round steel
- 2. hot-rolled ribbed steel
- 3. hot-rolled and then cold-twisted ribbed steel
- 4. cold-formed ribbed steel

as well as welded reinforcing meshes of

- 5. flat wires
- 6. shaped wires
- 7. ribbed wires.

Welding of Reinforcing Steels

All steels of the DIN 488 or EN 10080 referred to are suitable for resistance flash-butt welding and oxyacetylene pressure welding. Suitability for electric arc welding using coated stick electrodes or the gas-shielded arc process is considered to have been demonstrated if the base metal ultimate strength is achieved in the tensile test and it is possible to bend butt welds around a required mandrel.

Welds may be classified according to their intended use or the welding process employed. The principal distinction is between load-bearing and non-load-bearing welds.

Welding Technology

- The steel surface in the area of the weld must be cleaned of dirt, grease, rust, etc. and there must be adequate access to the welding area.
- The weld area must exhibit a temperature of at least +5 °C and must be protected against cooling down too quickly after welding to reduce the risk of hardness increase in the transition zone.

Filler Metals

The following overview shows suitable Böhler filler metals:

Reinforcing Steel grade		BÖHLER-product
BSt 420 S	B420N	FOX SPE, FOX OHV, FOX MSU, EMK 6
BSt 500 S	B500H	FOX SPE, FOX OHV, FOX MSU, EMK 6
BSt 500 N	B500N	FOX EV 50, EMK 6

Pre-stressed Reinforcing Steels

A high offset yield stress and apparent yield point plus high tensile strength are required of pre-stressed reinforcing steels to ensure there is little or no decrease in the pre-stressing of the concrete. Non-alloy C-Mn steel with 0.6 to 0.9 % C or steel similar to spring steel is used as a suitable material.

Welding of pre-stressed reinforcing steels is not permitted.

3.4.5 Case-hardening and Nitriding Steels

Case hardening is understood to be hardening following prior carburisation of the skin of a workpiece. Carburising and also nitrogenising in solid, liquid or gaseous media is performed at temperatures between 850 - 930 °C following forming and machining after which hardening takes place. The carburised layer assumes a content of 0.7 to 1 % C and a surface hardening takes place. Case hardening is used where the aim is to achieve a hard surface resistant to wear and fatigue (higher fatigue strength), but where the transition and the low-lying core should have good ductility and high notch impact strength with improved strength.

Nitration is understood to be the treatment of steel surfaces in media giving off nitrogen at temperatures below the Ac1 point to achieve a surface enriched with nitrogen. Nitriding steels are steels that are particularly suitable for nitration due to the nitride formers contained within them. Chromium-containing steels that are alloyed with aluminium for increased special nitride formation are primarily considered as materials. To some extent they also exhibit molyddenum and nickel. The nitrided surface layers (approx 0.05 to 0.5 mm) are very hard even without quenching (approx. 750 to 900 HV) and wear-resistant, i.e. they provide resistance to sliding abrasion that is better than in case-hardened parts.

Welding of Case-hardened and Nitriding Steels

For welds in the surface area of case-hardened or nitrided parts it is first necessary to remove a sufficiently large area of the carburised or nitrided layer by grinding. However, it seems advisable to weld prior to case hardening or nitration.

Filler metals similar in alloy composition to the parent metal must be used if the welds are also intended to be nitridable. Otherwise filler metals corresponding to the mechanical properties of the parent metal not subjected to surface treatment should be used. Basic electrodes are to be preferred.

The preheat temperature must be matched to the steel's hardenability.

3.4.6 Welding of Pipelines

Crude oil and natural gas are currently the most important energy carriers. Vast transport pipelines already exist or in the planning stages throughout the world. The development of new higherstrength pipe steels is thus making greater and greater demands on welding technology. Thanks to our specially developed electrodes that are optimally matched to the individual steels, we are able to completely satisfy these increased requirements as well as the strict safety conditions.

The circumferential pipe seams are mainly performed as vertical-down welds using cellulose-coated stick electrodes whereby construction progress is essentially determined by the speed with which these welds can be manufactured. This method renders it possible to weld with a larger electrode diameter, higher current intensities and higher welding speeds. This results in considerable economic advantages compared with otherwise conventional vertical-up welding using rutile or basic-coated stick electrodes.

Welding with basic-coated stick electrodes is dealt with following the section "Welding with cellulose-coated stick electrodes" for both the vertical-up and vertical-down position. Böhler Welding also has a complete range of qualities expressly designed for low-temperature loading. Please make separate enquiries regarding wires for gas-shielded and submerged-arc welding.

BÖHLER product name	AWS classification A 5.1-91 A 5.5-96	recommended for pipeline steels acc. API Spec. 5L
FOX CEL	E6010	A, B, X 42, X 46, X 52, X 56, X60, X 65, X 70, X 80
FOX CEL 75	E7010-P1	X 52, X 56, X 60
FOX CEL Mo	E7010-A1	X 52, X 56, X 60
FOX CEL 85	E8010-P1	X 56, X 60, X 65, X 70
FOX CEL 90	E9010-G	X 65, X 70, X 80

Welding with Cellulosic-coated Stick Electrodes

Particular mention must be made regarding the special suitability of the BÖHLER FOX CEL electrodes for root welding even in higher-strength steels. The welding technology developed by Böhler Welding by using the BÖHLER FOX CEL for the root and if need be also for the hot pass in the form of so-called "combination welding" provides the greatest security against cracks.

Careful weld preparation is very important for achieving perfect welds. It is not usually possible to comply with tolerances with torch-cut edges. In practice the pipe ends are generally prepared by metal cutting. To prevent pores and fusion defects the weld edges must be free from foreign matter such as oil, lubricant, scale and dirt. In the same way grooves and notches also disrupt hand-ling of the electrode. The BOHLER FOX CEL 2.5 mm Δ electrode is recommended for pipes with smaller diameters (up to 300 mm) and 3.2 mm Δ for the root pass.

Preheating and Interpass Temperature

Preheating the parent metal encourages and accelerates the diffusion of hydrogen and therefore inhibits underbead cracking. Furthermore, it is possible to reduce the hardness increase in the heat-affected zone depending on the temperature level and the chemical composition of the steel.

150 °C has been found to be adequate for preheating. Regardless of the carbon content preheating should always be performed for wall thicknesses over 20 mm and in the case of high-carbon steels susceptible to hardness increase it is advisable to increase the temperature to approx. 200 °C. It is also necessary to take the external temperature into account!

Selection Guide

For thin pipe materials unsusceptible to hardening increase it is beneficial to heat the pipe ends slightly to at least 50 °C to remove condensation water. According to the various specifications different carbon contents are permissible. If the carbon content is above 0.20 % we recommend consulting the electrode and steel manufacturer about the choice of preheat temperature.

The interpass temperature affects the metallurgical processes which take place during solidification and cooling and thus has an effect on the mechanical properties of the weld metal. It also affects the diffusion speed of hydrogen. It is therefore recommended that the interpass temperature should be maintained at no less than 80 °C during welding. An interpass temperature of at least 140 °C is recommended if cellulose-coated stick electrodes with tensile strengths above 620 N/mm² (e.g. BÖHLER FOX CEL 90) are used.

Welding with Basic-coated Stick Electrodes

In some countries the use of basic-coated stick electrodes for pipeline construction is preferred over the use of cellulose-coated stick electrodes for various reasons. Generally speaking the use of basic electrodes is recommended for welding very thick steels over 25 mm susceptible to hardness increase. The reason for this is the very low hydrogen content of these types of electrodes.

The high dissipation of welding heat in higher wall thicknesses and the simultaneous presence of higher hydrogen contents increases the risk of hydrogen-induced underbead cracks when using cellulose-coated stick electrodes. To prevent this it is only worthwhile using basic-coated stick electrodes if the root pass is also welded using the same type of electrode.

In vertical-up welding using basic-coated stick electrodes the time required above all for root welding is relatively high. Naturally this is also linked to a certain loss of economic viability. As a result basic-coated vertical-down electrodes have been developed which may be used for both root welding and also filler and cover pass welding.

Vertical-up Welding

Depending on the pipe material's chemical composition and its tendency towards hardness increase, preheating to 150 200 °C should be carried out for thick plates even when using basic-coated stick electrodes.

The preference in this case is to use basic-coated electrodes of the FOX EV 50 (E7018-1), FOX EV 55 (E7018-1), FOX EV 56 (E7018-1), FOX EV 60 (E8018-G) and above all the FOX EV PIPE (E7016) type specially optimised for pipe welding. Care must be taken to protect the electrodes against moisture. Electrodes from boxes that are already open must be re-dried before use for 2 hours at 300 – 350 °C according to the specifications.

The root pass is usually applied using electrodes with a 2.5 mm Å in order to achieve perfect root fusion. Welding is performed in the vertical-up position with a root gap of approx. 2.5 - 3 mm. At times a special weld shape is used to save weld metal (see sketch).

Welding of the filler and cover passes is usually performed using electrodes with 3.2 und 4 mm Δ whereby the welding area must be protected against wind, rain, etc. to prevent pores.

Vertical-down Welding

BÖHLER	AWS-classification	recommended for pipeline steels
product name	A 5.5-96	acc. API Spec. 5L
FOX BVD RP	E8018-G	A, B, X 42 - X 100
FOX BVD 85	E8018-G	A, B, X 42 - X 65
FOX BVD 90	E9018-G	X 70, X 80
FOX BVD 100	E10018-G	X 80
FOX BVD 110	E11018-G	X 100
FOX BVD 120	E12018-G	X 110

Executing the Welding of Pipelines

- Weld preparation: Weld preparation is carried out by metal cutting. The permissible dimensional tolerances of the pipes are listed in the standards API Spec. 5 LX and DIN 17122.
- Preheating: The risk of underbead cracks due to hydrogen when welding with basic-coated stick electrodes is lower than when welding with cellulose-coated stick electrodes due to their relatively low hydrogen content. Nevertheless preheating to 150 °C is recommended above all when welding thick-walled pipe materials that are susceptible to hardness increase. The following diagram illustrates when preheating is recommended.
- Alignment of pipes: Alignment of the pipes is performed with hydraulically operated internal align ment clamps as when welding with cellulose-coated stick electrodes. Due to the relati vely strong root bead formation and the low hydrogen content on the part of the basiccoated root electrode it is possible to release the internal alignment clamp when the root weld is complete as long as the edge misalignment is not too great.

Welding at Low External Temperatures or in Wet Weather

Under unfavourable weather conditions especially at air temperatures below 0 °C, welding work may only be carried out on pipelines if the welding and working conditions render perfect weld execution possible. This means that although welding at low external temperatures is not prohibited, it is necessary to observe certain safety precautions.

The following rules have been tried and tested in practical use:

- 1. Remove ice, frost and rain by warming up (preheat to hand-hot).
- Speedy welding without longish pause; if necessary employ several welders for one weld seam.
- 3. Use electrodes as thick as possible.
- The welder himself must be adequately protected against the cold (provide tents, windbreak or infrared radiator).

There are no generally applicable rules or restrictive specifications regarding the execution of welding work whilst raining or on wet workpieces. Nevertheless it is obvious that the welding area and its surroundings must be shielded from rain and other weather effects. The welding area must be free from water in all cases.

Rebaked basic stick electrodes have very little hydrogen in the weld metal from the start and therefore provide a higher level of safety against hydrogen-induced cracks under unfavourable conditions. However, even the basic weld metal may exhibit substantial hydrogen contents during welding in a steam-saturated atmosphere.

3.4.7 High-strength Fine-grain Constructional Steels

The micro-alloy steels may be divided into three main groups depending on their manufacture:

- 1. normalised fine-grain constructional steels
- 2. quenched and tempered fine-grain constructional steels
- 3. thermomechanically treated fine-grain constructional steels

A fine-grain ferritic-pearlitic structure is achieved with the conventionally rolled, normalised fine-grain constructional steels essentially by the elimination of finely dispersed carbonitrides and carbides from the austenitic area during air cooling. Fine-grain constructional steels with yield points up to 500 N/mm² are manufactured by this method.

The finest grain is achieved by water quenching in the quenched and tempered fine-grain constructional steels whereby micro-alloying elements such as B, V, Nb and Ti as well as to some extent the alloying elements Cr and Ni are of significant importance. With water quenching it is possible to achieve yield points between 450 and 960 N/mm². The special properties of the two steel groups initially mentioned are achieved by a heat treatment carried out after rolling.

In the thermodynamically treated steels a targeted heat treatment is included in the rolling process as a result of which it is possible to manufacture high-tensile steels with very low carbon contents. It was possible to significantly increase the mechanical properties of constructional steels and their weldability with the help of the micro-alloying elements and appropriate production methods.

Welding of Fine-grain Constructional Steels

Generally speaking special precautions are required for processing steels with increasing minimum yield strength values where the design of weldments and load analysis are essential. However, the instructions for processing these steels cannot deal with and control every possible problem. Thus in special cases it is useful to consult the steel manufacturer or to carry out in-house tests which may be necessary when first using fine-grained constructional steels.

The risk of hot cracking in these steels is low. On the other hand attention must be drawn to the possibility of lamellar tearing and cold cracking which require appropriate design and/or welding technology measures such as reducing stresses, avoiding excessive hardness increase and internal stresses and aiming for low hydrogen contents in the weld metal.

The preheat temperature for joint welding and tack welding lies between 50 and 250 °C (120 and 480 °F). It depends upon material thickness, chemical compositions of parent material and weld metal, energy input during welding, as well as on predicted residual stresses. As the thickness increases it is necessary to aim for the upper temperature limit. The following table presents figures for thickness limits taking preheat as a function of the minimum yield strength of the parent material.

minimum for yield strength [N/mm ²]	thickness limit [mm]
≤ 355	30
>355 to 420	20
>420 to 590	12
> 590	8

The development of temperature and time during welding is of crucial importance to mechanical properties of high-strength welded joints. This development is significantly influenced by plate thickness, geometry of edge preparation, energy input, preheat temperature and sequence of passes.

The cooling time two is generally used to define the development of temperature and time during welding. This is the period of time during which a weld passes through the temperature range from 800 to 500 °C (1470 to 930 °F) when cooling. The maximum hardness in the heat affected zone drops as the cooling time two increases.

Material based Selection of Consumables

If a specific maximum hardness may not be exceeded in a particular steel then it is necessary to set the welding parameters in such a manner that the cooling time tas does not fall below a defined value. On the other hand increasing values for the cooling time tas cause a reduction in the impact strength and an increase in the transition temperature of impact strength within the heat affected zone.

If it is necessary to meet a specific minimum impact strength for a particular steel, then the welding parameters must be set in such a way that the cooling time tas is kept below a defined value. The cooling time tas to be applied in a particular case depends on the collective requirements for mechanical properties including characteristic strength values of the actual weld joint in the post-weld heat-treated condition.

Selection of a suitable filler metal is of prime importance before welding a specific fine-grained constructional steel. In this case allowance must be made for the fact that the weld metal must meet the mechanical and technological properties of the base metal despite dilution.

Welding Procedure

- When selecting filler metals the weld metal must satisfy the mechanical properties of the base metal despite dilution by the latter. Use only re-dried basic-coated electrodes.
- Preheat and interpass temperature should be between 80 and 250 °C (180 and 480 °F) depending on wall thickness, chemical compositions of base metal and weld metal, energy input and existing state of residual stresses.
- Thickness limits must be considered when determining preheating as a function of the base metal's yield strength. Aim for the upper limit of the temperature range as wall thickness increases.
- The temperature/time curve (tws) is very significant for the mechanical properties of heataffected zones. Comply with the recommendations of steel manufacturers regarding energy input at all times.

Filler metals

The following table shows suitable BÖHLER consumables.

base material (example)	BÖHLER-product
S355NL	FOX EV 50, EMK 6, EMS 2//BB 25 resp. BB 24
S500QL	FOX EV 65, NiMo 1-IG, 3 NiMo 1-UP//BB 24
S690QL	FOX EV 85, X70-IG, 3 NiCrMo 2.5-UP//BB 24

3.4.8. Cryogenic Steels

The large-scale use of oxygen in the steel industry, nitrogen in the chemical industry and natural petroleum gases in industrial supply and also in the chemical industry has increased significant in recent years. With the increase in the use of these gases transporting and storing them economically has become more and more important. The gases pass over into the liquid state when cooled to very low temperatures and at the same time their volume decreases considerably. This behaviour is utilised for storage and transport.

However, it is only possible to utilise this behaviour if suitable base metals and filler metals, which posses adequate mechanical properties and loughness at the low temperatures of the liquid gases, are available for construction of the transport and storage tanks required.

Non-alloy, low-alloy or high-alloy steels that are still tough at low temperatures (below approx -50 °C) are known as cryogenic steels. Non-alloy and low-alloy steels may be used in all cases for temperatures up to -50 °C as long as they are killed.

The steel groups may be differentiated as follows:

- Non-alloy and low-alloy cryogenic and fine-grain constructional steels for operating tempera tures up to approx. -50 °C in the normalised condition and down to approx. -60 °C in the guenched and tempered condition.
- Nickel-alloy tempering steels with 1.5 to 9 % nickel for operating temperatures from -80 °C to approx. 200 °C.
- 3. Austenitic chrome nickel steels for operating temperatures down to approx. -269 °C.

Welding of Cryogenic Steels

The characteristic properties of filler metals for welding cryogenic materials is their deformability at low temperatures which is tested as a rule using the notched bar impact test. Conclusions regarding the propensity to brittle fracture and employability down to a specific temperature are drawn from the impact energy value. The notch shape of the notched bar test specimens is a noteworthy influential variable on the test results. U-notch specimens according to DVM result in higher impact energy and lower service temperatures than the V-notch specimens according to ISO, more commonly known as Charpy-V-notch specimens.

The value 27 is frequently taken as the minimum value of impact energy with the Charpy-V-notch specimen at the lowest service temperature in each case.

Care must be taken to control the heat input when welding cryogenic and fine-grain constructional steels to keep the heat affected zone as narrow as possible and still prevent hardness peaks. Basic-coated non-alloy and low-alloy stick electrodes according to EN 499 and EN 757 are suitable. The hydrogen content in the welded joint should be as low as possible to prevent cold cracks, i.e. rebaking of the electrodes immediately prior to welding is recommended. This statement lagapplies to the flux powder in submerged-arc welding. The problem of excessively high hydrogen contents does not normally exist for gas-shielded arc welding. Particular attention should be paid to the low-temperature toughness and strength required when selecting wire and flux combinations or wire and shielding gas combinations.

Filler metals of the same or similar composition as the parent metal with 2.0 to 3.5 % Ni are used when welding nickel-alloy tempering steels. Filler metals of the same composition as the parent metal are to be preferred if it is necessary to guarantee the mechanical and technological (strength, toughness) and physical (heat expansion coefficient) properties of the parent metal in the weld metal in addition to satisfying the minimum temperature required. Filler metals with higher nickel contents have a tendency towards increased hot cracking. For this reason the 5 % nickel steel is preferably welded with austenitic filler metals on the basis of "A7" or "ASN 5" and nickel-base types. Heat treatment of the weld must not take place out of regard for the austenitic weld metal (embrittlement, carbon diffusion).

9 % Ni-steel is mainly joined using completely austenitic filler metals with a high nickel content of the "NIBAS 625" type, or "FOX NIBAS 60/15". This nickel-based type has advantages over conventional austenites due to a higher yield point and the possibility of heat treating welds. It may also be used for steels with a low nickel content. Crack resistance and adequate cold toughness down to -200 °C are ensured if dilution with the parent metal is limited.

Austenitic chrome nickel steels are welded in the same manner. The unstabilised weld metal is slightly superior to the stabilised weld metal in impact energy at low temperatures.

3.4.9. High-temperature Steels

The mechanical strength properties of the non-alloy constructional steels undergo a significant reduction at increased operating temperatures; therefore, they are only suitable for use up to a threshold temperature of 550 °C. Under stress creep and flow processes occur in the steel at increased temperatures as a result of which the permissible load becomes time dependent. Thus all calculation values for strength now have a time added to them from which it can be seen how long the material can bear a specific stress up to fracture or up to a specific permanent elongation. In this context one talks about the creep rupture strength or creep strain limit.

Thus first and foremost high temperature steels have adequate mechanical strength at high operating temperatures. In addition to this they must also exhibit a certain resistance to corrosion and in the event of hot aggressive gases increased scale resistance as well which is only achievable with high-alloy steels. With the addition of specific alloying elements such as Cr, Mo, V, W, Ti and Nb it is possible to increase the high-temperature strength properties and the creep resistance. The slip planes are blocked due to the formation of special carbides and special nitrides (anti-slip effect).

For a temperature load up to 550 °C small additions of Mo, V, and Cr are sufficient although Mo has the greatest effect on increasing the high-temperature strength. Above 550 °C increased scale resistance is also required. In this case the 9 to 12 % Cr-steels with additions of Mo, V and Nb are considered. Above 600 °C the behaviour under long period stressing drops off so much in heat treatable steels that special Cr-Ni steels (basic type: 16 % Cr, 13 % Ni) have to be used. The creep resistant steels are standardised in EN 10028, EN 10222-2, DIN 17155, DIN 17175 and DIN 17460.

Welding of High Temperature Steels

Creep-resistant steels may be divided into three main groups:

Ferritic-Pearlitic Steels

(e.g. P295GH, P355GH and 16Mo3)

These are normalised steels. Basically these steels are not susceptible to hardness increase in the heat-affected zone. However above a certain wall thickness preheating to 150 °C is advisable (P295GH = 25 mm; 16Mo3 = 10mm.)

Bainitic (Martensitic) Ferritic Steels

(e.g. 13CrMo4-5, 10CrMo9-10, 14MoV6-3).

These steels are quenched and tempered and air-hardening and special account must be taken of this when welding. Hard and brittle zones may develop simultaneously, both in the heat affected zones (HAZ) and the weld metal itself, due to the formation of martensite which contributes towards the danger of underbead cracking. Stress cracking after completion of welding is also possible.

Therefore, depending on the steel grade it is advisable to carry out preheating to 100 - 300 °C prior to welding and a specific interpass temperature must be controlled. As the preheat and interpass temperature is lower than the Ms temperature (Ms = 480 °C), annealing and tempering at 640 - 740 °C but below Ac3 in any case is necessary after welding is complete.

Consequently the temperature should not significantly exceed approx. 450 °C and the energy input must be limited to 7 - 24 kJ/cm. At a preheat temperature not exceeding 300 °C it is not completely possible to prevent the formation of martensite (Ms = 480 °C) in the heat affected zone but its formation will be minimized to approx. 30 - 50 %. Therefore, depending on the type of steel, it is necessary to perform annealing and stress-relieving at 640 - 740 °C after welding is complete.

Martensitic Steels – Alloying Type 12 % Chromium

(e.g. 12 %Cr-Stähle X20CrMo12-1. X22CrMoV12-1 und X22CrMoWV12-1).

These steels are also quenched and tempered. The predominantly martensitic structure calls for a very special heat control procedure during welding. Two different technological procedures are used which are known in practice by the terms "martensitic and austenitic welding techniques".

The difference between these methods is determined by preheat and interpass temperatures above Ms-temperature (400 - 450 °C) in "austenitic" welding and below Ms-temperature (200 - 250 °C) in "martensitic" mode. After completion of welding, cooling is carried out to 120 - 80 °C to complete the martensite transformation, followed by final annealing in the temperature range between 720 - 780 °C.

Martensitic Steels – Alloying Type 9 % Chromium

(e.g. 10CrMoVNb9-1, X12CrMoWNiVNbN10-11 and E911/NF 616).

There has been another material available since the beginning of the 80's that guarantees outstanding high-temperature strength properties due to its modified alloy base. This material is the grade P91 steel standardised to ASTM A335. Furthermore, there are efforts underway to find successor generations for the P91 materials. These cognate but as yet not standardised materials (NF 616, P911 und HCM12) are supposed primarily to guarantee appreciably higher long-term creep strength values resulting from the addition of tungsten by alloying.

Unlike the 12 % chrome types, the 9 % chrome types exhibit a lower tendency towards hardness increase during welding due primarily to the lower carbon content which results in a reduced risk of cold crack formation and the occurrence of stress corrosion cracking. However, a preheat and interpass temperature ranging between 200 to 300 °C must be taken into account.

The use of the multi-pass technique is recommended since the welding technology has a considerable effect on the toughness properties achievable, i.e. thinner passes, in order to obtain a high proportion of annealed weld metal structure and thus an improved level of toughness.

Interim cooling to ambient temperature is necessary prior to the required postweld tempering (740-775 °C) to achieve complete martensitic transformation.

Choice of Filler Metal

Essentially the filler metals used are those of the same composition as the base. Only under this condition is it possible to expect a creep rupture strength from the weld that corresponds to the base metal. In the case of stick electrodes there are basic and rutile coated types available although the latter are only used for steels not exceeding 5 % Cr and up to 12 mm wall thickness due to poorer mechanical properties and the higher hydrogen content. Rutile-coated stick electrodes are used mainly for root welding.

GTA welding is widely used for the root pass in pipes whilst the GMAW and submerged-arc processes are increasingly gaining in importance. The use of gas fusion welding is restricted to thinwalled joints in steels not exceeding 2.5 % Cr.

Welding Technology

- Use only filler metals with the same alloy composition as the base metal.
- Above certain wall thicknesses normalised steels such as 16Mo3 must be preheated to 150 °C.
- Tempered steels such as 13CrMo4-5 must be preheated to 100 to 300 °C depending on type and must be postweld annealed in the range between 640 and 740 °C.
- With martensitic Cr steels on the basis of X20CrMoV12-1 care must be taken to ensure special heat input, i.e. preheating to 200-250 °C or 400-450 °C, then cooling down to 80-120 °C and finally annealing at 720 to 780 °C.
- Martensitic Cr steels on the basis of 10CrMo9-10 must be preheated to 200 to 300 °C and may be cooled down to ambient temperature following welding. Then tempering treatment must be carried out at 750 °C.

Filler Metals

The following table provides examples of different BÖHLER filler metals for welding high temperature steels:

base material	BÖHLER product
16Mo3	FOX DMO Kb, DMO-IG, EMS 2 Mo/BB24, DMO Kb-FD, DMO TI-FD
13CrMo4-5	FOX DCMS Kb, DCMS-IG, EMS 2 CrMo/BB 24,
10CrMo9-10	FOX CM 2-Kb, CM 2-IG, CM 2-UP/BB 24
X10CrMoVNb9-1	FOX C 9 MV, C 9 MV-IG, C 9 MV-MC, C 9 MV-UP/BB 910
HCM2S	FOX P 23, P 23-IG, P 23-UP/BB 430
7CrMoVTiB10-10	FOX P 24, P 24-IG, P 24-UP/BB 430
X12CrMoWVNbN10-1-1	FOX C 9 MVW, C 9 MVW-IG, C 9 MVW-UP/BB 910
P 92, NF 616	FOX P 92, P 92-IG, P 92-UP/BB 910
X20CrMoWV12-1	FOX 20 MVW, 20 MVW-IG, 20 MVW-UP/BB 24

3.4.10 Low-alloyed Tempered Steels

These steels are mainly used in the construction of machinery and equipment, in boilers, in the construction of piping and chemical plants, in the petrochemical industry, in cryogenics and in the automobile and aircraft industry. They are used in the quenched and tempered condition, as a result of which constructional steels such as this are termed tempering steels. Their special property is hardenability which depends principally on the type and proportions of the alloying elements they contain.

Due to a special alloying technique the critical cooling speed is reduced increasing in turn the temperability and creep resistance. Depending on the alloy composition it is possible to differentiate between Mn, Mn-Si, Mn-V steels; Cr, Cr-Mo, Cr-Mo-V, Cr-Ni-Mo steels; Ni, Ni-Cr steels and others.

Targeted lowering of the critical cooling speed for the purpose of good temperability worsens the steel's weldability. Structural components between bainite and martensite occur in the heat affected zone of the base metal which cause local hardness increases. The higher the carbon content in the steel, the harder the martensite becomes and the lower the martensite formation temperature lies (Ms).

Knowing the martensite formation temperature is of major significance for determining the preheat temperature of steels with poor weldability. In addition to the familiar methods of determining the preheat temperature such as the carbon equivalent, TTT curve, weld TTT curve and hardness testing of practical welds, it is also possible to calculate the Ms or Mr point according to the following formula:

Ms point (start of martensite formation): Ms(°C)=561-474(% C)-33(% Mn)-17(% Ni)-17(% Cr)-21(% Mo).

 M_{f} -point (end of martensite formation): M_{f} (°C) = M_{s}-215\pm15

The two formulae are applicable for steels with approximately the following chemical composition:

% C	% Si	% Mn	% Ni	% Cr	% Mo	
0.1 - 0.55	0.1 - 0.35	0.2 - 1.7	0 - 5	0 - 3.5	0 - 1	

The following table shows the hardness, tensile strength and notch impact energy of the martensite in alloy steels with varying carbon contents (following heating to 200 °C according to Thorneycroft).

carbon [%]	tensile strength [N/mm²]	impact work [J]	hardness [HV 10]
0.14	1370	85	420
0.20	1480	60	440
0.26	1650	41	470
0.40	1860	24	560
0.61	2200*)	7	700

*) brittle crack

Alloying elements such as manganese, nickel, chrome and molybdenum promote the γ - α transformation in the martensitic stage. As a result low-alloy steels have a greater tendency towards hardness increase than non-alloy steels with the same carbon content.

Selection Guide

Welding of Low-alloy Tempering Steels

It is hardly possible to find a filler metal of the same composition as the base for welding a specific tempering steel that usually contains above 0.25 % C. Nor is this sensible because for welding engineering reasons the carbon content in the weld metal is reduced and attempts are made to achieve the desired strength and tempering qualities by means of a suitable combination of alloys. However, in many cases it is not expected that the weld will achieve the strength of the base metal or it is not designed with high load ranges in mind. The filler metals then used are non-alloy basic electrodes or austentic electrodes. In both cases the high weld metal ductility has a favourable effect with regard to at least a partial reduction of stress.

Filler metals for joint welding of tempering steels have not been standardised as yet.

Welding Technology

Proceed as follows to prevent cracks in the weld interfaces:

- Use non-alloy or low-alloy electrodes with low hydrogen content which are adequately re-dried prior to welding. In certain cases austenitic electrodes may also be used. Gas metal-arc wel ding using argon or mixed gases may also be used.
- Preheat to prevent or delay martensite formation. The possibilities for determining the preheat temperature have already been outlined.
- Weld with thick electrodes and high heat input per unit length of weld. As a result cooling pro gresses more slowly.

Postweld heat treatment at approx. 600 °C and above, preferably without interim cooling, is recommended to reduce the residual welding stresses and to temper the hardened zone if there is a fear of cracking, especially in air-hardening steels.

Consideration should also be given to isothermic welding, i.e. maintaining the interpass temperature up to the formation of harmless structures.

Austenitic filler metals of the "A 7" type (18 % Cr, 8 % Ni, 6 % Mn alloy type), whose weld metal cannot of course be tempered, are often chosen for air-hardening steels (e.g. armoured steel with higher carbon content of the 30 CrNiMo 8 type). They are particularly suitable because the low yield point and high plastic ductility of the alloy make it possible to reduce stress peaks by means of lower deformation without the danger of cracking.

3.4.11 Compressed Hydrogen-resistant Steels

Steels that are only slightly susceptible to decarburisation by hydrogen at high pressures and high temperatures and to the embrittlement and intercrystalline failure associated with this are considered to be compressed hydrogen-resistant steels. These properties are achieved by alloying with elements that form highly resistant, barely decomposable carbides at the operating temperature. Chrome is one such element. The following for example are compressed hydrogen-resistant steels 25CrMo4, 20CrMo9, 17CrMoV10, X20CrMoV121, X8CrNiMoVNb1613 in accordance with SteelMaterial Specification 590.

At high pressures hydrogen penetrates the steel and reacts with the carbon in the iron carbide or pearlife forming methane at the same time. High pressures which lead to disaggregation and finally to intercrystalline cracks occur inside the steel since the methane molecules have only a very low diffusability due to their size.

Welding of Compressed Hydrogen-resistant Steels

Compressed hydrogen-resistant steels are weldable if the necessary precautions are taken. However, their weldability declines as the carbon content increases. These steels must be preheated to 200 to 400 °C depending on the type of steel and this temperature must be maintained during welding.

After welding cooling must be slow and even. Postweld heat treatment must be carried out as specified. The filler metals must also result in a compressed hydrogen-resistant weld metal. Steels X20CrMoV12-1 and X8CrNiMoVNb16-13 require a very specialised welding technology.

3.4.12 Stainless Steels

The group of stainless steels contains a large number of very different alloy variations all of which are commonly characterised by a chrome content of at least 12 %. This guarantees that extremely thin, stable oxide layers form on the surface of the steel under oxidising conditions and the steel passes from the active (soluble) to the passive (insoluble) condition. In the passive condition there is increased resistance to oxidising media. However, in the case of a reducing atmosphere, i.e. decreased oxygen supply, the formerly passive steel may pass over into the active condition. The chrome content of at least 12 % necessary for a certain chemical resistance of the steel is very often referred to as the "parting limit".

The alloying element chrome and subsequently nickel represent the basic elements for stainless steels. However, their effect with regard to the crystalline structure in the steel is very varied. With increasing nickel content the gamma area is extended whilst with increasing chrome content the gamma area is confined and above approximately 12 % only ferrite (= body-centred cubic mixed crystal) continues to prevail. Above a certain nickel content the microstructure is made only of austenite (= face-centred cubic mixed crystal) from solidification to ambient temperature.

All other alloying elements which are added to the steel to improve specific properties may be assigned to either the chrome or nickel in their effect on the crystalline structure. This means that it is possible to differentiate as follows between ferrite-forming and austenite-forming elements. Ferrite-forming elements: chrome, silicon, aluminium, molybdenum, niobium, titanium, tungsten and vanadium.

Austenite-forming elements: nickel, manganese, carbon, cobalt, copper and nitrogen.

If one adds sufficient quantities of nickel to a ferritic iron-chrome alloy then it passes over into the austenitic condition.

The following table lists the most important groups of stainless steels classified according to the microstructure.

micro structure		typical steel
pearlitic-martensitic		X30Cr13
half ferritic-ferritic		X8Cr17
soft-martensitic		X5CrNi13-4
ferritic-austenitic		X2CrNiMoN22-5
austenitic	austenite with ferrite	X5CrNi18-9
	austenite without ferrite	X8CrNiNb16-13

These groups of steels differ from each other from both the metallurgical and physical point of view and allowance must be made for the peculiarities in each case by taking appropriate measures when fabricating welds.

3.4.13 Martensitic Chromium Steels

Some characteristic martensitic Cr steels and their weldabilty:

material designation according EN 10088-1	% C	% Cr	% Mo	weldability
X12Cr13 X20Cr13	0.15 0.20	13.0 13.0	-	limited strongly limited
X39CrMo17-1	0.42	16.5	1.2	none

Basically speaking this group of steels must be classified as having only limited weldability since the risk of cold cracking increases as the carbon content rises and joint welds should be avoided where possible.

As already mentioned, the most important alloying element is chrome which lends the steels its passivity and hus its corrosion resistance in oxidising media if it accounts for approximately 12 % of the content. Chrome as a ferrite-forming element has the effect of narrowing the iron's austenitic zone and this is constricted completely with approx. 13 % chrome. Steels with chrome contents higher than 13 % with very low carbon contents (< 0.1 %) undergo no transformation during cooling from solidification to ambient temperature. These are the ferritic chrome steels.

The group of hardenable steels starts with chrome contents above 12 % and carbon contents of approx. 0.1 to 1.2 %. These are the martensitic chrome steels. The austenitic zone is widened by the higher carbon content creating the opportunity for hardening.

Welding of Martensitic Chromium Steels

The austenitic fraction in the heat affected zone of the base metal will always transform into martensite during air cooling as the formation of pearlite and bainite progresses with a significant time delay due to the high chrome content.

Due to the steel's high chrome content the beginning of pearlite transformation, during which & ferrite and carbide are precipitated out of the ?-mixed crystals, takes a long time so that the weld metal and the heat-affected zone (HAZ) practically always transform to the martensitic stage unless the martensitic transformation temperature is exceeded on heating. The unfavourable and inadequate weldability of such steels is easy to understand if one looks at the hardness increment as a function of the carbon content.

Hardness increment with different carbon contents:

carbon content	hardness
0.10 % C	app. 40 HRC
0.15 % C	app. 46 HRC
0.20 % C	app. 50 HRC
0.25 % C	app. 53 HRC
0.40 % C	app. 56 HRC
0.70 % C	app. 58 HRC
1.00 % C	app. 60 HRC

At the same time it becomes understandable why only martensitic Cr steels with less than 0.15 % carbon are usually used in practice for welded structures.

Hydrogen also represents a further unfavourable factor when welding. Somewhat higher hydrogen contents may cause a strong tendency towards hydrogen-induced cold cracks in the weld particularly in the presence of brittle martensite.
Selection Guide

13 % Cr steels are always tempered and 17 % Cr steels are always tempered or soft-annealed since the martensite is relatively hard, brittle and at the same time susceptible to corrosion.

This group of steels is welded using filler metals of both the same and different composition to the base. Please consult later sections for recommendations regarding the appropriate welding technology and filler metals. The weld metal in the welded condition consists of martensite and δ-ferrite with small proportions of residual austenite when using filler metals of the same or similar composition to the base. For this reason only very low elongation and impact energy values are present and annealing is almost always carried out at 700 to 750 °C.

Welding Technology

for steels with carbon contents below 0.15 %

- Coated stick electrodes and submerged arc flux powders must be re-dried in accordance with the manufacturer's instructions.
- Only use filler metals of the same composition as the base if there are requirements for the same colour, comparable strength or alternating strength. Otherwise use austenitic filler metals.
- A preheat and interpass temperature of 200 300 °C is to be recommended in any case.
- Carry out postweld tempering at 700 750 °C. Beware when using austenitic filler metals due to the risk of embrittlement.

Suitable BÖHLER filler metals are:

microstructure	BÖHLER product
equal	FOX KW 10, FOX SKWAM, SKWAM-IG
different	FOX A7 (IG/UP/FD), FOX EAS 2 (IG/UP/FD), FOX CN23/12 (IG/UP/FD)

3.4.14 Ferritic Chromium Steels

The following table contains the chemical composition and weldability of some ferritic Cr steels whose characteristic feature is a low carbon content. As a result these steels are predominantly ferritic from the commencement of solidification to ambient temperature, and thus in the main are not subject to transformation and are therefore also not hardenable. Mo, Ti or Nb are sometimes added as alloying elements to improve the chemical properties.

material designation according EN 10088-1	% C	% Cr	% Mo	weldability
X6Cr13	<0.08	13.0	-	limited
X6Cr17	<0.08	17.0	-	limited
X6CrMo17-1	<0.08	17.0	1.1	limited

The prerequisite for adequate technological values, particularly regarding elongation, is a fine-grain structure. This is achieved if the final forming stages are carried out below 800 °C and there is then heat treatment up to 800 °C with subsequent rapid cooling in air or water. This group of materials is very susceptible to overheating, i.e. on exposure to a temperature above 1000 °C it has a tendency towards grain coarsening which may bring about considerable embrittlement in conjunction with the precipitation of carbides. For this reason ferritic Cr steels are not used in the construction of pressure vessels.

Furthermore, as the Cr content increases the ferritic Cr and Cr-Mo steels have a tend ency towards time-related precipitation hardening in the temperature range between 400 - 525 °C known as 475 °C embrittlement. Here this means segregation of the ferrite into a chromium-rich and an ironrich phase.

Welding of Ferritic Cr Steels

Primarily with steels with a higher Cr content there is grain growth in the super-heated part of the transition zone due to the input of thermal energy during welding that cannot be remedied by subsequent heat treatment. In addition to this, carbides that cause an even further reduction in ductility are precipitated on the grain boundaries. For these reasons ferritic Cr steels should be classed as having only "limited weldability". Similarly unfavourable conditions are to be expected in the weld metal if filler metals of the same composition as the base are used.

The loss of ductility represents an absolute weakening of the welded joint. It is therefore recommended that austenitic filler metals are used for welding ferritic Cr steels. To a certain extent the austenitic weld metal is able to function as an expansion element due to its considerably better ductility properties. The austenitic weld metal also exhibits advantages from a corrosion point of view. However, there is one disadvantage in the formation of a different colour between the base metal and the weld deposit. Filler metals with the same alloy composition as the base must be used where there is a requirement for the same colour. In practical use where highly subplurous or carburizing gases are present the austenitic weld metal may be prone to attack (e.g. due to the formation of nickel sulphide). In this case the procedure followed should be to fill the joint austenitically and only use a ferritic filler metal for depositing the final layers on the side exposed to the aggressive medium.

Welding should be carried out with preheating to 200 to 300 °C in order to keep thermal stresses as low as possible. Attention must also be paid to low input of thermal energy in order to minimise coarse grain formation. Postweld annealing in the range between 700 to 750 °C is beneficial. As a result of this the carbides precipitated coagulate and stress reduction is achieved at the same time. Both factors lead within certain limits to an improvement in ductility (see Fig. 4). However, it is no longer possible to get rid of the coarse grain in the heat-affected zone. When using austenitic filler metals consideration must be given to its tendency to precipitate intermetallic phases (embrittlement) in the 600 to 900 °C temperature range.

Welding Technology

for ferritic Cr steels with carbon contents less than 0.12 %

- Coated stick electrodes and submerged arc flux must be re-dried according to the manu facturer's instructions.
- Only use filler metals of the same composition as the base if there is a requirement for colour matching, or if the component will come into contact with sulphurous or carburising gases.
- Preheat and interpass temperature between 200 300 °C is advisable.
- Keep heat input per unit length of weld as low as possible.
- Postweld annealing and tempering at 700 750 °C is recommended. Caution when using austenitic filler metals due to risk of embrittlement.

The following table shows BÖHLER filler metals with same composition or different composition to base suitable for welding:

microstructure	BÖHLER-product
equal	FOX SKWA, SKWA-IG, SKWA-UP
different	FOX SAS 2, SAS 2-IG, SAS 2-UP, SAS 2-FD, SAS 2 PW-FD FOX EAS 2, EAS 2-IG, EAS 2-UP, EAS 2-FD, EAS 2 PW-FD FOX CN 23/12, CN 23/12-IG, CN 23/12-UP, CN 23/12-FD, CN 23/12 PW-FD

3.4.15 Soft-martensitic Chromium Nickel Steels

Steels with soft martensitic microstructure are used in a wide range of applications with the steel containing 12 % chrome and 4 % nickel being considered as the most important representative of this group. The following table contains information on their chemical composition and weldability.

material designation according EN 10088-1	% C	% Cr	% Mo	% Ni	weldability
X5CrNi13-1	<0.05	13.0	0-0.4	1-2.0	good
X5CrNi13-4	<0.05	13.0	0.4	4.0	good
X5CrNi13-6	<0.05	13.0	0.4	6.0	good
X5CrNi16-6	< 0.05	16.0	-	6.0	good/limited
X5CrNiMo16-5-1	< 0.05	16.0	1.5	5.0	good/limited
X5CrNi17-4	<0.05	17.0	-	4.0	good/limited

The mechanical properties of such materials lie within a very broad range depending on their chemical composition and above all on the type of heat treatment performed although consideration is only paid to type X5CrN13-4 in the following section.

The basic precept of development was primarily to lower the carbon content to increase the ductility of the martensitic structure and to reduce the tendency towards cold cracking plus to achieve a structure as free as possible from δ -ferrite by alloying with 4 to 6 % nickel. Thus at "ambient temperature" the structure consists of "soft" martensite with small amounts of undercooled δ -ferrite and austenite. Tempering further increases the ductility and reduces the hardness or strength. The low carbon content and the addition by alloying of approx. 0.5 % molybdenum simultaneously improve corrosion resistance.

One major advantage of the soft-martensitic Cr-Ni steels compared with pure Cr steels is their excellent weldability.

Weldability of the soft-martensitic steels is essentially typified by three characteristics which are:

- Formation of low-carbon, ductile martensite in the HAZ and in the weld metal which greatly reduces the tendency towards cold cracking.
- Low δ-ferrite contents. This largely eliminates the tendency towards coarse grain formation during welding.
- Hydrogen sensitivity of the martensitic structure. Hydrogen-induced cold cracks may arise with contents of diffusible hydrogen of HDM > 5 ml/100 g.

Welding of Soft-martensitic Cr-Ni Steels

The type of heat treatment represents a major influencing factor on the mechanical properties of these materials. Soft martensites in nickel contents above 3.5 % exhibit a metallographic peculiarity, namely the formation of finely dispersed austenite at tempering temperatures above 580 °C. This effect leads to a rise in the impact energy values in the 13/4 weld metal whereby highest values are achieved between 600 und 620 °C. At higher tempering temperatures the impact energy drops off again due to transformation of the tempering unstenite into martensite on cooling.

Selection Guide

The choice of interpass temperature is particularly important in preventing cold cracks in welded joints. Practical experience gained in connection with soft martensitic materials show that sudden "conversion" of large weld areas into martensite should be prevented during postweld cooling. Otherwise conditions of extreme transformation and residual stress are to be anticipated in the weld metal which may in turn trigger cold cracks. Therefore interpass temperatures within the Ms temperature range must be considered critical.

It is recommended that the interpass temperature for X5CrNi13-1 weld metal is held between 120 and 220 °C and for X5CrNi13-4 and X5CrNi13-6 weld metals between 100 and 160 °C. This means that for each weld bead the martensitic transformation will be approximately 50 % which should be the aim from both a metallographic and stress engineering point of view. At all events it is necessary to adhere strictly to the interpass temperature mentioned if subsequent heat treatment cannot be performed.

Welding Technology

In accordance with the properties encountered during welding of soft-martensitic steels it is therefore advisable to adhere to the welding technology described below. The notes apply to the most important soft-martensitic steel containing 13 % Cr and 4 % Ni.

- Use only filler metals of the same alloy composition as the base for welding.
- Coated stick electrodes and submerged arc flux powders must be re-dried in accordance with the manufacturer's instructions to comply with a hydrogen content in the weld metal of < 5 ml/100 g.</p>
- Thick-walled components should be pre-heated to 100 °C and welded with an interpass tem perature ranging between 100 and 160 °C.
- Postweld tempering or at least postweld quenching is necessary to increase ductility.

3.4.16 Austenitic Cr-Ni(-Mo)-Steels

Where stainless materials are concerned by far the greatest importance is attached to the group of austenitic chrome-nickel-(molybdenum) steels. Basically these chemically resistant steels may be classified as 'very readily weldable'. They are not quench-hardenable as a result of which there is no occurrence of hardness increase and essentially no grain coarsening in the heat-affected zone. However, three problems may possibly arise in both the base metal and in the weld metal as a result of inexpert fabrication. These are:

- Sensitisation, i.e. reduction in the resistance to corrosion due to the formation of chrome carbide.
- Hot cracking, i.e. intergranular separations during solidification or in the high temperature sections of the heat-affected zone with rigid restraint of the weld area.
- Embrittlement, i.e. precipitation of intermetallic phases such as σ-phase due to application of high temperature or annealing.

When welding fully austenitic steels it is also necessary to take into consideration their constitutional tendency toward the formation of hot cracks.

Notes on the welding technology of austenitic Cr-Ni-(Mo) standard steels, weld dressing and information on filler metals may all be found in the appropriate sections.

Welding Technology

- Only qualities corresponding to the respective base metal with weld deposits exhibiting δ-ferrite contents ranging from 5 - 15 FN (ferrite number) should be used for welding. This ensures adequate resistance to hot cracking. Filler metals of the same composition as the base, which result in fully austenitic weld metal, are available for highly corrosion-resistant special steels.
- Care should be taken to ensure that austenitic steels are only fabricated with a clean and dry surface.
- The arc should be kept as short as possible to prevent absorption of nitrogen from the air. When performing gas-shielded welding care must be taken to ensure perfect gas shielding and, with the exception of flux-cored welding, only shielding gases with a low CO₂ content should be used to keep carburisation of the weld deposit as low as possible.
- Preheating to 100 150 °C is only advisable for a thick base metal but is not necessary on principle.
- An interpass temperature of 150 °C should not be exceeded.
- The recommended current intensity ranges must be complied with.
- If re-welding of the root is not possible during gas-shielded welding then there must be pro vision of gas shielding from the underside when welding the root bead (e.g. with forming gas or pure argon).
- Dilution with the base metal should be less than 35 % if possible. If it is greater than this due to the welding procedure used, the ferrite content in a test bead should be determined by means of a calibrated ferrite gauge or should be estimated by calculation from the che mical composition e.g. with the help of the WRC-92 diagram. The ferrite content or the FN should not lie below the minimum value referred to above.

- Postweld annealing treatments should be avoided whenever practicable. If this is not possible then allowance must be made for a possible reduction in corrosion resistance and/or ductility. In this case it is advisable to consult the manufacturer of the steel and the filler metal.
- It is not generally possible to use unstabilised, low-carbon filler metals for stabilised steels and vice versa although the respective maximum temperature of intergranular corrosion resistance should be observed.
- Greater distortion than when welding ferritic steels must be taken into account and allowance must be made for appropriate corrective measures such as the weld shape, increa sed tacking, pre-tensioning, back-welding, etc.
- Flame straightening should not be carried out if possible as it can adversely affect corrosion resistance. In connection with this it is also particularly important to point out the damaging effect of arc strikes outside the welding groove.
- Only de-slagging hammers and brushes of stainless Cr or Cr-Ni steel may be used for clea ning austenitic weld joints.

Weld Dressing

A completely bare metallic surface must be mentioned as the prerequisite for achieving optimum corrosion resistance. Not only must every trace of welding scale, slag and all spatter be removed but all bloom as well.

Weld dressing may be performed by means of grinding, pickling, sandblasting, brushing and/or polishing. The finer the surface the greater the corrosion resistance (e.g. coarse grinding – finishgrinding – polishing).

Pickling is the most often used method. There are various pickling solutions or pickling pastes commercially available for this purpose that are applied to the surface and rinsed off thoroughly with water after the recommended reaction time.

The removal of so-called "bloom" on welds sometimes causes a problem. It is also possible to remove this bloom by washing with silica sand or brushing.

If the pickled component is rapidly subjected to corrosion, as is usually the case with repairs for example, then passivation is recommended subsequent to the pickling treatment. The appropriate manufacturers also offer suitable agents for this. The component must be rinsed thoroughly again after passivation treatment.

It must be expressly mentioned in connection with the use of pickling agents that these are highly caustic substances and it is therefore imperative that protective items such as rubber gloves, rubber aprons, protective goggles and possibly breathing equipment are worn when handling them. Local environmental regulations must also be observed.

Sandblasting is used when grinding or pickling cannot be considered. This procedure may only be performed with steel grit made from rust and acid-resistant steel or silica sand. Although the surface obtained is bare metal it is somewhat rougher. Passivation should also be performed after sandblasting.

Filler Metals

The following table shows various BÖHLER filler metals suitable for welding the materials listed:

base material	BÖHLER-product
X5CrNi18-9	FOX EAS 2-A (IG/UP/FD)
X2CrNi18-9	FOX EAS 2-A (IG/UP/FD)
X5CrNiMo18-12	FOX EAS 4 M-A (IG/UP/FD)
X2CrNiMo18-10	FOX EAS 4 M-A (IG/UP/FD)
X10CrNiNb18-9	FOX SAS 2-A (IG/UP/FD)
X10CrNiMoNb18-10	FOX SAS 4-A (IG/UP/FD)

3.4.17 Ferrite Determination in Weld Deposit

The austenitic chemically resistant Cr-Ni steels generally exhibit very good weldability. However, the special physical properties of these steels – low thermal conductivity and high coefficient of thermal expansion – must be taken into account when welding with regard to input of welding heat. Special significance is accorded to the type of primary solidification which subsequently has a crucial effect on hot cracking behaviour.

For the practical welder the presence of specific ferrite fractions in the weld metal is an indirect indication of adequate resistance to hot cracking. Generally speaking ferrite in the weld metal is an advantage in welds that do not have the ability to expand freely, those with large weld cross-sections and if cracks have previously impaired their suitability for use. Ferrite increases the weld metal strength but has the opposite effect on corrosion resistance in certain media. Furthermore, it is also a disadvantage in low-temperature applications and in the high-temperature range where transformation to the brittle c-phase is possible.

The ferrite content may be determined magnetically in addition to metallurgical estimation. The scale used is not absolute with the result that there will probably be differences in the results of measurements obtained from different laboratories (e.g. variations between 3.5 and 8.0 % in a specimen with approximately 5 % δ -ferrite). The measured values are usually shown in FN (ferrite numbers). The ferrite number may be equated with the percentage of ferrite up to approx. 10 FN.

According to the Welding Research Council (WRC) it is not possible at present to determine the absolute ferrite content in austenitic-ferritic weld metal deposits. Variations resulting from differences in the welding and measuring conditions are to be anticipated even in specimens with pure weld metal deposit. The usual standardisation assumes a 2-sigma variation which means a variation of ± 2.2 FN for 8 FN.

Greater variations are to be anticipated if the welding procedure permits higher absorption of nitrogen from the ambient air. High nitrogen absorption may lead to a weld metal with 8 FN failing to 0 FN in the ferrite content. Absorption of 0.10 % nitrogen typically reduces the ferrite content by 8 FN. In weld metal deposits dilution with the base metal leads to further ferrite reductions since base metals with the same composition usually have lower ferrite contents than the pure weld metal.

In addition to measurement, it is also possible to calculate the ferrite content from the chemical composition of the pure weld metal. Various structural diagrams may be referred to for this purpose. They are the WRC-92 diagram, the Schaeffler diagram, the DeLong diagram and the Espy diagram. There may be very great variations between the results of the individual diagrams as they were prepared on the basis of series examinations for different groups of materials.

The WRC-92 diagram provides a prediction of the ferrite content in FN. It is the most recent of the diagrams mentioned and exhibits better concurrence between the measured and the calculated ferrite contents than when using the DeLong diagram. It should be noted that the WRC92 diagram does not take account of the silicon and manganese content which restricts the weldability of weld metals with high-silicon and high-manganese contents (over 8 %). Furthermore, its use should be restricted with nitrogen contents over 0.2 %.

The Schaeffler diagram is the oldest of the diagrams referred to and until now has been widely used for calculation of the ferrite content. It has a broad scope of application but does not allow for the highly austenitising effect of nitrogen.

The Espy diagram attempts to compensate for these weaknesses. Like the Schaeffler diagram it calculates the ferrite content in percent but also allows for manganese contents up to 15 % and nitrogen contents up to approximately 0.35 %.

The DeLong diagram is a modification of the Schaeffler diagram which shows the ferrite content in ferrite numbers up to about 18 FN. The diagram allows for the nitrogen content in calculation and exhibits better concurrence between measurement and calculation than the Schaeffler diagram. It overlaps approximately with the WRC-92 diagram in its applicability.

If the nitrogen content is not known for determining the nickel equivalent then it is possible to assume a content of 0.06 % for TIG welding and manual electrode welding and a content of 0.08 % for gas-shielded welding with solid wire electrodes. Using the WRC-92 diagram it is possible to predict the ferrite number within a range of ± 3 FN in approximately 90 % of the measurements assuming an accurate chemical composition.

Effect of &-Ferrite

The following overview provides a summary of the advantages and disadvantages of δ -ferrite in the austenitic weld metal. In principle the statements apply to the steel material as well.

Depending on the practical conditions of use the δ -ferrite is sometimes undesirable, in most cases beneficial and in some cases even necessary. The reasons for these requirements, which on first sight appear contradictory, are shown in the overview. The consequences of deviations are also highlighted.

Reasons		Consequences of too much or to lis δ -ferrite	ttle
&-ferrite fraction is undesirable requirement for non-magnetic weld metal special corrosion stresses use at very low temperatures use at high temperatures	FN=0 FN<0.5 FN<0.5 FN<0.5	magnetisation selective corrosion loss of ductility phase precipitation	
Iow &ferrite fraction is beneficial high resistance to hot cracking even in thick-walled components service temperatures between -100 and +400°C no unusual chemical stresses	FN=5-15	danger of hot crack formation loss of ductility phase precipitation selective corrosion	FN<5 FN>15 FN>15 FN>15
high & ferrite content is necessary resistance to stress corrosion cracking increase of strength properties compensation for dilution in dissimilar welds	FN=30-75 FN=30-75 FN=15-25	reduced resistance to stress corrosion cracking reduced ductility properties reduced strength properties danger of hot cracks as a result of dilution	FN<30 FN<75 FN<30 FN<15

3.4.18 Heat-resistant Steels

Steels that stand out for their special resistance to the oxidising effect of gases at temperatures above approximately 600 °C are deemed to be creep-resistant. A steel is classified as creep-resistant if it does not exceed 1 g/m²^{sh} on average at the temperature x the weight of metal oxidised and does not exceed 2 g/m²^{sh} at the temperature (x + 50 °C) for a stress duration of 120 h with four interpass cooling processes.

Information and references to scale resistance or highest working temperatures such as those contained in SEW 470 for example should only be used as a reference point. The temperature ranges for use are lower under unfavourable conditions, e.g. in sulphurous or reducing gases, especially with high steam content or with possible settling of corrosive dust. It is also necessary to allow for possible *c*-phase precipitation.

The following table shows the most important creep-resistant steel groups classified according to the crystalline structure.

microstructure	typical steel grade
ferritic	X10CrAl7, X10CrAl13, X10CrAl24
ferritic-austenitic	X20CrNiSi25-4
austenitic	X12CrNiTi18-9, X15CrNiSi25-20, X12NiCrSi36-16

Welding of Heat-resistant Steels

The ferritic chromium steels are joined using predominantly austenitic filler metals or with the same alloy composition as the base depending on the conditions of practical use. A preheat and interpass temperature ranging between 200 and 300 °C is recommended for thicker cross-sections. It is subsequently possible to improve the ductility properties reduced by the formation of coarse grain and carbide precipitations by performing a heat treatment of 700 to 750 °C.

Steels with ferritic-austenitic microstructure are usually welded with filler metals of the same composition as the base without preheating or postweld heat treatment.

Allowance must be made for the constitutional tendency towards hot cracking exhibited by fully austenitic chrome-nickel steels and filler metals. In the temperature range between 600 and 900 °C care must be taken with possible embrittlement due to the precipitation of intercrystalline phases. Filler metals of the same alloy composition as the base are used sometimes although nickel-based filler metals are also used.

3.4.19 Welding of Dissimilar Joints

The subject of welding technology is both extensive and complex if one takes into consideration all the mixed metal welds possible between the most varied types of steels. It is practically impossible to cover every individual combination of materials. This is undoubtedly one of the main reasons why there are hardly any appropriate standards and codes for dissimilar metal welds.

As a result of the situation described the enquiries received in practice by the customer service department for welding technology are very often related to the problems surrounding mixed metal welds. As a consequence of this, basic general rules were drawn up in the form of rough guidelines which contain notes, recommendations and precautions for the selection of filler metals and the compilation of a welding technology. However, basic rules such as these can only be considered valuable if they can be translated into practice with adequate expertise and a basic knowledge of metallurgy.

Generally speaking it should be noted that in many cases when joining different materials it is not possible to select the best possible filler metals and welding conditions for each individual partner material. It is therefore necessary to find suitable compromises.

Selection of the filler metal must be considered as an essential criterion in the fabrication of mixed metal welds. This selection must be made so that where possible the weld metal arising should not be too hard, brittle and susceptible to cracks allowing for dilution with the different materials. In very simple terms, no new and thus indefinable accidental alloy that might consequently require additional considerations may come into being when the weld metal melts on the component. The weld metal properties which exist in the pure weld metal must be retained in principle despite dilution with the different base metals.

The following section highlights in very broad outlines guidelines for the selection of filler metals and suitable welding technology when fabricating mixed metal welds. In this case the structure is only rough since it only deals with groups of materials with examples of type of steels.

Basic Rules for the Selection of Filler Metals for Dissimilar Welds

General basic rules can only be considered valuable if they can be translated into practice with adequate expertise and a basic knowledge of metallurgy. The large selection of differently alloyed steels within the individual alloy groups and the mixed metal welds possible between steels from different alloy groups make it practically impossible to consider every individual combination of materials in the following section.

For this reason it is only possible to specify filler metals for the various material combinations in the form of a rough structure, i.e. only by narrowing down to types steel or groups of steel. The drawback to this method is a certain degree of inaccuracy as it is not possible to take account in each case of different influencing factors that are important in the selection of suitable filler metals. Therefore the recommendation of a filler metal does not claim to be exhaustive. In case of doubt it is recommended that you consult the manufacturer.

Mild Steel – Mild Steel

(e.g. S235JR with S355J2G3)

In practice non-alloy steels of different strengths are joined relatively often. Essentially, in the case of mixed metal welds such as these, only the mechanical property data of the base metals are in the forefront of considerations. Normally filler metals that correspond to the strength properties of the softer base metal are used. However, it should be noted in this case that non-alloy weld metal deposits barely fall below yield point values of 400 N/mm² and tensile strength values of 500 N/mm² due to the fine-grain microstructure. Naturally the choice of coating, flux and powder type must be made depending on the welding procedure to be used allowing for the wall thickness and component stiffness. With increased stiffness and application of stress to a component it is advisable to use basic filler metals and consumables whose metallurgically pure weld metal together with low hydrogen contents ensures high resistance to cracking.

Mild Steel - High Temperature Steel

(e.g. P235G1TH with 13CrMo4-5)

Depending on the material combination, non-alloy filler metals or high-temperature resistant filler metals should be used whereby the latter have a lower alloy content than the high-temperature resistant material of the combination.

With a few exceptions high-temperature resistant steels are air-hardening and therefore require special heat input during welding or subsequent postweld heat treatment. The recommendation regarding this contained in VdTÜV code of practice 451-82/1 should be taken into consideration.

Mild Steel – High Strength Steel

(e.g. S235JR with S460N)

The filler metal is usually matched to the softer base metal.

In the case of great discrepancies between the strength properties of the two materials (e.g. S235JR with S690Q) a filler metal whose strength is between the values of the two base metals should be considered.

Mild Steel – Cryogenic Steel

(e.g. S235JR with 14Ni6)

If a cryogenic steel exhibits up to 3.5 % Ni, it is possible to use both non-alloy filler metals and filler metals of the same or similar composition to the base.

With Ni contents between 5 and 9 % austenitic or nickel-based filler metals should be used. If one of the materials is an austenitic Cr-Ni steel then mainly fully austenitic filler metals of similar composition to the base should be used.

Mild Steel – Tempering Steel

(e.g. S235JR with 42CrMo4)

Tempering steels have only limited weldability, and types with a higher C content should not be used in welded structures. They require special heat input during welding and postweld heat treatment.

Depending on the material combination, non-alloy or low-alloy filler metals should be considered the weld metal of which undergoes an increase in strength due to carburisation from the base metal.

In exceptional cases where postweld heat treatment is not possible, it may be beneficial to use austenitic Cr-Ni filler metals.

Mild Steel – Chromium Steel

(e.g. S235JR with X12Cr13)

Both ferritic and martensitic Cr steels require special heat input during welding and subsequent annealing. As a result the use of nickel-based alloys should be considered (depending on the conditions of use).

Austenitic over-alloy filler metals may also be used if subsequent annealing is not possible and the temperature during use is limited to max. 300 $^\circ\text{C}.$

Mild Steel – Austenitic Steel

(e.g. S235JR with X4CrNi18-10)

When joining steels with very different chemical compositions there is a complex metallurgical problem which it appears can essentially only be solved by compromise. Over-alloy austenitic filler metals should be used.

Material based Selection of Consumables

The most crucial criterion of mixed-metal joints such as these is the choice of filler metal. It must be made allowing for dilution with the different base metals so that the weld metal produced is neither martensitic nor fully austenitic. However, the latter is unavoidable when using nickel-based filler metals. In very simple terms no new and therefore indefinable random alloy may arise on fusing the weld metal to the component that would of necessity give rise to additional considerations being taken into account. The weld metal properties as are present in the pure weld metal deposit must be retained in spite of dilution with the base metal. The main function of filler metals is to enable fabrication of a crack- free and ductile weld between the ferritic constructional steel and the austenitic material. The Schaeffler diagram serves as the most important aid in the selection of filler metals.

For the purposes of weld metal properties care should be taken to keep dilution as low as possible. The use of nickel-based filler metals is necessary in the case of postweld heat treatments or operating temperatures above 300 °C otherwise embrittlement or carbon diffusion must be reckoned with.

High Strength Steel – High Strength Steel

(e.g. S355N with S460N)

In the case of mixed-metal welds between normalised and annealed high-tensile fine-grained constructional steels one should again orient oneself to the softer steel grade with regard to strength when choosing the filler metal.

In the case of partner materials with very different strength properties (e.g. S355N with S690Q) consideration should be given to a filler metal whose strength lies between the two base metals. Otherwise a high jump in strength directly in the weld area could represent an additional weak spot in the component depending on the stress conditions in practical use.

Special requirements, e.g. with regard to low-temperature ductility, must also be taken into account when choosing the filler metal. Due to the huge number of steel grades in existence it is barely possible to provide a concrete assignment of filler metals allowing for all the material combinations possible. Furthermore, this method of proceeding would severely compromise clarity.

High Strength Steel – Austenitic Steel

(e.g. S460N with X4CrNi18-10)

Over-alloy austenitic filler metals should be used.

Nickel-based filler metals should be used in the case of operating temperatures over 300 °C and postweld annealing.

High Temperature Steel - High Temperature Steel

(e.g. 13CrMo4-5 with 11CrMo9-10)

Each combination of materials must be considered separately with regard to choice of filler metal and heat treatment.

Generally speaking a filler metal corresponding to the partner material with the lower alloy is chosen.

Unless there is an overlapping annealing range, the postweld heat treatment represents a compromise between the optimum annealing temperatures of the materials concerned. The recommendations contained in VdTÜV Code of Practice 451-82/1 must be taken into account.

High Temperature Steel – Austenitic Steel

(e.g. 13CrMo4-5 with X4CrNi18-10)

Only use over-alloy austenitic filler metals under certain conditions.

Selection Guide

Nickel-based filler metals should be used in the case of operating temperatures over 300 °C and postweld annealing. With the exception of the non-alloy grades and 16Mo3, high-temperature steels are air-hardening. In certain cases this necessitates postweld annealing in addition to suitable heat input during welding and therefore the use of nickel-based filler metals.

Annealing treatments may adversely affect the properties of austenitic steels. Therefore, where possible the welding edges of the high-temperature material should be clad and subsequently annealed; only then should the joint be welded.

Cryogenic Steel – Cryogenic Steel

(e.g. S225NL with 14Ni6)

Filler metals must be specified allowing for the required level of low-temperature ductility. Normally for mixed-metal joints with steels up to 3.5 % Ni a filler metal that corresponds to one of the two partner metals is adequate.

Austenitic (possibly also nickel-based) filler metals should be considered for nickel contents of 5 and 9 % respectively.

Material combinations with austenitic Cr-Ni steels are joined using fully austenitic filler metals with a similar alloy composition to the base or nickel-based filler metals.

Cryogenic Steel – Austenitic Steel

(z. B. 14Ni6 mit X4CrNi18-10)

Filler metals must be specified allowing for the required level of low-temperature ductility.

Consideration should be given to predominantly over-alloy fully austenitic filler metals.

Tempering Steel – Tempering Steel

(e.g. 25CrMo4 with 42CrMo4)

Tempering steels are only weldable to a limited extent; weldability deteriorates as the C content or alloy content increases. They require special heat input during welding as well as postweld annealing. There are hardly any filler metals with the same alloy composition as the base. Selection is made according to the specified strength properties taking into account the heat treatment necessary. In many cases the practical conditions of use allow the employment of softer filler metals as a result of which it is mainly nickel-based types that are used.

The use of austenitic Cr-Ni filler metals may only be taken into consideration on condition that it is not possible to perform postweld heat treatment.

Tempering Steel – Austenitic Steel

(e.g. 42CrMo4 with X4CrNi18-10)

Limited weldability and necessary postweld heat treatment require the use of nickel-based filler metals, with the result that the procedure of cladding the edges, annealing and only welding the reafter is to be preferred where possible.

Austenitic over-alloy filler metals may also be used but only where it is not possible to perform annealing and in this case an operating temperature of max. 300 °C may not be exceeded.

Austenitic Steel – Austenitic Steel

(e.g. X4CrNi18-10 with X6CrNiMoTi17-12-2)

It is recommended that the filler metal be chosen in line with the chemical composition of the partner material with the higher alloy.

Austenitic Steel – Chromium Steel

(e.g. X4CrNi18-10 with X12Cr13)

Only use over-alloy austenitic filler metals under certain conditions.

Both ferritic and martensitic Cr steels have only limited weldability. They require special heat input during welding and postweld heat treatment.

The specification of austenitic filler metals must therefore be made allowing for their tendency towards embrittlement and in certain cases may necessitate the use of nickel-based filler metals.

Annealing treatments may also adversely affect the properties of austentitic steels. The weld edges of the chrome steel should therefore be clad with two layers and then annealed; the joint should only be welded thereafter.

Austenitic Steel – Heat Resistant Steel

(e.g. X4CrNi18-10 with X12CrNi25-21)

Mainly filler metals that correspond in respect of the alloy to the high-temperature resistant partner material should be used.

Nickel Base Alloy – Nickel Base Alloy

(e.g. Alloy C 625 with Alloy C 22)

Each combination of materials must be considered separately with regard to the choice of filler metal.

The filler metal should correspond in respect of the alloy to the partner material with the better ductility properties. For higher corrosion stress conditions the filler metal should be matched to the higher Mo-alloy base metal or should be over-alloy welded if necessary.

Nickel Base Alloy – Mild Steel /High Temperature Steel / High Strength Steel /Cryogenic Steel / Tempering Steel

(e.g. C 276 with S235JR /13CrMo4-5 /S460N /14Ni6 /42CrMo4)

There is a whole series of nickel-based filler metals with different alloys available for mixed-metal joints such as those referred to above. In many cases a filler metal of the same or similar composition to the nickel-based parent metal is used.

Nickel Base Alloy - Chromium Steel / Austenitic Steel / Heat Resistant Steel

(e.g. C 276 with X12Cr13 /X4CrNi18-10 /X12CrNi25-21)

The conditions of use should be taken into consideration when choosing the filler metal. Normally a filler metal corresponding to or of similar composition to the nickel-based alloy is used.

Manganese Steel – Mild Steel

(e.g. X120Mn12 with S235JR)

The use of austenitic Cr-Ni filler metals with increased Mn content or over-alloy types is recommended.

Manganese Steel – Austenitic Steel

(e.g. X120Mn12 with X4CrNi18-10)

Austenitic filler metals with increased Mn content or over-alloy types are recommended.

Grey Cast Iron – Mild Steel

(e.g. GGG-40 with S235JR)

Only cold cast iron welding may be taken into consideration. The filler metals are of different composition to the base metal and are Ni-Fe-based.

Grey Cast Iron – Austenitic Steel

(e.g. GGG-40 with X4CrNi18-10)

Only cold cast iron welding may be employed. Either Ni-Fe-based types or Cr-Ni-based types with increased Mn content are used.

Selection Guide

3.5. Welding Technology Details

Overview

A correct welding technology is the essential prerequisite for the fabrication of welds which meet requirements. This section does not go into all the possible facets in detail but highlights several points that have often been the subject of enquiries made by welding-engineering staff. More extensive treatment of this subject would far outstrip the bounds of this manual.

Contents

3.5.1.	TIPS FOR PREHEATING	88
3.5.2	TIPS FOR TACK WELDING	90
3.5.3	TIPS FOR AVOIDING WELDING DEFECTS	91

3.5.1 Tips for Preheating

Hardness Increase During Welding

Due to the fact that during welding the base metal is always heated to above Ac1 or Ac3 respectively in specific areas of the heat-affected zone, there is always a danger with hardenable steels of hardness increase and as a result crack formation. The tendency towards hardness increase with non-alloy and alloy steels depends in particular on the carbon content but also on the content of other alloys. During welding the speed of cooling from the austenitic range may be so great that it corresponds approximately to hardening in water.

The cooling speed becomes greater

- the less heat is inputted during welding,
- the thicker the material is,
- the colder the material is.

If the critical cooling speed is reached, one must reckon with the formation of hardened microstructures , e.g. martensite. The level of the hardness values is largely determined by the carbon content.

The hardness increases linear to the rise in carbon content up to approximately 0.45 % C to a value of around 650 HV. The impact energy in the hardened steel lies above 78 Joule up to 0.12 % and above this drops off sharply. Above 0.2 % C it lies below 32 Joule. From this one can see that the value of 0.2 % C approximately represents the limit up to which steels can be welded without preheating and without the need for special precautions.

If the filler and cover passes are then welded over this root pass, the zones lying below them are normalised or tempered and the hardness peaks next to the root weld are reduced. However, if cracks have already occurred beforehand in the transition zone due to postweld hardness increase, then they also remain after applying the cover passes to the weld and may possible lead to fracture of the welded component.

In zones hardened in this way high stresses are set up due to the effect of welding shrinkage because the material is prevented from reducing them by means of plastic deformation. Over and above this a multi-axis stress condition is set up in this area particularly in the case of thick crosssections which is promoted still further due to martensite formation taking place with increase of volume. Cracks occur in the transition area if the stresses reach the cohesion streight.

Hydrogen may also be significantly involved in the occurrence of these underbead cracks. If possible a hardness value of 350 HV should not be exceeded in order to prevent these underbead cracks with some degree of certainty.

Accurate knowledge of the hardening processes in the heat-affected zone of the steel is especially important to prevent underbead cracks and for the safety of a welded structure for the reasons mentioned above. It also appears to be very important prior to welding to be able to predict a possible hardness increase for a specific steel with a known chemical composition.

Preheating the Material

The preheat temperature is the temperature up to which the workpiece must be brought in the region around the current welding area prior to laying the first bead.

Reasons for Preheating

The heat inputted into the workpiece during welding and thus the highest temperature drop that occurs in the zone between the weld metal and the unaffected base metal may lead to changes in the material (danger of crack formation). Preheating reduces the temperature drop and ensures slow cooling. This means that the critical cooling speed which can lead to adverse structural changes is not reached (low or no hardness increase – no danger of cracking).

Furthermore, there is less shrinkage due to the smaller temperature drop and as a result less distortions occur. The residual welding stresses are reduced and the hydrogen has more time available at higher temperatures for post-alloy diffusion (lower hydrogen contents).

Steel should always be preheated for welding if critical structural changes are to be anticipated. This also applies to tack welding. The necessity for preheating is the result of the described tendency towards hardness increase of certain steels in the heat-affected zone. After any interruption of the welding process it is necessary to re-attain the preheat temperature before starting welding again. However, the rule applicable is that above all critical welds should be welded in one pass that is without interruption.

Level of Preheat Temperature

The optimum preheat temperature depends on numerous factors. These are for example the chemical composition of the base metal, the welding procedure, the diameter and type of filler metal, the welding speed, the workpice thickness, the position of the weld joint on the component, the possibility of heat dissipation, the type of construction, external temperature, etc. Therefore, it is hardly possible to specify values that are generally applicable. In this case "optimum preheat temperature" is understood to be the temperature that is just high enough so that the critical cooling temperature is not reached. A temperature that is too low increases the risk of cracking, temperatures that are too high are uneconomical and may have an adverse effect on certain steel grades (e.g. high-tensile fine-grained constructional steels).

Performing Preheating

Once the correct preheat temperature has been determined, the welding area in question must be preheated correspondingly. Allowance must also be made for the fact that the heat migrates into the cold metal. The heat supply must be great enough for the specified temperature to be reached over the entire cross-section that is both front and back.

With relatively short welds preheating is usually done using the welding torch. Special torches with air intake or fuel gas/compressed air torches are also used. In addition to preheating in the oven there is also the possibility of inductive preheating.

The base metal should exhibit the preheat temperature at a distance of 75 mm in each direction.

Checking the Preheat Temperature

Checking the specified preheat temperature is important since it has been shown time and again in practice that the welder relies more on his instincts. For a large number of cases measuring with thermo crayons (temperature indicating crayons) is adequate. However, for critical welds accurate temperature measurement is necessary usually with recording of the temperature curve. In addition to the thermo crayons there are also adhesive thermometers and contact thermometers as well as devices with which one can measure the preheat temperature without contact and record its progress.

3.5.2 Tips for Tack Welding

Tack welds should not be thinner than specified for the root weld and should be subject to the same quality requirements for welding as are also applicable for the root weld. The length of the tack weld should not be less than four times the thickness of the thicker of the parts to be joined. For workpiece thicknesses over 50 mm or for high-tensile materials consideration should be given to increasing the length and thickness of tack welds. This may also include a two-pass weld. Attention should also be paid to the use of lower-tensile filler metals when welding higher-alloy steels.

For joints that are supposed to be welded using automated or fully-mechanised processes, it is necessary to include the conditions for fabricating the tack welds in the welding procedure.

If a tack weld is to be included in a welded joint, then the shape and quality of the tack should be suitable for incorporation into the final weld. It should be fabricated by qualified welders. The tack welds should be free from cracks and prior to final welding should be cleaned thoroughly. Tack welds that exhibit cracks should be grooved out. However, crater cracks may also be removed by grinding. All tack welds that are not to be included in the final weld should be removed.

Any necessary aids that are temporarily attached for the construction or assembly of parts with fillet welds should be designed so that are can easily be removed again. The surface of the component must carefully be ground smooth again if the aid is removed by cutting or chiselling. It is possible to demonstrate by means of a dye penetrant test that the metal is not cracked in the area of the temporary weld.

3.5.3 Tips for Avoiding Welding Defects

Defects in welds are an unpleasant phenomenon since to some extent they are the cause of extremely cost-intensive weld dressing. In many cases defects and damage may be prevented by taking simple precautions. Measures such as these may be implemented at various stages of planning and fabrication. They may range from choosing the best possible filler metal to mastery of the welding procedure and regular maintenance of the power source.

This subsection does not provide a complete overview of possible welding defects but limits itself to types of defects that can be prevented by relatively simple measures. In addition to a description of the defects and its causes, the following tables also contain possible countermeasures that may have a favourable effect. Refer to standards, welding guidelines (e.g. of the DVS) and other literature for more detailed information.

Occurrence and Prevention of Defects

The following list provides explanations for possible unfavourable phenomena when welding steels and presents measures to prevent these defects. Basically speaking most of the phenomena listed can be reduced by optimising the chemical composition of steel and filler metal.

The list is not ranked according to the importance of the defects described.

Defects and Causes	Countermeasures
HYDROGEN-INDUCED CRACKS	
During welding atomic hydrogen diffuses into the weld metal and into the heat-affected zone. During and after cooling this may lead to	Use filler metals that lead to a very low hydrogen content in the weld metal. Re-dry the filler metal.
crack formation especially in areas of higher internal stresses and high dislocation density (e.g. at grain boundaries in martensite)	Prevent the application of high stress. Preheat the joint.
(c.g. a gran ooundanoo in marchaid).	Use low-hydrogen postweld annealing. Reduce hardness increases in the weld metal and the heat-affected zone.
DUCTILITY TOO LOW	
Generally speaking the ductility of specific parts of the heat-affected zone compared with the base metal is adversely affected by coarse grain formation or hardness increase.	Select the optimum welding temperature cycle.
SOLIDIFICATION CRACKS	
Solidification cracks are mainly linked with trace elements such as sulphur and phosphorous. These may be precipitted in the centre of the bead during solidification. They are the result of the formation of low fusion films around the grain boundaries. These films reduce the deformability of the weld metal and longitudinal cracks may form due to shrinkage stresses on solidification of the weld metal.	Modify the welding parameters so that the indi- vidual beads become broader and flatter, i.e. reduce the depth to width ratio of a bead. Reduce dilution with the base metal. Reduce the welding speed. Note: solidification cracks rarely occur in steels with low proportions of sulphur and phos- phorous.

Selection Guide

Defects and Causes	Countermeasures	
TERRACE FRACTURES		
If no special measures are taken during steel production, it is possible for the ductility of flat products or sections to be distinctly smaller in the direction of thickness than in the longitudinal direction. This is determined by the presence of non-metallic inclusions that are elongated by rolling. Shrinkage stresses in the weld metal that act in the direction of thick- ness may be the reason why these inclusions open up and as a result fractures occur parallel to the surface of the sheet metal. Highly stressed tee butt welds and cross butt welds have a tendency towards this.	Use steels with specified properties in the thickness Avoid sensitive arrangements of welds. Optimise the sequence of weld beads Use filler metal with the lowest permissible strength.	
CRACKS DUE TO STRESS-RELIEVE ANNEALING		
Carbide or nitride precipitations may occur during stress-relief annealing if the stress-relief annealing and/or the steel composition are unfavourable. This may reduce the steel's deformability to such an extent that the stress reduction leads not only to plastic deformations but also to the formation of cracks.	Reduce the stress concentration by grin- ding the bead transitions. Reduce the proportion of coarse-grain in the heat-affected zone by a correct sequence of weld beads. Use an optimum procedure for heat treat- ment.	
CORROSION – GENERAL ATTACK		
Differences in the chemical composition, grain size and degree of stress between the weld and the base metal may lead to different rates of corrosion. In most cases the weld and the heat-affected zone are attacked in preference.	Choose a suitable filler metal (sometimes with a higher alloy than the base metal) Reduce residual welding stresses Proper dressing of welds (e.g. pickling).	
STRESS CORROSION CRACKS		
A critical combination of stress, microstructure and surrounding medium may lead to this form of corrosion as a result of which all three influencing factors must always be present at the same time.	Prevent stress concentrations. Reduce stress in all welds.	

Occurrence and Prevention of Pores

Unlike the phenomena mentioned above, it is only possible to influence pores during welding to a limited extent by means of the chemical composition of the base metal and the weld metal. Basically there are two possible types of pore formation:

In the liquid condition steel dissolves gases such as hydrogen, nitrogen and oxygen. In metallurgical pore formation dissolved gases are precipitated as gas bubbles (H₂, N₂ CO, O₂) during the solidification process due to the jump in solubility from the liquid to the solid phase. If the solidification speed is greater than the speed at which the gas bubbles up, then the bubbles are entrained "frozen") and are left behind in the weld as predominantly spherical pores. Depending on the amount of gas available, these pores may also be present in an elongated form. Gas bubbles occur at the phase boundary between liquid and solid and in slag particles floating in the molten weld pool.

Mechanical pore formation occurs if gaps or voids filled with gases, e.g. air, are welded over. If gases that expand due to welding heat are unable to escape completely in another direction, a pressure builds up that is reduced by the formation of bubbles in the liquid weld pool. This effect may be intensified still further by gas-forming substances in the gaps and voids (moisture, greases and oils, components of coating materials, metallic coatings). As a rule mechanically formed pores are linked to the voids that led to their formation.

defects and causes	countermeasures	
METALLURGICAL PORES		
High nitrogen contents in the base metal and the filler metal	Use filler metals matched to the base metal with an increased solvent power for nitrogen (e.g. increased Cr and Mn contents in aus- tenitic alloys)	
Increase in nitrogen content due to plasma cuts	Grind the cut edge	
Inadequate shielding of the arc area against the atmosphere due to: - arc being too long - wrong angle of electrode inclination - damaged electrode coating - arc blow effect Shielding gas flow rate too low due to: - setting being too low - leaking line	Weld with short arc Weld with steep inclination Take care to use undamaged and centric electrode coating Take care to ensure symmetrical material connection, weld with alternating current if possible Correct setting accordingly Look for and remedy leaks Correct assignment of capillaries and pres-	
- reaking line - capillary hole too small - preliminary pressure too low for pressure regulator	Cylinder and line pressure must correspond to required preliminary pressure of pressure regulator.	
Inadequate gas shielding due to: - draft from open windows, doors, etc. - insufficient gas flow at beginning or end of welding - gas nozzle gap too large - eccentric exit of wire electrode - wrong shape of gas nozzle - wrong position of gas nozzle	Prevent drafts, position extraction system differently Allow gas to pre-flow or post-flow longer as appropriate Reduce gas nozzle gap Align wire electrode better, arrange contact tube centrically Match gas nozzle shape to weld preparation If possible arrange gas nozzle downstream of torch seen in direction of welding.	
Turbulence due to: - shielding gas flow rate being too high - spatter on gas nozzle or contact tube - turbulent arc	Reduce gas flow rate Clean gas nozzle and contact tube during welding breaks Remedy problems with wire feed, increase voltage with stuttering wire electrode, ensure good current transition in contact tube, per- fect bonding to earth, remove slag from beads welded previously.	

defects and causes	countermeasures	
Thermal up-current or chimney effect due to: - weld pool temperature being too high - workpiece temperature being too high - unimpeded draft in pipelines Moisture due to: - moist electrode coating (increased H contents) - condensation on wire electrode - moisture on base metal - leaking water-cooled torch - condensation on shielding gas nozzle	Reduce size of weld pool Reduce preheat or interpass temperature (if possible metallurgically) Seal pipes Re-dry electrodes according to manu- facturer's instructions Equalize temperature of filler metal, store in a dry place Dry weld area by skin-drying or preheating Look for leaks and remedy, dry wire trans- port hose in case water has got in Check torch cooling for excess capacity Weld over arc strikes	
Incorrect handling of basic electrodes	Use basic electrode with higher Mn content	
Rounding of segregation zones	Reduce penetration by decreasing the arc power or increasing the welding speed.	
Rusty and scaly surfaces	Clean weld area prior to welding	
MECHANICAL PORES		
Inclusion of air in the area immediately surrounding the weld	Create opportunities for entrained air to escape e.g. increase welding gap, use butt welds instead of fillet or lap welds	
Moisture in welding gap, possibly chemically bonded to rust	Remove moisture by preheating, remove rust or layers of scale, use butt welds instead of fillet or lap welds	
Layers of grease in welding gap, present either as contamination or to prevent corrosion or applied intentionally for lubrication purposes	Remove grease using solvents, increase welding gap and dry well, use butt welds instead of fillet or lap welds	
Metallic coatings (e.g. tin, zinc)	Comply with recommended layer thicknes- ses, remove metal coatings if necessary, increase welding gap, use butt welds instead of fillet or lap welds	
Coating materials (e.g. production coatings)	Choose favourable coating material, comply with prescribed coating thickness, remove any layers that are too thick if necessary, ensure good degasification in the gap, use butt welds to replace fillet or lap welds	

Overview

It is in the nature of a competitive economy that every trader involved works at achieving the best possible ratio between the profits of his production output and the expenditure it requires. Reduction of costs is a complex task that affects the most varied areas of the company.

This section attempts to provide an overview in a very brief form of the factors that affect the economic viability of a weld and offers a simple calculation formula that makes it possible to make a rough estimate of the filler metal requirements and the welding time.

Contents

4.1 ECONOMIC ASPECTS OF WELDING	2
4.2 CONSUMABLE CONSUMPTION AND WELDING TIME	5

4.1. Economic Aspects of Welding

4.1.1 Efficient Production of Welded Joints

Consideration must be given to the most varied criteria in component design to achieve low-cost production of a component. Above all these include designing the component with a view to function, stress, material and production. If the component needs to be designed as a welded structure, there are additional factors, which have an impact on the efficiency audit such as the material and finishing costs of the individual parts and welding costs.

It is not possible to give any generally applicable instructions and solutions for low-cost construction of welded components although one can define a series of individual basic rules that make the work easier and save costs. The following list details such rules although the sequence does not necessarily correspond to the importance of these rules.

- · Dimension fillet welds correctly
 - Keep fillet welds as thin as possible Take note of fillet weld formation, use deeper penetration Provide for thin and long fillet welds Provide for double fillet welds where possible
- · Ensure accessibility
- Use economic weld shapes on butt weld Deposit as little weld metal as possible Take notice of welding procedure Check weld preparation angle for MAG welding Check effect of material on weld shape Allow for back welds
- Utilise potential cost reductions in production
 Specify standard operating times
 Analyse times and look for possible ways to make savings
- Reduce the actual welding time

Use more current with same electrode diameter Use thicker electrodes Use other types of electrodes Use other welding consumables Use procedures with higher output

- · Choose more favourable welding position
- Mechanise Production

Partial mechanisation of the welding procedure used Replace the existing procedure with a mechanised welding procedure Use special welding machines Adapt weld preparations

Use weld pool backings

- · Do not deposit more weld metal than necessary
 - Assemble to exact size Produce more accurate flame cuts Monitor weld thicknesses and weld reinforcements
- Reduce downtimes
 - More efficient organisation of production More efficient organisation of the workplace Better information provided for welders
- Use jigs
- · Prevent or reduce distortion
 - Plan allowance for distortion, pre-bend Pre-tension Draw up welding sequence schedule Check weld shape and weight of weld Use procedures with less distortion Weld from both sides simultaneously Use thicker sheet metal
- Reduce process-dependent interruptions and weld dressing Shorten process-dependent interruptions Make slag removal easier Reduce spatter formation by choosing correct type of electrode Reduce spatter formation by choosing correct shielding gas Prevent spatter by using pulsed arc technique with mixed gas shielding Set up central gas supply
- · Reduce malfunctions in units

Purchase quality products Operative preventive maintenance Maintain and care for unit regularly Take notice of operating instructions

Save energy costs

Reduce cable losses Switch off units during breaks Use energy-saving procedures Buy energy-saving power sources

· Train and motivate welders

Improve qualifications Set up performance-related wage system as motivation Get rid of noxious environmental influences

Take note of costs and quality

Do not demand higher quality than necessary Do not produce higher quality than needed Save unnecessary costs by working conscientiously Take notice of the effect of defects during weld preparation on the weld quality

· Design with a view to testing and examination

4.1.2 Checklist for Cost Reduction

1. Reduce the quantity of weld metal

- a) Reduce the number of welds
- b) Dimension weld cross-sections more accurately
- c) Dimensions weld lengths more accurately
- d) Weld interrupted welds (check permissibility)
- e) Restrict tolerances of fillet weld dimensions
- f) Use deeper penetration
- g) Assemble to more correct size
- h) Weld butt welds from both sides (double-vee weld instead of vee weld)
- j) Reduce weld preparation angle (depending on procedure)
- k) Change groove shape (U-groove butt weld or square-edge butt weld instead of vee weld)
- I) Produce more accurate flame cuts, reduce flame cutting distortion
- m) Reduce sheet metal thicknesses by higher weld quality (weld strength factor)

2. Reduce welding times

- a) All measures listed in point 1
- b) Work with higher deposition efficiency (more current, thicker electrode, high-performance electrode, other shielding gas
- c) Use other welding procedure with higher output
- d) Weld in more favourable positions (if necessary use jigs or positioning devices)
- e) Use weld pool backing (provide for structurally or use as production aid)
- f) Mechanise
- g) Improve dissipation of welding heat (e.g. in fully automated thin-sheet welding)
- h) Train and motivate welders

3. Reduce downtimes and refit times

- a) Organise production more efficiently (shorten absences and waiting times)
- b) Organise welder's workplace more efficiently
- c) Inform the welder more effectively
- d) Ensure good access to the weld
- e) Get rid of noxious or performance-impeding environmental influences
- f) Use jigs and fixtures
- g) Mechanise
- Prevent or reduce distortion (pre-bend, pre-tension, draw up welding sequence schedule, use procedures with less distortion, weld both sides simultaneously)
- Reduce process-dependent interruptions and weld dressing (make slag removal easier, reduce spatter formation, reduce adhesion of spatter, set up central gas supply)
- Reduce malfunction times (purchase quality, operate preventive maintenance, maintain and care for unit regularly, take notice of operating instructions, train and motivate welders)

4. Do not waste energy and consumables

- a) Save energy (reduce cable losses, switch off unit during breaks, used energy-saving procedures and units)
- b) Be economical with consumables (do not leave electrode stumps too long, prevent gas losses, watch consumption of spare and wear parts)

5. Monitor quality

- a) Avoid excessive requirements
- b) Prevent defects and quality deficiencies

4.2. Consumable Consumption and Welding Time

4.2.1 Calculation of Electrode Consumption

Calculation Formula

For the practical welder it is important to be able to estimate the requirement for stick electrodes or other filler metals quickly, easily and accurately enough. For users who use a PC for their daily work Böhler Welding's WELCOME software program (Welding Consumables and Materials Expertise) is the simplest solution as it permits flexible calculation of the weight of weld metal for around 50 different weld shapes depending on the welding procedure and quality requirements.

Since not every user has a PC or laptop at his disposal the following pages illustrate a simplified method which is intended above all to make an initial estimate possible. An accurate calculation is not possible using generally applicable tables as the tables would become too complicated and therefore unmanageable.

The following approach may be used as the calculation formula:

х	Factor for divergent stub length
x	Factor for divergent metal recovery
x	Factor for divergent electrode dimension
/	0.01894 kg/pcs. = weight of core metal rod deposited (ø3.2/350, stub 50 mm, metal recovery 100%)
=	Reference value for the total weight of the weld
x	Allowance for back welding (if necessary)
x	Factor for the effect of the welding position (weld reinforcement)
	Weight of weld without weld reinforcement

The individual lines of the calculation formula are explained in a little more detail in the following sections and are provided with summaries in the form of tables. The method of proceeding is demonstrated briefly at the end of the section using a practical example.

Weight of Weld

The following tables provide an overview of the weight of the weld for different welding procedures with different types of welds. The weld shapes correspond to the specifications of the standard. Recommended diameters for rods and electrodes should only be considered as reference values. The data will be too high above all in the out-of-position welds. The weights of weld metals correspond as they only relate to the cross-section to be filled.

reference values for gas welding of flat-position joints (one side, without backing)

thickness mm	edge preparation	air gap mm	rod diameter mm	deposition rate kg/h	weight of joint kg/m	welding time min/m
0.8		0	1.5	0.17	0.024	8.5
1.0		0	2.0	0.19	0.024	7.6

thickness	edge preparation	air gap	rod diameter	deposition rate	weight of joint	welding time	
mm		mm	mm	kg/h	kg/m	min/m	
1.5	1	1.5	2.0	0.25	0.042	10.0	
2.0	1	2.0	2.0	0.25	0.048	11.5	
3.0	1	2.5	2.5	0.36	0.074	12.3	
4.0	1	3.0	3.2	0.70	0.17	14.5	
5.0	1	4.0	3.2	0.74	0.265	21.5	
6.0	V 60°	3.0	3.2	0.80	0.35	25.5	

reference values for shielded manual arc welding of butt welds (without backing, flat)

thickness mm	air gap mm	number of layers	electrode dimension mm	deposition rate kg/h	weight of joint kg/m	welding time per layer min/m
1.5	0	1	2.5/250	0.5	0.03	3.6
2.0	0	1	2.5/250	0.61	0.036	3.5
3.0	2	1	3.2/350	0.53	0.064	7.25

For double-vee welds it is possible to find a usable reference value for back welding on the root side of the weld by doubling the corresponding vee weld values of half the sheet thickness and adding the weight of the weld. Back welding on the root side of the weld is assessed with approximately half the weight of the root for sheet thicknesses under 8 mm and the simple weight of the root for thicker sheets.

reference values for shielded manual arc welding of fillet welds (one side, horizontal)

thickness a mm	number of layers	electrode dimension mm	deposition rate kg/h	weight of joint kg/m	welding time per layer min/m
3.0 4.0	1	3.2/350 5.0/450	1.19 1.75	0.085 0.145	4.3 5.0
5.0	1	6.0/450	2.14	0.21	5.9
6.0	3	4.0/450+	1.+2.1: 1.38	1.+2.l: 0.19	1.+2.: 8.3
		3.2/350	3.1: 0.88	3.1: 0.11	3.: 7.5
7.0	3	4.0/450	1.+2.l: 1.38	1.+2.l: 0.31	1.+2.: 13.5
8.0	3	4.0/450	1.+2.l: 1.38 3.l: 1.25	1.+2.l: 0.37 3.l: 0.18	1.+2.l: 16.1 3.l: 8.6
10.0	3	4.0/450	1.42	1.1: 0.29 2.1: 0.31 3.1: 0.25	1.l: 12.2 2.l: 13.1 3.l: 10.5

I ... layer

reference values for shielded manual arc welding of flat vee-welds of plates

thickness	ace/gap	number of layers	electrode dimension	deposition rate	weight of joint	welding time per layer
mm	mm		mm	kg/h	kg/m	min/m
4.0	2/1	2	r 2.5/250	r 0.43	r 0.08	r 11.2
			c 3.2/350	c 1.2	c 0.09	c 4.5
5.0	2/1	2	r 2.5/250	r 0.48	r 0.085	r 10.6
			c 4.0/450	c 1.41	c 0.105	c 4.5
6.0	2/1	3	r 2.5/250	r 0.52	r 0.08	r 9.2
			f,c 3.2/350	f,c 1.24	f+c 0.14	f+c 6.8
7.0	2.5/1.5	3	r 3.2/350	r 0.75	r 0.14	r 11.2
			f.c 4.0/450	f.c 1.38	f+c 0.22	f+c 9.2

thickness	face/gap	number of layers	electrode dimension	deposition rate	weight of joint	welding time per layer
mm	mm		mm	кg/n	кg/m	min/m
8.0	3/2	3	r 3.2/350 f 4.0/450	r 0.75 f 1.42	r 0.16 f 0.13	r 12.8 f 5.5
			c 5.0/450	c 1.75	c 0.14	c 4.8
9.0	3/2	3	r 3.2/350	r 0.75	r 0.14	r 11.2
			2f,c 5.0/450	f,c 1.88	f+c 0.37	f+c 11.8
10.0	3/2	4	r 3.2/350	r 0.75	r 0.15	r 12.0
			3f,c 5.0/450	f.c 1.88	f+c 0.47	f+c 15.0
12.0	3.5/2	5	r 3.2/350	r 0.75	r 0.17	r 13.6
			3f,c 5.0/450	f,c 1.93	f+c 0.74	f+c 23.0
15.0	3.5/2	5	r 3.2/350 3f,c 5.0/450	r 0.81 f,c 2.1	r 0.15 f+c 0.91	r 11.1 f+c 26.0

reference values for shielded manual arc welding of flat vee-welds of plates

r .. root pass, f .. filler layer, c .. cap layer

For double-wee welds it is possible to find a usable reference value for back welding on the root side of the weld by doubling the corresponding vee weld values of half the sheet thickness and adding the weight of the weld. Back welding on the root side of the weld is assessed with approximately half the weight of the root for sheet thicknesses under 8 mm and the simple weight of the root for thicker sheets.

Effect of the Welding Position

The welding position has different effects on the execution of a weld. It is not possible to disregard the welding position for calculating quantities as in affects the weld reinforcement. When estimating time effects are to be anticipated due to higher downtimes such as cleaning, electrode replacement, lower current intensities, etc.

The following tables provide rough reference values in the form of multipliers which may be used to adapt the weight of the weld for horizontal position from the first determination.

factors for divergent welding positions - weight								
PB PA PG PE PF PC								
fillet weld	1.0	0.95	1.0	1.1	1.15	1.15		
	factors	for divergent	welding posi	itions - weldi	ng time			
vee-weld fillet weld	PB 1.0 1.0	PA 1.0 0.95	PG 1.1 1.15	PE 1.87 1.65	PF 1.5 1.43	PC 1.2 1.1		

The values highlighted correspond to the reference calculation.

Proportion of Weld Metal for Back Welds

When deciding on a specific weld preparation one should not forget back welding if it is necessary for quality reasons. There are certain reference points for the consumption of filler metal and the work time required for back welding. The following list is based on practical values that were gained from experience in the grooving out of weld roots without major defective parts of the weld.

The additional consumption is specified as a multiplier for the weight of the weld without back welding. The angle information refers to the weld preparation angle or the angle of bevel preparation for U-groove welds.

	\	vee-weld	t t	dou	uble-vee-	-weld	U-g	roove v	veld
thickness		α			α			β	
mm	50°	60°	90°	50°	60°	90°	8°	10°	15°
611	1.32	1.27	1.15						
1116	1.24	1.19	1.11						
1620	1.21	1.18	1.10						
2130	1.18	1.14	1.08						
20				1.26	1.21	1.12	1.18	1.17	1.16
30				1.17	1.14	1.08			
40				1.15	1.12	1.07	1.10	1.09	1.08
60				1.10	1.08		1.06	1.05	1.04
80							1.05	1.04	1.04
90				1.07	1.055				
100							1.035	1.03	1.025
120				1.04	1.03				

Allowance for Divergent Electrode Dimensions

Naturally the core metal rod deposited per electrode changes if other electrode dimensions are used for performing a weld, i.e. a considerably higher number of thinner electrodes will be required than of thicker electrodes to fill the same weld volume.

A stub loss of 50 mm was taken into account for the following table and this applies to all dimensions. The metal recovery is 100 % for all dimensions.

diameter mm	length mm	allowance factor
1.5	250	6,83
2.0	250	3,84
2.0	300	3,07
2.5	250	2,46
2.5	300	1,97
3.2	300	1,20
3.2	350	1,00*
3.2	450	0,75
4.0	350	0,64
4.0	450	0,48
5.0	450	0,31
6.0	450	0,21

* reference for the approach used

Allowance for Divergent Metal Recovery

The metal recovery of a stick electrode is the ratio of the weight of weld metal deposited to the weight of core rod deposited. It depends on the type of electrode (e.g. contribution of metal flux powder from the electrode coating), the diameter of the electrode (usually somewhat higher with larger diameters), the welding current (increasing or decreasing slightly with the current depending on the type of coating) and the welding position (different spatter and burn-off losses).

In practical use it is sufficient to calculate using the multipliers in the following table. The table allows for standard classification in accordance with EN and the type of coating if greater deviations are to be reckoned with.

Efficiency and Calculation

code acc. EN	type of coating	allowance factor
1 and 2	С	1.25
	R, RC	1.11
	RR	1.05
	В	1.0**
3 and 4	R	0.91
	В	0.87
5 and 6	RA, RR, B	0.71*
7 and 8	RA, RR, B	0.56*

* With high-performance types Böhler Welding's brand designation provides a reference to the actual metal recovery. The multiplier should be corrected accordingly (e.g. 0.62 for FOX HL 160 Ti).

** Reference for the approach used

Allowance for Divergent Stump Losses

When determining the number of electrodes from the required weight of weld metal, allowance must also be made for the electrode stubs in addition to the losses included in metal recovery. The following table shows that with regard to the electrode requirement for a specific quantity of weld metal, the varying stub losses for which the welder is responsible have a greater effect on the calculation than variations in the metal recovery of a specific type of electrode.

In the case of stub lengths allowance must be made for the fact that the welder is not always wholly able to influence them. For example restricted access to the weld may easily lead to stub lengths over 80 mm. In this case the designer is responsible for ensuring good access. Out-of-position welds also result in longer stubs than welds in the gravity position.

diameter	length	allowance factor for different stub length				
mm	mm	40	50	60	70	80
1.5 2.0	250 250	0.95 0.95	1.00 1.00	1.05 1.05	1.11 1.11	1.18 1.18
2.0 2.5	300 250	0.96 0.95	1.00	1.04 1.05	1.09 1.11	1.14 1.18
2.5	300	0.96	1.00	1.04	1.09	1.14
3.2	450 250	0.97	1.00	1.03	1.07	1.11
4.0	450 450	0.98	1.00	1.03	1.05	1.08
6.0	450	0.98	1.00	1.03	1.05	1.08

Example for Calculation

A metal sheet with a thickness of 15 mm is to be joined in the horizontal-vertical position. Let the weld length be 10 m.

A vee weld with a preparation angle of 60 ° is chosen as the weld preparation. For quality assurance reasons the root will be back welded. A basic stick electrode will be used (the metal recovery code according to EN is 4). An electrode with ø 3.2 mm will be used for the root and an electrode with ø 4.0 mm will be used for the filler and cover passes. The stub length is assumed to be 70 mm.
influencing factor	calculated values		
weight of weld without weld reinforcement	r 0.15x10 = 1.5 kg f+c 0.91x10 = 9.1 kg		
 x factor for the effect of the welding position (weld reinforcement) 	1.15		
 x allowance for back welding (if necessary) 	1.19		
reference value for the total weight of the weld	r 2.05 kg		
	f+c 12.45 kg		
 / 0.01894 kg/pcs. = weight of core metal rod deposited (ø3.2/350, stub 50 mm, metal recovery 100%) 	0.01894		
x factor for divergent electrode dimension	r 1.0		
Ũ	f+c 0.48		
x factor for divergent metal recovery	0.87		
x factor for divergent stub length	r 1.07		
0 0	f+c 1.05		
reference value for the number of electrodes required	r 101 Stk. f+c 289 Stk.		

r .. root pass, f .. filler layer, c .. cap layer

Explanations

The weight of the weld may be taken from the table "Reference Values for Manual Metal Arc Welding of Horizontal Vee Welds in Sheet Metal". This table is already divided into root, filler and cover passes for assistance. The factor for the influence of the welding position may be found in the appropriate section. The same applies to back welding of the root in which case the value is chosen depending on the thickness of the sheet, the shape of the weld and the weld preparation angle.

From this information the total weight of the weld should be determined divided into areas for different electrode dimensions.

The next line produces the number of electrodes if only one electrode with *e* 3.2/350 with 50 mm stub and 100 % metal recovery were to be used. As a thicker electrode is used for the filler and cover passes, allowance must be made for the altered electrode dimension. Let the metal recovery be 115 %, which would result in a factor of 1/1.15 = 0.87. The altered stub length results in different effects depending on the electrode length.

The number of electrodes required as a result of division and multiplication is only a reference value to which a factor must be added for any waste due to bent, contaminated or incompletely used electrodes.

4.2.2 Estimation of Standard Welding Time

Actual Welding Time

Reduction of the costs by reducing the actual welding time is one of the most important tasks of production monitoring. In this case the actual welding time may be estimated within certain limits. However, a second factor that has just as great a significance for reduction of the overall costs is increasing the proportion of actual welding time in the overall time.

The approach shown here uses part of the calculation for the requirement of filler metal and the deposition rate of the individual electrodes.

- = reference values for total weight of joint in kg
- / deposition rate of consumable in kg/(h*A)
- / chosen amperage in A
- x 60 min/h
- = reference values for welding time in minutes

The deposition rate is not shown for every single brand as the divergence resulting from the different welding conditions does not justify this level of detail. The following table presents a summary of deposition rates for different types of coating. In the case of ranges of values the lower value in each case should be assigned to the lower current intensity limit for this electrode.

type of stick	deposition rate [kg/(h*A)]							
electrode	ø 1.5 mm	ø 2.0 mm	ø 2.5 mm	ø 3.2 mm	ø 4.0 mm	ø 5.0 mm	ø 6.0 mm	
medium coated	(rutile)							
R	0.01	0.009	0.009-0.015	0.009				
RC		0.01	0.010-0.011		0.009	0.009		
thick coated (ru	tile)							
RR		0.008	0.008	0.009	0.009	0.01	0.01	
RC	0.009	0.009-0.0091	0.009	0.009	0.01	0.01		
AR			0.01-0.011	0.011	0.011	0.011	0.011	
RB		0.008	0.008-0.009	0.008-0.009	0.009	0.009		
thick coated (ba	isic)							
В			0.009-0.010	0.01	0.01	0.011	0.011	
R(B)			0.009	0.01	0.01	0.011		
metal powder ty	/pe							
RR (160 %)				0.012	0.013	0.014	0.015	
RR (180 %)				0.014	0.015	0.016	0.016	
RR (200 %)				0.016	0.017	0.018		
RR (240 %)					0.02	0.021		
AR (120 %)			0.012-0.014	0.011	0.011			

Example for Calculation

A metal sheet with a thickness of 15 mm is to be joined in the horizontal-vertical position. Let the weld length be 10 m.

A vee weld with a preparation angle of 60 ° is chosen as the weld preparation. For quality assurance reasons the root will be back welded. A basic stick electrode will be used (the metal recovery code according to EN is 4). An electrode with ø 3.2 mm will be used for the root and an electrode with ø 4.0 mm will be used for the filler and cover passes. The stub length is assumed to be 70 mm.

Thus the example is identical to the example for estimating the electrode requirement. The electrode is specified more particularly as BÖHLER FOX EV 50 to obtain a calculation variable.

	influencing factor	calculated	/alues
	weight of weld without weld reinforcement	r	0.15x10 = 1.5 kg
		f+c	0.91x10 = 9.1 kg
х	factor for the effect of the welding position (weld reinforcement)		1.15
х	allowance for back welding (if necessary)		1.19
	reference value for the total weight of the	r	2.05 kg
	weld	f+c	12.45 kg
/	deposition rate of consumable in kg/(h*A)		0.010
/	chosen amperage in A	r	110
		f+c	160
х	60 min/h		60
	reference values for welding time in minutes	r	112 min
	0	f+c	467 min

r .. root pass, f .. filler layer, c .. cap layer

Duty Cycle

The proportion of actual welding time is often referred to as the "duty cycle". This value specified in percent does not make any statement as an absolute variable about the efficiency of a method of working since with high-performance procedures where it is not possible to reduce the downtimes to the same extent as the actual welding time for example, the duty cycle may actually drop in percentage despite the total welding time being lower.

The downtimes that reduce the duty cycle may be dependent on the procedure, component, operating environment and the welder himself. The individual aspects are not dealt with in greater detail here. In any case an accurate analysis is required to find reference points for reducing the downtimes.

For the calculation of standard times attempts have been made time and again to specify reference values for the duty cycle. Values of this type range for example from 5 % for tack welds in assembly to over 30 % for individual production of machine casings and 55 % for series production of machine casings up to 70 % for series production of components in turnover igs. One may not overlook in this case that these figures have to be checked individually for each company or have to be compared with in-house statistics since investigations of different sizes of company in different sectors showed divergences in the average duty cycle between 30 and 75 %.

With statistically well-covered duty cycle values the standard time is calculated as follows:

Standard time = actual welding time / duty cycle x 100

5 Comparison Table for Hardness

- Rm Tensile Strength in N/mm²
- HV Vickers-Hardness
- HB Brinell-Hardness
- HRC Rockwell-C-Hardness

Rm	ΗV	HB	HRC	Rm	ΗV	HB	HRC	Rm	ΗV	HB	HRC
200 210 220	63 65 69	60 62 66	 	545 550 560	170 172 175	162 163 166	 	890 900 910	278 280 283	264 266 269	27
225	70 72	68 71		575	180	171		915	285	273	28
240 250 255	79 80	71 75 76		580 590 595	184 185	172 175 176		930 940 950	290 293 295	278 278 280	29
260 270 280	82 85 88	78 81 84		600 610 620	187 190 193	178 181 184		960 965 970	299 300 302	284 285 287	30
285 290	90 91	86 87		625 630	195 197	185 187		980 990	305 308	290 293	01
300 305 310	94 95 97	89 90 92		650 660	200 203 205	190 193 195		995 1000 1010) 310) 311) 314	295 296 299	31
320 330	100 103	95 98		670 675	208 210	198 199		1020) 317) 320	301 304	32
335 340 350	105 107 110	100 102 105		680 690 700	212 215 219	201 204 208		1040) 323) 327) 330	307 311 314	33
360 370	113 115	107 109		705 710	220 222	209 211		1070) 333) 336	316 319	34
380 385 390	119 120 122	113 114 116		720 730 740	225 228 230	214 216 219		1090	5 340 342	322 323 325	
400 410	125 128	119 122		750 755	233 235	221 223		1110 1120	345 349	328 332	35
415 420 430	130 132 135	124 125 128		760 770 780	237 240 243	225 228 231	 21	1125	350 352	333 334 337	36
440 450	138 140	131 133		785 790	245 247	233 235	21	1150	358 360	340 342	00
460 465 470	143 145	136 138		800 810 820	250 253 255	238 240	22	1160) 361) 364	343 346	37
480 490	150 153	140 143 145		830 835	258 260	242 245 247	23	1190) 370) 373	352 354	38
495 500	155 157	147 149		840 850	262 265	249 252		1210 1220) 376) 380	357 361	
510 520 530	160 163 165	152 155 157		860 865 870	268 270 272	255 257 258	25 26	1230 1240 1250) 382) 385) 388	363 366 369	39
540	168	160		880	275	261		1255	5 390	371	

Rm	Tensile Strength in N/mm ²
HV	Vickers-Hardness
HB	Brinell-Hardness
HRC	Rockwell-C-Hardness

Rm	HV	HB	HRC	Rm	HV	HB	HRC	F	Rm	HV	HB	HRC
1260 1270 1280	392 394 397	372 374 377	40	1650 1660 1665	506 509 510			222	2030 2040 2050	610 613 615		56
1290 1300 1310 1320	400 403 407 410	380 383 387 390	41	1670 1680 1690 1700	511 514 517 520		50		2060 2070 2080 2090	620 623 626		
1330 1340 1350	413 417 420	393 396 399	42	1710 1720 1730	522 525 527		51		2100 2105 2110	629 630 631		
1360 1370 1380 1390	423 426 430 431	402 405 409 410	43	1740 1750 1760 1770	530 533 536 539				2120 2130 2140 2145	634 636 639 640		57
1400 1410 1420 1430	434 437 440 443	413 415 418 421	44 45	1775 1780 1790 1800	540 541 544 547		52		2150 2160 2170 2180	641 644 647 650		
1440 1450 1455 1460	446 449 450	424 427 428 429		1810 1820 1830	550 553 556			2	2190 2200	653 655 675		58 59
1470 1480 1485 1490 1500	455 458 460 461 464	432 435 437 438 441	46	1845 1850 1860 1870 1880	560 561 564 567 570		53			720 745 773 800 829		61 62 63 64 65
1510 1520 1530 1540 1550 1555	467 470 473 476 479 480	444 447 449 452 455 456	47	1890 1900 1910 1920 1930 1940	572 575 578 580 583 586		54			864 900 940		66 67 68
1560 1570 1580 1590 1595	481 484 486 489 490	100	48	1950 1955 1960 1970 1980	589 590 591 594 596		55					
1600 1610 1620 1630 1640	491 494 497 500 503		49	1990 1995 2000 2010 2020	599 600 602 605 607							

5.1. Material Comparison Chart EN - DIN

As many users are still not familiar with the EN designation, this section of the manual contains recoding from the EN to the former DIN designation. Materials for which no direct recoding is possible are not listed. Designations based on the chemical composition are also excluded since the multipliers between DIN and EN standards have remained the same.

W-No.	EN-Classification	DIN-Classification	W-No.	EN-Classification	DIN-Classification
1.0468	C14GAI	15 Mn 3 Al	1.1151	C22E	Ck 22
1.0481	P295GH	17 Mn 4	1.1158	C25E	Ck 25
1.0482	P310GH	19 Mn 5	1.1178	C30E	Ck 30
1.0473	P355GH	19 Mn 6	1.1181	C35E	Ck 35
1.8980	S500QGL	5 CuNi 12 3	1.1005	C3E	Ck 4
1.0647	C85	85 Mn 3	1.1186	C40E	Ck 40
1.0428	B420N	BSt 420 S	1.1191	C45E	Ck 45
1.0464	B500G1	BSt 500 G	1.1195	C45EPb	Ck 45 Pb
1.0466	B500G3	BSt 500 M	1.1198	C48EMn	Ck 48 Mn
1.0465	B500G2	BSt 500 P	1.1010	C5E	Ck 5
1.0438	B500N	BSt 500 S	1.1206	C50E	Ck 50
1.0302	C10GPb	C 10 Pb	1.1210	C53E	Ck 53
1.1545	C105U	C 105 W1	1.1203	C55E	Ck 55
1.1554	C110U	C 110 W	1.1107	C6E	Ck 6
1.1563	C125U	C 125 W	1.1221	C60E	Ck 60
1.1573	C135U	C 135 W	1.1231	C67E	Ck 67
1.0403	C15GPb	C 15 Pb	1.1234	C68E	Ck 68
1.0402	C22	C 22	1.1009	C7E	Ck 7
1.0404	C22GPb	C 22 Pb	1.1248	C75E	Ck 75
1.0427	C22G1	C 22.3	1.1269	C85E	Ck 85
1.0460	C22G2	C 22.8	1.1140	C15R	Cm 15
1.0406	C25	C 25	1.1149	C22R	Cm 22
1.0528	C30	C 30	1.1163	C25R	Cm 25
1.0501	C35	C 35	1.1179	C30R	Cm 30
1.0502	C35GPb	C 35 Pb	1.1180	C35R	Cm 35
1.0511	C40	C 40	1.1189	C40R	Cm 40
1.0503	C45	C 45	1.1201	C45R	Cm 45
1.0504	C45GPD	C 45 PD	1.1241	CSUR	Cm 50
1.1730	050	C 45 W	1.1205	C53R	Cm 53
1.0540	C50	0.50	1.1209	CSOR	Cm 55
1.0535	CEECED	C 55 C 55 Pb	1.1223	CoNICr26-20	CoNICr 26 20
1.0537	CSSGFD	C 55 FD	1 11 22	C10C	Collici 20 20
1.0601	CEOCED	C 60 Ph	1.1122	C15C	Cq 10
1 1740	CEOUL	C 60 W	1 1152	C13C	Cq 22
1.0627	C68	C 68	1 1172	C35C	Cq 35
1 1520	C70U	C 70 W	1 1192	C45C	Ca 45
1 1525	C80U	C 80 W1	1 0310	C10D	D 10-2
1 1830	C85U	C 85 W	1 0413	C15D	D 15-2
1 1183	C35G	Cf 35	1 0414	C20D	D 20-2
1.1193	C45G	Cf 45	1.0415	C26D	D 25-2
1 1213	C53G	Cf 53	1 0530	C32D	D 30-2
1 1219	C54G	Cf 54	1 0516	C38D	D 35-2
1.1249	C70G	Cf 70	1.0541	C42D	D 40-2
1.1121	C10E	Ck 10	1.0517	C48D	D 45-2
1.1274	C101E	Ck 101	1.0586	C50D	D 50-2
1.1130	C12E	Ck 12	1.0588	C52D	D 53-2
1.1141	C15E	Čk 15	1.1202	C52D2	D 53-3
1.1135	C16EAI	Ck 16 Al	1.0518	C56D	D 55-2
1.1134	C19E	Ck 19	1.1220	C56D2	D 55-3

Helpful Tools

W-No.	EN-Classification	DIN-Classification	W-No.	EN-Classification	DIN-Classification
1.0609	C58D	D 58-2	1.8854	S420GO1	FStE 420 OS 1
1.1212	C58D2	D 58-3	1.8855	S420GO2	FStE 420 OS 2
1.0610	C60D	D 60-2	1.8856	S420GO3	FStE 420 OS 3
1.1228	C60D2	D 60-3	2.4778	CoCr28	G-CoCr 28
1.0611	C62D	D 63-2	2.4779	CoCr28Nb	G-CoCr 28 Nb
1.1222	C62D2	D 63-3	1.0440	S235JRS1	GL-A
1.0612	C66D	D 65-2	1.0441	S235JRS2	GL-A
1.1236	C66D2	D 65-3	1.0513	S315G1S	GL-A 32
1.0613	C68D	D 68-2	1.0583	S355G1S	GL-A 36
1.1232	C68D2	D 68-3	1.0532	S390G1S	GL-A 40
1.0615	C70D	D 70-2	1.0442	S235J0S	GL-B
1.0617	C72D	D 73-2	1.0475	S235J2S1	GL-D
1.1242	C76D	D 75-3	1.0474	5230J252 6215C26	GL-D
1 1 2 5 3	C76D2	D 75-2	1.0514	S355G2S	GL-D 32
1.0620	C78D	D 78-2	1.0534	S300G2S	GL-D 40
1 1252	C78D2	D 78-3	1.0476	S235.14S	GL-E
1.0622	C80D	D 80-2	1.0515	S315G3S	GL-F 32
1.1255	C80D2	D 80-3	1.0589	S355G3S	GL-E 36
1.0313	C7D	D 8-2	1.0560	S390G3S	GL-E 40
1.0626	C82D	D 83-2	1.8840	S315G4S	GL-F 32
1.1262	C82D2	D 83-3	1.8841	S355G4S	GL-F 36
1.0616	C86D	D 85-2	1.8842	S390G4S	GL-F 40
1.1265	C86D2	D 85-3	1.0345	P235GH	HI
1.0628	C88D	D 88-2	1.0425	P265GH	HII
1.1272	C88D2	D 88-3	1.0435	P285NH	HIII
1.0010	C8D	D 9	1.0445	P295NH	HIV
1.0618	C92D	D 95-2	1.0873	DC06	IF 18
1.1282	C92D2	D 95-3	1.0120	S235JRC	K.Q.Z St 37-2
1.0373	1550	DR 550	1.0118	S235J2G3C	K.Q.Z St 37-3 N
1.0374	1620	DR 620	1.0115	5235JUC	K.Q.Z St 37-3 U
1.0370	1000 DC13ED	ED 3	1.0120	5275JRC \$275J2630	K O Z St 44-2
1 0394	DC04ED	ED 4	1 0140	S275 IOC	K O 7 St 44-3 II
1 0391	DC12FK	FK 2	1 0569	S355J2G3C	K 0 7 St 52-3 N
1.0392	DC04EK	EK 4	1.0554	S355J0C	K.Q.Z St 52-3 U
1.1103	S255NL1	EStE 255	1.1004	C2E	Mk 3
1.1104	P275NL2	EStE 285	1.1291	C97E	Mk 97
1.1105	S315NL1	EStE 315	2.4661	EL-NiCr29Mo5W	NiCr22Fe20Mo6AlCuTi
1.1106	P355NL2	EStE 355	1.0538	E295GF	PSt 50-2
1.8911	S380NL1	EStE 380	1.0572	S355J2G3F	PSt 52-3
1.8913	S420NL1	EStE 420	1.0303	C4C	QSt 32-3
1.8918	P460NL2	EStE 460	1.0213	C7C	QSt 34-3
1.8919	S500NL1	ESTE 500	1.0214	C11C	QSt 36-3
1.8984	5500QL1	ESTE 500 V	1.0587	5355J2G3CUC	
1.0900	5550QL1		1.0971	SZOUNC	QSIE 200 IN
1.8987	S620011	EStE 620 V	1.0973	S315NC	OStE 300 N
1 8954	S620G10L1	EStE 620 V A	1.0070	S315MC	OStE 300 TM
1.8988	S690QL1	EStE 690 V	1.0975	S340NC	OStE 340 N
1.8964	S690G1QL1	EStE 690 V A	1.0974	S340MC	QStE 340 TM
1.8939	S790QL1	EStE 790 V	1.0977	S355NC	QStE 360 N
1.8925	S890QL1	EStE 890 V	1.0976	S355MC	QStE 360 TM
1.1230	C65S1	Federstahldraht FD	1.0979	S380NC	QStE 380 N
1.1250	C65S2	Federstahldraht VD	1.0978	S380MC	QStE 380 TM
1.0829	M1000-65A	FeV 1000-65 HA	1.0981	S420NC	QStE 420 N
1.0555	S355G01	FSTE 355 US 1	1.0980	S420MC	USTE 420 IM
1.0559	5355GU2	FSIE 355 US 2	1.0983	546UNC	USIE 460 N
1.0591	5355GU3	FOIL 355 US 3	1.0982	S46UMC	QSIE 460 IM
1.1102	5355GO5	FOIE 355 00 4	1.0985	SSOOMC	OSIE 500 IN
1.8822	S355G1M	FStE 355 TM	1.0987	S550NC	QStE 550 N

Conversion of Basic Units

W-No.	EN-Classification	DIN-Classification	W-No.	EN-Classification	DIN-Classification
1.0986	S550MC	QStE 550 TM	1.0305	P235G1TH	St 35.8
1.8976	S650MC	QStE 650 TM	1.0254	P235T1	St 37.0
1.0703	C10RG2	R 10 S 10	1.0255	P235T2	St 37.4
1.0709	C7RG2	R7S6	1.0315	P235G2TH	St 37.8
1.0337	DC04GT	RoSt 4	1.0037	S235JR	St 37-2
1.0149	S275J0H	RoSt 44-2	1.0169	S235JRCu+CR	St 37-2 Cu 3 G
1.0138	S275J2H	RoSt 44-3	1.0037	S235JR+CR	St 37-2 G
1.0576	S355J2H	RoSt 52-3	1.0116	S235J2G3	St 37-3
1.0122	S235JRG2C	RQSt 37-2	1.0166	S235J2G3Cu	St 37-3 Cu 3
1.0170	S235JHG2CuC	RUST 37-2 Cu 3	1.0116	S235J2G3+CR	St 37-3 G
1.0351	C IUW	RRSD IU	1.0114	5235JU	St 37-3 U
1.0347	121064		1.0330	DC04 D255C2TH	SI 4, SI 14
1.0319	12/064	BBSIE 240.7	1.0456	P255G21H	St 42.0
1 0398	DD12	BBStW 23	1.0257	P275T2	St 44.4
1 0339	C10WSi	BSD 10 Si	1 0044	S275.IB	St 44-2
1.1115	C10EW	RSD 11	1.0179	S275JRCu	St 44-2 Cu 3
1.0324	C8G2W	RSD 7	1.0144	S275J2G3	St 44-3
1.0326	S180G2T	RSt 28	1.0144	S275J2G3+CR	St 44-3 G
1.0034	S205G2T	RSt 34-2	1.0143	S275J0	St 44-3 U
1.0208	C10G2	RSt 35-2	1.0408	S255GT	St 45
1.0205	C11G2	RSt 36	1.0405	P255G1TH	St 45.8
1.0038	S235JRG2	RSt 37-2	1.0050	E295	St 50-2
1.0167	S235JRG2Cu	RSt 37-2 Cu 3	1.0050	E295+CR	St 50-2 G
1.0223	C14G2	HSt 38	1.0580	S355GT	St 52
1.3207	HS10-4-3-10	S 10-4-3-10	1.0421	P35511	St 52.0
1.3318	H512-1-2	5 12-1-2	1.0581	P35512	St 52.4
1.3302	HS12-1-4	S 12-1-4 S 12-1-4-5	1.0570	\$355 J2G3Cu	St 52-3 Cu 3
1 3355	HS18-0-1	S 18-0-1	1.0585	S355.12G3Cu+CB	St 52-3 Cu 3 G
1.3265	HS18-1-2-10	S 18-1-2-10	1.0570	S355-J2G3+CB	St 52-3 G
1.3257	HS18-1-2-15	S 18-1-2-15	1.0553	S355J0	St 52-3 U
1.3255	HS18-1-2-5	S 18-1-2-5	1.0060	E335	St 60-2
1.3247	HS2-10-1-8	S 2-10-1-8	1.0060	E335+CR	St 60-2 G
1.3346	HS2-9-1	S 2-9-1	1.0070	E360	St 70-2
1.3348	HS2-9-2	S 2-9-2	1.0070	E360+CR	St 70-2 G
1.3249	HS2-9-2-8	S 2-9-2-8	1.0307	L210	StE 210.7
1.3333	HS3-3-2	\$ 3-3-2	1.0457	L245NB	StE 240.7
1.3343	H50-5-2	56-5-2	1.0242	S250GD	SIE 250 Z
1 32/3	HS6-5-2-5	5 0-5-2 5 S 6-5-2-5	1.0461	5200N 5280GD	SIE 200 7
1 3245	HS6-5-2-5S	S 6-5-2-5 S	1.0244	P275N	StE 285
1.3344	HS6-5-3	S 6-5-3	1.0490	S275N	StE 285
1.3246	HS7-4-2-5	S 7-4-2-5	1.0493	S275NH	StE 285
1.3342	HS6-5-2C	SC 6-5-2	1.0484	L290NB	StE 290.7
1.3340	HS6-5-2CS	SC 6-5-2 S	1.0429	L290MB	StE 290.7 TM
2.4623	EL-NiCr23Mo7Cu	SG-NiCr23Mo7Cu	1.0505	P315N	StE 315
1.1237	C70D3	SKD 70	1.0250	S320GD	StE 320 Z
1.1238	C80D3	SKD 80	1.0409	L320	StE 320.7
1.0226	DX51D	St 02 Z	1.0430	L320M	StE 320.7 TM
1.0350	DX52D	St 05 Z	1.0529	5350GD 2355N	SIE 350 Z StE 355
1.0306	DX54D	St 06 Z	1 0545	S355N	StE 355
1.0344	DC01Cu	St 12 Cu 3	1.0539	S355NH	StE 355
1.0354	DC04Cu	St 14 Cu 3	1.8823	S355M	StE 355 TM
1.0312	DC05	St 15	1.0582	L360NB	StE 360.7
1.0318	S180GT	St 28	1.0578	L360MB	StE 360.7 TM
1.0212	S215GAIT	St 30 Al	1.8900	S380N	StE 380
1.0211	S215GSiT	St 30 Si	1.8970	L385N	StE 385.7
1.0035	S185	SI 33	1.8971	L385M	StE 385.7 IM
1.0032	5205G1 6225C2T	01 04-2 Ct 25	1.09/2		OLE 415./
1.0300	3233021	3133	1.09/3	L+I JIVID	GIE 415.7 11VI

Helpful Tools

W-No.	EN-Classification	DIN-Classification	W-No.	EN-Classification	DIN-Classification
1.8902	S420N	StE 420	1.8983	S890QL	TStE 890 V
1.8825	S420M	StE 420 TM	1.8933	S960QL	TStE 960 V
1.8975	L450MB	StE 445.7 TM	1.1101	S225NL	TTSt 35
1.8905	P460N	StE 460	1.0702	C10RG1	U 10 S 10
1.8901	S460N	StE 460	1.0708	C7RG1	U7S6
1.8953	S460NH	StE 460	1.0348	P195GH	UHI
1.8827	S460M	StE 460 TM	1.0160	S235JRG1F	UPSt 37-2
1.8977	L485MB	StE 480.7 TM	1.0204	C11G1C	UQSt 36
1.8907	S500N	StE 500	1.0121	S235JRG1C	UQSt 37-2
1.8924	5500Q	SIE 500 V	1.0164	S235JRGTCUC	UQSt 37-2 CU 3
1.8904	SSSUQ	SIE 550 V	1.0224		UQSI 38
1.0970	2000	SIE 550.7 TIVI StE 620 V	1.1112	CRE2W	
1 8931	S6900	StE 690 V	1 0323	C8G1W	USD 7
1 8979	L 690M	StE 690 7 TM	1.0357	S180G1T	USt 28
1 0915	B1100Cr	StSch 1100	1 0333	DC03G1	USt 3 USt 13
1.0631	R1200	StSch 1200	1.0028	S205G1T	USt 34-2
1.0422	R0550	StSch 550	1.0207	C10G1	USt 35-2
1.0544	R0600	StSch 600	1.0203	C11G1	USt 36
1.0521	R0700	StSch 700	1.0253	P235G1T1	USt 37.0
1.0524	R0800	StSch 800	1.0036	S235JRG1	USt 37-2
1.0623	R0900	StSch 900 A	1.0036	S235JRG1+CR	USt 37-2 G
1.0624	R0900Mn	StSch 900 B	1.0217	C14G1	USt 38
1.0341	R0290	StSchStr	1.0336	DC04G1	USt 4, USt 14
1.0021	S240GP	StSp 37	1.0334	DD12G1	UStW 23
1.0023	S270GP	StSp 45	1.0834	M<35A	V < 35 A
1.0083	5355GP	SISP S	1.0833		V > 65 A C
1.0332		SIW 22 StW 24	1.0032	M>00A01	V > 00 A 01
1.0333	TH50	T 50	1.0000	M1070-65A	V 1070-65 A
1.0372	TH52	T 52	1.0818	M1450-50A	V 1450-50 A
1.0375	TH57	T 57	1.0831	M1590-65A	V 1590-65 A
1.0377	TH61	T 61	1.0800	M250-35A	V 250-35 A
1.0378	TH65	T 65	1.0801	M270-35A	V 270-35 A
1.0463	S255NL	TStE 255	1.0806	M270-50A	V 270-50 A
1.0488	P275NL1	TStE 285	1.0807	M290-50A	V 290-50 A
1.0491	S275NL	TStE 285	1.0803	M300-35A	V 300-35 A
1.0497	S275NLH	1StE 285	1.0808	M310-50A	V 310-50 A
1.0508	P315NL	ISTE 315	1.0804	M330-35A	V 330-35 A
1.0500	P 300INL I	1 SIE 300 TO+E 255	1.0009	M220 65 A	V 330-50 A
1.0549	S355NLH	TStE 355	1.0810	M350-50A	V 350-50 A
1 8834	S355MI	TStF 355 TM	1 0820	M350-65A	V 350-65 A
1.8910	S380NL	TStE 380	1.0811	M400-50A	V 400-50 A
1.8912	S420NL	TStE 420	1.0821	M400-65A	V 400-65 A
1.8836	S420ML	TStE 420 TM	1.0812	M470-50A	V 470-50 A
1.8915	P460NL1	TStE 460	1.0823	M470-65A	V 470-65 A
1.8903	S460NL	TStE 460	1.0813	M530-50A	V 530-50 A
1.8956	S460NLH	TStE 460	1.0824	M530-65A	V 530-65 A
1.8838	S460ML	IStE 460 IM	1.0814	M600-50A	V 600-50 A
1.8906	S460QL	15tE 460 V	1.0825	M000-05A	V 600-65 A
1.0917	5500NL	TSIE 500 V	1.0015	M700-50A	V 700-50 A
1.8926	S5500L	TStE 550 V	1.0020	M800-50A	V 800-50 A
1 8923	S590QL	TStE 590 V	1 0827	M800-65A	V 800-65 A
1.8927	S620QL	TStE 620 V	1.0817	M940-50A	V 940-50 A
1.8928	S690QL	TStE 690 V	1.0828	M940-65A	V 940-65 A
1.8920	S690G1QL	TStE 690 V A	1.0840	M<50E	VE < 50
1.8921	S690G2QL	TStE 690 V B	1.0850	M>65E	VE > 65
1.8922	S690G4QL	TStE 690 V C	1.0841	M340-50E	VE 340-50
1.8929	S690G3QL	TStE 690 V D	1.0842	M390-50E	VE 390-50
1.8938	S770QL	I StE 770 V	1.0846	M390-65E	VE 390-65

Conversion of Basic Units

W-No.	EN-Classification	DIN-Classification	W-No.	EN-Classification	DIN-Classification
1.0843	M450-50E	VE 450-50	1.0506	P315NH	WStE 315
1.0847	M450-65E	VE 450-65	1.0565	P355NH	WStE 355
1.0848	M520-65E	VE 520-65	1.8930	P380NH	WStE 380
1.0844	M560-50E	VE 560-50	1.8932	P420NH	WStE 420
1.0849	M630-65E	VE 630-65	1.8935	P460NH	WStE 460
1.0845	M660-50E	VE 660-50	1.8937	P500NH	WStE 500
1.0851	M800-65E	VE 800-65	1.8960	S235JRW	WTSt 37-2
1.0360	M>65D	VH > 65	1.8961	S235J2W	WTSt 37-3
1.0365	M1000-65D	VH 1000-65	1.8963	S355J2G1W	WTSt 52-3
1.0363	M1050-50D	VH 1050-50	1.0533	E295GC	ZSt 50-2
1.0369	M1100-65D	VH 1100-65	1.0543	E335GC	ZSt 60-2
1.0366	M1200-65D	VH 1200-65	1.0633	E360GC	ZSt 70-2
1.0361	M660-50D	VH 660-50	1.0395	H180B	ZStE 180 BH
1.0364	M800-65D	VH 800-65	1.0396	H220B	ZStE 220 BH
1.0362	M890-50D	VH 890-50	1.0397	H220P	ZStE 220 P
1.0881	M111-30P	VM 111-30 P	1.0480	H260	ZStE 260
1.0856	M111-35N	VM 111-35 N	1.0400	H260B	ZStE 260 BH
1.0882	M117-30P	VM 117-30 P	1.0417	H260P	ZStE 260 P
1.0866	M130-27S	VM 130-27 S	1.0489	H300	ZStE 300
1.0862	M140-30S	VM 140-30 S	1.0444	H300B	ZStE 300 BH
1.0857	M150-35S	VM 155-35 S	1.0448	H300P	ZStE 300 P
1.0865	M089-27N	VM 89-27 N	1.0548	H340	ZStE 340
1.0861	M097-30N	VM 97-30 N	1.0550	H380	ZStE 380
1.0462	P255NH	WStE 255	1.0556	H420	ZStE 420
1.0487	P275NH	WStE 285	1.0574	H460	ZStE 460

Published by BÖHLER WELDING

Böhler Schweißtechnik Austria GmbH

Böhler-Welding-St. 1 8605 Kapfenberg / AUSTRIA ① +43 (0) 3862-301-0 몸 +43 (0) 3862-301-95193 ⊠ postmaster.bsga@bsga.at www.boehler-welding.com Member of the BÖHLER-UDDEHOLM Group